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Abstract—Multichannel blind deconvolution (MCBD) algo-
rithms are known to suffer from an extensive computational
complexity problem, which makes them impractical for blind
source separation (BSS) of speech and audio signals. This problem
is even more serious with noncausal MCBD algorithms that must
be used in many frequently occurring BSS setups. In this paper,
we propose a novel frequency domain algorithm for the efficient
implementation of noncausal multichannel blind deconvolution.
A block-wise formulation is first developed for filtering and adap-
tation of filter coefficients. Based on this formulation, we present
a modified overlap-save procedure for noncausal filtering in the
frequency domain. We also derive update equations for training
both causal and anti-causal filters in the frequency domain.
Our evaluations indicate that the proposed frequency domain
implementation reduces the computational requirements of the
algorithm by a factor of more than 100 for typical filter lengths
used in blind speech separation. The algorithm is employed suc-
cessfully for the separation of speech mixtures in a reverberant
room. Simulation results demonstrate the superior performance
of the proposed algorithm over causal MCBD algorithms in many
potential source and microphone positions. It is shown that in
BSS problems, causal MCBD algorithms with center-spike initial-
ization do not always converge to a delayed form of the desired
noncausal solution, further revealing the need for an efficient
noncausal MCBD algorithm.

Index Terms—Blind speech separation (BSS), filter decom-
position, multichannel blind deconvolution (MCBD), noncausal
filtering.

I. INTRODUCTION

B LIND separation of signals is a rapidly growing area in
the field of digital signal processing which finds various

applications in audio and speech processing, telecommunica-
tions, and biomedical signal processing. Blind source separa-
tion (BSS) is the task of recovering sources from a set of ob-
served mixtures, with virtually no a priori information about
the sources or the mixing system. The only assumption is that
the sources are statistically mutually independent.
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Numerous authors have addressed the problem of instanta-
neous BSS [1]–[7], in which the mixtures are assumed to be
linear combinations of the sources. In this case, the mixing ma-
trix consists only of real weights. Instantaneous BSS is useful in
applications such as electroencephalography (EEG) and image
processing. However, in audio applications in real acoustic en-
vironments, the assumption of instantaneous mixing does not
hold, since each microphone picks up not only direct path prop-
agations, but also several reflections of source signals arriving at
different delays. This situation is termed convolutive mixing of
source signals. Convolutive mixing is characterized by mixing
matrices that contain filters representing the acoustic channels
from each source to each microphone.

Several researchers have addressed the problem of convolu-
tive BSS in the frequency domain [8]–[10]. Since the convo-
lution operation changes to bin-wise multiplication in the fre-
quency domain, the task of convolutive BSS is decomposed into
several instantaneous BSS tasks for different frequency bins.
However, such frequency domain approaches suffer from the
well known scaling and permutation problems, due to different
output ordering and different gains in each frequency bin. Pos-
sible solutions to these problems can be found in [11] and [12].

A completely different approach to convolutive BSS, which
is followed in this paper, is using multichannel blind deconvolu-
tion (MCBD) methods, which are an extension of blind decon-
volution techniques to multiple-input multiple-output (MIMO)
systems [13], [14]. Since the cost function in these approaches
is defined in the time domain, the permutation and scaling prob-
lems do not occur. The only problem appears to be a spec-
tral whitening of temporally-correlated speech signals, which
happens due to the assumption of independent-and-identically-
distributed (i.i.d.) input samples. However, it has been shown
that the whitening problem is easily removable through pre-em-
phasis of the microphone signals and the post-filtering of BSS
outputs [14], [15]. One of the earliest works in multichannel
blind deconvolution, which has received considerable attention
in blind signal processing research, was presented by Amari
et al. in [16]. Based on the Kullback–Leibler divergence be-
tween the joint distribution of output samples and the product
of their marginal distributions, they defined a cost function in
the time domain. They suggested that minimization of this cost
function leads to output samples that are mutually independent,
hence achieving blind separation and deconvolution. Since con-
ventional stochastic gradient descent optimization methods are
known to suffer from the slow convergence rate problem in blind
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deconvolution tasks, two alternative methods, the Natural Gra-
dient by Amari [17] and the Relative Gradient by Cardoso [18]
are often employed in blind deconvolution. Using the natural
gradient for the minimization of the cost function, the authors
in [16] derived an adaptive learning procedure for causal finite
impulse response (FIR) demixing filters.

A major problem associated with causal MCBD algorithms
is their considerable performance degradation in nonminimum
phase mixing environments. In a nonminimum phase MIMO
system, the transmission zeros may lie anywhere inside or out-
side the unit circle. It is known that a stable (FIR) inverse of
such systems necessarily includes anti-causal delays [19]. Thus,
algorithms that exploit only causal demixing filters fail to effec-
tively invert nonminimum phase mixing systems.

To tackle this problem, some authors have considered the
use of center-spike initialization for the diagonal filters of the
demixing system [16], [20], [21]. This means that instead of
the commonly used unit impulse initialization at the first tap,
these filters are initialized with a shifted impulse located at their
middle tap. By using center-spike initialization, the demixing
filters are expected to be trained to causal FIR filters, which are
considered as a delayed form of the original noncausal filters.
However, as will be shown in Section VI-C, this solution has a
very limited capability in blind speech separation and does not
always lead to proper identification of the mixing system.

A fundamental solution for multichannel blind deconvolution
in nonminimum phase mixing systems, which will be referred
to as noncausal MCBD (NMCBD) algorithm throughout this
paper, was proposed by Zhang et al. in [22]. They suggested a
decomposition of the demixing system into a cascade of anti-
causal and causal filters. They proposed a simple cost function
for this case, and derived a natural gradient learning procedure
for the coefficients of both causal and anti-causal filters.

A problem involved in both causal and noncausal MCBD al-
gorithms is their extensive computational requirements, due to
time domain filtering and sample-by-sample adaptation of the
filter coefficients. This problem is more severe in the noncausal
MCBD algorithm, since two sets of filter coefficients (causal
and anti-causal) have to be trained. In the original works [16],
[22], the causal and noncausal MCBD algorithms have been
employed for randomly generated i.i.d. signals that have been
mixed with arbitrarily chosen mixing systems. The zero dis-
tribution of these mixing systems have been chosen such that
their inverses do not have long impulse responses (6 taps for the
causal MCBD and 60 taps for the NMCBD algorithm have been
reported as sufficient in [16] and [22], respectively). This is in
contrast to audio applications in real acoustic scenarios, where
we need long demixing filters to cope with the reverberation in
typical rooms. Moreover, most BSS algorithms need many sec-
onds of data (typically 10 to 50 seconds) in order to converge to
a stable solution. Thus, when using MCBD algorithms for the
task of convolutive BSS in realistic applications, the computa-
tion task becomes prohibitively heavy due to the adaptation of
many filter coefficients by a large number of input samples.

As an efficient solution for the computational complexity
problem of MCBD algorithms, we consider the equivalent fre-
quency domain implementation. It is noteworthy that in general
there are two different approaches for implementing adaptive

filtering problems in the frequency domain [23]. One is to
train different weights in each frequency bin independently,
which corresponds to the frequency domain BSS described
earlier. This approach suffers from the serious drawbacks
of permutation and scaling problems. Additionally, the non-
causality problem has not yet been addressed in the frequency
domain BSS. These problems motivate us to use another form
of frequency domain implementation, which is the equivalent
realization of time domain block adaptive filters using fast
Fourier transform (FFT). For supervised least mean-square
(LMS) adaptive filters, these two approaches have been shown
to be equivalent [24]. However, in BSS problems this is not the
case due to the ambiguities associated with the independent
adaptation in each frequency bin. Apart from the permutation
and scaling problems, it is not clear what nonlinearity is suit-
able for frequency domain adaptation, since the distribution
of the discrete Fourier transform (DFT) coefficients generally
differs from that of the time domain samples. Fortunately, such
problems are not encountered in the FFT-based equivalent
realization of block adaptive filters. In the rest of this paper,
by frequency domain implementation we mean the second
approach (block adaptive filters).

Frequency domain implementation of the causal MCBD
algorithm of [16] was proposed by Joho et al. in [21] and
[25]. In their algorithm, which is named FDMCBD, they used
conventional overlap-save procedure for frequency domain
causal filtering, and also introduced update equations to carry
out the adaptation in the frequency domain. As will be seen
in Section VI-C, this algorithm fails in many possible relative
positions of the sources and microphones.

In this paper, we propose a novel algorithm for frequency
domain implementation of noncausal multichannel blind de-
convolution, which will be referred to as the frequency domain
NMCBD (FNMCBD) algorithm. The frequency domain imple-
mentation of the NMCBD algorithm differs substantially from
that of the causal MCBD algorithm due to several issues. First,
due to the presence of anti-causal filters in the FNMCBD al-
gorithm, a conventional overlap-save procedure is not suitable.
Furthermore, the original time domain update equations of the
NMCBD algorithm are more complicated than those of the
causal MCBD algorithm, particularly due to the information
back-propagation through the causal filters. As a result, deriving
a frequency domain formulation for the NMCBD algorithm is
more challenging than that of the causal MCBD algorithm.

Our main objective is to derive an efficient implementation
that is suitable for speech separation in any arbitrary source and
microphone configuration, and to use the algorithm in realistic
acoustic scenarios. Causal MCBD algorithms have been previ-
ously employed for the separation of convolutive speech mix-
tures, and successful results have been reported [13], [14], [26].
However, as will be discussed in Section VI-A, in certain source
and microphone positions, noncausal demixing filters are cru-
cial for separation. Unfortunately, these situations happen quite
frequently in practical applications. Thus, any algorithm with
only causal demixing filters would be useless in a general and
realistic BSS setup. We will show that the proposed FNMCBD
algorithm performs successfully in such BSS problems. We will
also show that causal MCBD algorithms with center-spike ini-
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Fig. 1. Convolutive BSS model. The demixing system is a cascade of anti-
causal and causal components ���� � and ����� in general.

tialization do not always converge to a delayed version of the
original noncausal solution and hence are insufficient.

The rest of this paper is organized as follows. Section II
describes the problem formulation and terminology. Section III
describes the time domain NMCBD algorithm in both
sample-by-sample and block-wise formulations. In Section IV,
we present the derivation of the proposed FNMCBD algorithm.
In Section V, we analyze the computational complexity of
the proposed algorithm. Simulation results are provided in
Sections VI, and Section VII concludes the paper.

II. PROBLEM FORMULATION

A. Convolutive BSS Model

Assume there are sources present in a reverberant room.
The source signals are mixed by the unknown acoustic channels
of the room and are picked up by sensors. According to the
convolutive BSS model of Fig. 1, the observed mixtures are

(1)

where is a coefficient matrix,
is a mixing system of length , which

could be minimum phase or nonminimum phase.
and are

vectors of source and sensor signals at time , respectively. The
element of the mixing system represents the acoustic
channel from the th source to the th microphone.

In convolutive BSS, the aim is to find a demixing system
which leads to an estimate of the source signals

(2)

where is a coefficient matrix,
is the demixing system, and
is a vector of output signals at time .

is the demixing filter from the mixture to the output
.
In the rest of this paper, we focus on the standard square BSS

model, i.e., the case of .
The system should be the inverse of in the sense

of

(3)

where is the multichannel global filter from the sources
to the BSS outputs, is an arbitrary permutation matrix, and

is a diagonal matrix with arbitrary filters as its diagonal

elements. Note that in multichannel blind deconvolution the di-
agonal elements of must be of the pure delay form

, where is a scaling factor and represents an arbi-
trary delay in the th retrieved source signal. In contrast, in con-
volutive BSS we are not concerned with exact recovery of the
source signals. Thus, the diagonal elements are allowed to
be arbitrary filters. This is referred to as the filtering ambiguity
in convolutive BSS.

B. Review of the Filter Decomposition Approach

In the following, an overview of the filter decomposition
approach to noncausal multichannel blind deconvolution is
provided. In [22], it is proposed to decompose the noncausal
demixing filter into a cascade structure of the form
(Fig. 1)

(4)

(5)

(6)

where is a causal multichannel FIR filter and is an
anti-causal multichannel FIR filter with the constraint ;

being an identity matrix of size .
The plausibility of such a decomposition becomes obvious

by directly analyzing the inverse of the mixing system. Assume
is a mixing system with no zeros on the unit circle, which

might in general be nonminimum phase:

(7)

The determinant of is expressed in the general form

(8)

where is a constant gain factor, , and are constant
integers, and the parameters and represent minimum phase
and maximum phase zeros of , respectively (
for , and for ).

The inverse of may then be expressed as

(9)

where is the adjoint matrix of . Using the relation-
ships

(10)

(11)

the filter can be expressed as

(12)
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where

(13)

(14)

It is seen from (13) and (14) that each minimum phase zero
of the mixing system produces a causal term in the inverse filter

, whereas each maximum phase zero contributes to an
anti-causal term. Thus, the filter inherently bears a cas-
cade structure of causal and anti-causal filters, which justifies
the decomposition of (4). and are considered to
be the inverses of the minimum phase and maximum phase por-
tions of , respectively. Note that the coefficients and

of the causal and anti-causal demixing filters have exponen-
tially decaying norms, which enables us to approximate the IIR
filters in (13) and (14) with FIR filters of appropriate length.

III. TIME DOMAIN IMPLEMENTATION

A. Natural Gradient Learning Algorithm

In this section, the time domain natural gradient NMCBD
algorithm is reviewed, mostly based on the notations described
in [22]. We will assume real input data and real filter coefficients
in the rest of this paper, as it is the case with speech and audio
applications. According to the demixing model of Fig. 1, the
intermediate signal and the output signal are expressed
as

(15)

(16)

where

(17)

(18)

(19)

(20)

In the above equations, is the length of the demixing
filters. For the training of filter coefficients, the following natural
gradient updates are used:

(21)

(22)

where is the adaptation step size, is the kronecker delta
function, and , in which the nonlinear function

is ideally the score function of the source distributions, de-
fined as

(23)

However, simulations indicate that the algorithm perfor-
mance is not very sensitive to the choice of nonlinearity, and
thus a precise estimation of the source distributions is not
necessary [27]. A frequently used nonlinear function is

(24)

which is the score function of a generalized Gaussian distribu-
tion. For sub-Gaussian signals, a choice of would be
suitable, and for super-Gaussian signals such as speech, must
be less than 2.

Note that in the algorithm described above, is equal to the
identity matrix throughout the learning procedure and is never
changed.

B. Developing Block-Wise Filtering and Learning

The NMCBD algorithm discussed in Section III-A, fol-
lows a sample-by-sample update procedure for the training
of demixing filters. Before transforming this algorithm to
frequency domain, we need to introduce a block-wise formu-
lation for filtering and adaptation. This means that the filter
coefficients are kept constant during a block of input samples,
and the whole block leads to a single cumulative update, equal
to the average of all updates within that block. Thus, for the th
block, i.e., , we have

(25)

(26)

for all within the block, and

(27)

(28)

where is the block length. In order to express the above equa-
tions in a simpler form which is amenable to frequency domain
implementation, we define the following parameters:

(29)
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(30)

(31)

Note that does not follow (30), and is always equal to
a zero matrix. Using the above parameters, the updates (27) and
(28) may alternatively be expressed as

(32)

(33)

For the purpose of transforming these equations to the fre-
quency domain, we reformulate them in single-input single-
output (SISO) form. That is, we rewrite them in such a way that
the updates for all taps of each SISO filter are given separately:

(34)

(35)

(36)

(37)

(38)

where in (36)–(38) . Note that is zero for
all . In (34)–(38), the block index has been
dropped for simplicity.

IV. FREQUENCY DOMAIN IMPLEMENTATION

The algorithm described in Section III-B, like any other un-
supervised adaptive filtering algorithm, consists of two different
steps: filtering and adaptation. For an efficient implementation,
both steps must be carried out in the frequency domain. In the
following, we first present an overlap-save procedure for non-
causal filtering. Then we demonstrate how to carry out the coef-
ficient updates for both causal and anti-causal filters in the fre-
quency domain.

A. Overlap-Save for Noncausal Filtering

In frequency domain filtering, proper fragmentation of the
input sequence and adequate block overlapping are of great
importance. Unlike conventional overlap-save procedure for

causal filtering, here we need overlap regions on both sides of
the main block, due to the presence of anti-causal and causal
filters. Moreover, since frequency domain multiplication corre-
sponds to circular convolution in the time domain, we will have
invalid samples on both sides of the resulting vector, which
should be discarded.

Now we focus on the BNMCBD algorithm described in
Section III-B. As evident from (25)–(28), in order to apply the
updates of the th block, we need a span of samples
from the input signals (the block itself, plus samples from
each side). Furthermore, due to noncausal filtering, we need
additional samples from each side to form the overlap
regions. So we define the following blocks of signals with the
total length of :

(39)

(40)

(41)

(42)

where , represents a vector of length that con-
tains invalid samples, and is a vector of zeros with length

. Note that in the FDMCBD algorithm [21], it is assumed
that , resulting in a substantial simplification of the al-
gorithm. However, we prefer not to follow a similar constraint
because it leads to an input vector of length , which neces-
sarily requires zero-padding for any in order to obtain a DFT
length of power of two.

The filtering equations in the frequency domain are

(43)

(44)

in which , represents a parameter in the fre-
quency domain, denotes element-wise multiplication of
vectors, and denotes complex conjugation. Clearly the filters

and have been zero-padded to the DFT length
before being transformed to the frequency domain. Note that
in (43), is used in conjugate form due to anti-causal
filtering.

The nonlinear function must be applied to the elements
of the time domain vector . Thus, we will have

(45)

(46)

where , is the DFT length, is a DFT matrix of
size , and denotes a vector of all ones with length .

B. Updating Anti-Causal Filters

In this section, we describe the procedure of transforming
(34), (35), and (37) to the frequency domain. We start by
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rewriting the parameter for different lags in the com-
pact form

...
...

. . .
...

... (47)

The particular structure in the above matrix suggests that it
can be expanded to a circulant matrix of size . This is achieved
by adding columns to each side, and rows to
the lower end of the matrix, with appropriate samples of
as the new elements. To accommodate the new dimensions, we
zero-pad the left-hand side vector of the above equation to the
length , and add zeros to both sides of the right-hand side
vector to get

(48)

where is a circulant matrix whose first column is
the vector circularly shifted to the left by samples [see
(40)]. The matrix is defined as

(49)

in which is the exchange matrix. We use this definition be-
cause as will be demonstrated later in this section, a time-re-
versed form of is needed in the rest of the derivation.

Equation (48) now represents a circular convolution, which
can be computed in the DFT domain. To achieve this, we pre-
multiply both sides by the DFT matrix to obtain

(50)

From the circulant matrix theory [28], we know that
is a diagonal matrix whose elements are the

conjugate DFT coefficients of the first column of

(51)

where is used to account for the
circular shift in . Thus, (50) can be rewritten as

(52)

Recall that the vector contains time-lags to
of . Thus, by multiplying it by the DFT matrix, we
are implicitly introducing a delay of samples to the original

.
Now we wish to compute the parameter in the fre-

quency domain. Clearly, (35) can be interpreted as a linear con-
volution between the sequences and . Since
both vectors and are adequately zero-padded, the
computations may be equivalently carried out in the frequency
domain. So we have

(53)

where

(54)

A number of issues must be pointed out to justify the defi-
nition of the above matrix. First of all, the convolution of the
sequences and will generate samples,
of which only are needed for . Hence, the rest
of the generated samples must be zeroed out. Second, as men-
tioned earlier in this section, bears an inherent delay of

samples. This delay will also be reflected in the result of con-
volution. So the lags of will appear in
the elements to of the resulting vector. Finally,
as we stated in Section III-B, must always remain zero
for all and . The matrix in (54) is defined to construct
a zero-padded vector from the lags of ,
considering all of the aforementioned issues.

The last step in updating anti-causal filters is to compute
in the frequency domain. Since (37) also has the form

of a linear convolution, we have

(55)

Here again the convolution produces samples, of
which only the first samples are required for the update.
Thus, the final update equation for the anti-causal filters would
be

(56)

in which

(57)

C. Updating Causal Filters

The procedure for updating the causal filters in the frequency
domain is mostly similar to that of anti-causal filters. We start
by rewriting (36) for different lags in the matrix form

... ...

...
. . .

...

... (58)

Again by expanding the dimensions of the above equation to
the DFT length , we get

(59)
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TABLE I
FNMCBD ALGORITHM

where , and is a circulant matrix whose
first column is the vector defined in (41). By applying the
DFT matrix to both sides of the above equation and following
the same procedure as we did for , we have

(60)

and considering the linear convolution in (38), the final update
equation for the causal filters would be

(61)

A summary of the proposed frequency domain algorithm is
provided in Table I.

V. COMPUTATIONAL COMPLEXITY ANALYSIS

In this section, we examine the computational requirements
of the proposed algorithm and compare it to original time do-
main algorithms. Table II shows the number of real multipli-
cations ( ) and real additions ( ) per sample of input,
required by each of the three discussed algorithms, namely the
original sample-by-sample time domain algorithm (NMCBD)

TABLE II
NUMBER OF REAL MULTIPLICATIONS (� ) AND REAL

ADDITIONS (� ) PER SAMPLE OF INPUT IN THE TIME DOMAIN

AND FREQUENCY DOMAIN ALGORITHMS

TABLE III
NUMERICAL VALUES OF (� � � ) FOR DIFFERENT FILTER

LENGTHS N. CRR IS THE COMPLEXITY REDUCTION RATIO

OFFERED BY THE FREQUENCY DOMAIN IMPLEMENTATION

described in Section III-A, the block-wise time domain algo-
rithm (BNMCBD) described in Section III-B, and the proposed
frequency domain implementation (FNMCBD) as summarized
in Table I. For simplicity, it has been assumed that there are
two sources and two sensors in all cases. The computational
requirements of one FFT or inverse FFT operation have been
counted as real multiplications and real
additions. Moreover, since the computational requirement of the
score function is the same for all of the three algorithms, it
has been ignored in evaluating the total amount of computations.
It is important to note that multiplications by the matrices ,

and do not count as actual multiplications, since they
only correspond to shifting and zeroing of the vector elements
in the algorithm.

To provide better comparison, the values of
in the three algorithms have been evaluated for different filter
lengths and are summarized in Table III. We have treated mul-
tiplications and additions similarly since many modern CPUs
(especially digital signal processors) are capable of performing
single-instruction multiplications. A block length of is
assumed for BNMCBD and FNMCBD algorithms throughout
this section, which corresponds to a DFT length of .
Also shown in Table III is the complexity reduction ratio (CRR)
which is defined as

(62)

The numerical values in the table clearly demonstrate the con-
siderable computational savings offered by the frequency do-
main implementation. For most typical filter lengths used in
blind speech separation, a reduction ratio greater than 100 is
achieved.
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Fig. 2. Overall number of real multiplications and real additions (� �

� ) per sample of input for different filter lengths (� ) in the sample-by-
sample and block-wise time domain algorithms, assuming a block length of
� � �� .

Fig. 3. Overall number of real multiplications and real additions (� �

� ) per sample of input for different filter lengths (� ) in the FNMCBD al-
gorithm, assuming a block length of � � �� .

Fig. 2 compares the overall number of real multiplications
and real additions per sample of input in the NMCBD and
BNMCBD algorithms for different filter lengths. As observed
in the figure, the block-wise formulation only reduces the com-
putational burden by a small constant factor (an approximate
factor of 2 for large block lengths). Thus a direct block-wise
implementation offers marginal computational advantages over
the original sample-by-sample algorithm. This is due to the
fact that the block-wise adaptation only saves computations in
the filters’ updates (32) and (33), because they are carried out
only once for every samples. The computations related to
the evaluation of the parameters and remain unchanged,
since they involve all samples within a block. In contrast,
the frequency domain implementation provides savings in
all steps of the algorithm, including the computation of all
intermediate signals and parameters. This leads to considerably
lower computational complexity in the FNMCBD algorithm,
which is plotted in Fig. 3 for different filter lengths. Notice
the logarithmic trend in the computational requirements of the
FNMCBD algorithm for (also see Table II), which
makes it particularly useful for reverberant rooms where long
demixing filters are required. This is in contrast to the time
domain algorithms NMCBD and BNMCBD, in both of which
the computational complexity increases exponentially with .

As indicated by Fig. 2, the time domain algorithms NMCBD
and BNMCBD require a very large number of computations
for each sample of the observed sensor mixtures. Therefore, in
speech and audio applications with many thousands of input
samples, both of these algorithms are completely impractical.
In contrast, the computational requirement of the proposed FN-
MCBD algorithm is relatively small, making it the only practical
choice among the three algorithms for the separation of speech
signals using typically available computational resources such
as personal computers. As a rough example, based on our ex-
periments for a filter length of 256, a duration of 30 seconds
of input data, and a sampling frequency of 8 kHz, the original
NMCBD algorithm takes as long as a couple of days on a good
PC in order to converge to a satisfactory level of separation. But
this time for the FNMCBD algorithm is only a few minutes for
most typical block lengths. Such relative consumed times are
justified by the entries of Table III.

VI. SIMULATION RESULTS

In the following, we present the results of the computer simu-
lations that have been performed to evaluate the separation per-
formance of the proposed algorithm. As a performance measure,
we use the signal-to-interference ratio (SIR) improvement [29],
which is defined for the th output channel as

(63)

(64)

(65)

where and denote the contribution of the source to
the microphone signal and the output signal , respectively.

The tests are all performed for the standard 2 2 convolutive
BSS system. The two source signals used in the experiments
are two speech signals of a male and a female speaker (from
the TIMIT database [30]), each with a duration of 30 seconds
and sampled at 8 kHz. As the mixing system, we use impulse
responses related to a rectangular room which are obtained by
the well known image method [31], [32]. The simulations are
carried out for a 5.5 m 5 m 3 m room with a reverberation
time of ms. A microphone array with an inter-el-
ement spacing of 20 cm has been placed at a fixed position as
shown in Fig. 4, while the source positions have been set ac-
cording to the two different scenarios described in the following
sections. In all simulations, the parameter in the score func-
tion (24) is equal to 0.7. Our experiments have shown that this
choice of leads to the best estimation of score function for the
input speech signals. The length of causal and anti-causal fil-
ters are set to 256 samples ( ), which corresponds
to a total demixing filter length of 512 samples. Moreover, we
choose a block length of 1028 samples, which leads to a DFT
length of samples. Note the careful selection
of the parameters and to obtain a DFT length of power of



MIRSAMADI et al.: EFFICIENT FREQUENCY DOMAIN IMPLEMENTATION OF NMCBD 2373

Fig. 4. Positions of the sources (� �� ) and microphones (� �� ). (a) Non-
causal BSS problem: both sources are located at the same side of the microphone
array. (b) Causal BSS problem: the sources are located at opposite sides of the
microphone array. The room height is 3 m in both cases.

2. This is of course not a fundamental limitation on the choices
of and , since in any case the vector in (39) may be
zero-padded to an appropriate DFT length, allowing and
to have arbitrary values.

A fixed number of iterations is used in each experiment for
the adaptation of filter coefficients. A complete pass through the
whole input data is considered one iteration. The number of it-
erations was determined by practice to be adequate for reaching
a maximum final SIR. A constant step size parameter of

is used for the FNMCBD algorithm in all simulations.
This is an optimum step size for the algorithm which was found
by experiment. The diagonal filters of both causal and anti-
causal demixing systems are initialized with unit impulses in
their first taps, whereas the off-diagonal elements are initialized
with zero filters.

A. Performance Evaluation in Noncausal BSS Problems

In this example, we evaluate the performance of the proposed
algorithm in the mixing scenario of Fig. 4(a). It is known that
in such configurations, in which both sources are located at the
same side of the microphone array, both anti-causal and causal
filters are needed for separation, and the causal filters alone
would not achieve any degree of separation [33]. Thus, in a
blind scenario with no guarantee on the relative positions of the
sources and the microphones, we must inevitably employ a non-
causal MCBD algorithm.

The input SIRs of the observed mixtures in the configuration
of Fig. 4(a) are 2.6 dB and 2.2 dB. Fig. 5 shows the SIR im-
provements of the proposed algorithm versus iteration number,
averaged over the two channels. It is observed that the algorithm
achieves a final SIR improvement of about 16 dB, which shows
that the filters and have been properly trained to
invert the minimum phase and maximum phase portions of the
mixing system, respectively. Fig. 6 shows the global filters (the
cascade of mixing and demixing filters) after convergence of the
algorithm. As observed in the figure, the cross filters and

are zero filters, indicating a successful interference can-
cellation. In addition to SIRs, the total signal-to-distortion ratios
(SDRs), as defined in [34], were also computed for the output
signals. The SDR averaged over the two output channels was
measured to be 11.5 dB, which indicates a proper recovery of
the original speech signals.

For comparison, the original sample-by-sample NMCBD
algorithm was employed for the same experimental setup of

Fig. 5. SIR improvements of the FNMCBD algorithm in the noncausal BSS
problem (averaged over the two channels).

Fig. 6. Global filters of the FNMCBD algorithm after convergence in the non-
causal BSS problem.

Fig. 7. SIR improvements of the sample-by-sample NMCBD algorithm in the
noncausal BSS problem (averaged over the two channels).

Fig. 4(a) (although the inefficiency of time domain imple-
mentation renders this algorithm impractical for such BSS
applications). The resulting average SIR improvement is
plotted in Fig. 7 versus iteration number. It is observed from
the figure that a sample-by-sample adaptation does not provide
a uniform convergence, and also the final achieved SIR is
smaller than the FNMCBD algorithm. In contrast, block-wise
adaptation often provides a smooth and uniform convergence
for most block lengths, possibly because a block update usually
achieves better estimates of the (natural) gradient direction for
mixing systems that are not time-varying. Thus, the proposed
frequency domain algorithm not only provides considerable
computational savings, but also offers advantages in terms
of convergence properties and separation performance due to
block-wise adaptation.
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Fig. 8. SIR improvements of the FNMCBD algorithm in the causal BSS
problem (averaged over the two channels).

Fig. 9. Global filters of the FNMCBD algorithm after convergence in the causal
BSS problem.

B. Performance Evaluation in Causal BSS Problems

This example illustrates the performance of the proposed al-
gorithm in mixing scenarios such as the one shown in Fig. 4(b).
In such situations where the sources are located at the oppo-
site sides of the microphone array, only causal filters are suffi-
cient for separation [33]. However, in a completely blind sce-
nario, there is no a priori information about the location of the
sources. Thus, the noncausal MCBD algorithm summarized in
Table I must be directly applicable to these scenarios without
removing the anti-causal filter . In other words, the al-
gorithm is expected to identify the sufficiency of causal filters
and converge to one-sided overall demixing filters.

The configuration of Fig. 4(b) leads to mixture SIRs of 3.9 dB
and 1.1 dB. The average SIR improvement of the two channels
achieved by the proposed algorithm is depicted in Fig. 8, and
the global filters after convergence are shown in Fig. 9. Both
figures indicate successful separation. The average SDR value
in this case is 13 dB, showing a successful recovery of the source
signals.

Fig. 10 shows the anti-causal demixing filters for this example
after convergence. It is observed that the algorithm has virtually
maintained the initial condition of , effectively re-
moving any contribution from to the overall demixing
system. In contrast, the anti-causal filters in the previous ex-
ample [the situation of Fig. 4(a)] have been trained to appro-
priate filters which act as essential components of the demixing
system (see Fig. 11).

Fig. 10. Anti-causal demixing filters��� � after convergence in the causal
BSS problem.

Fig. 11. Anti-causal demixing filters ��� � after convergence in the non-
causal BSS problem.

C. Comparison Between Causal and Noncausal MCBD
Algorithms

A comparison between the performance of the proposed al-
gorithm and the FDMCBD algorithm of [21] is illustrated in
Fig. 12 for two different reverberation times. To provide sim-
ilar conditions, a demixing filter length of 512 taps was used
for the FDMCBD algorithm (the equivalent of the choice of

for the filters and in the proposed al-
gorithm). As suggested in [21], to deal with nonminimum phase
mixing systems, the diagonal filters of the demixing system are
initialized with a center spike in the FDMCBD algorithm.

As can be seen in Fig. 12(a) and (b), both algorithms perform
almost similarly when the sources are located at the opposite
sides of the microphone array. But when both sources are lo-
cated at the same side, our method clearly exhibits a superior
performance as indicated by Fig. 12(c) and (d). In particular, for
long reverberation times such as 300 ms, using the same filter
length of 512 taps, the FDMCBD algorithm completely fails in
achieving any degree of separation in the scenario of Fig. 4(a),
whereas our method maintains a reasonable performance. Also
shown in Fig. 12 is an explicit performance comparison for a
simple FIR nonminimum phase mixing, whose zero distribu-
tion is shown in Fig. 13. Since nonminimum phase systems
have noncausal (stable) inverses, a noncausal demixing filter is
needed in this case. This is verified by the SIRs of Fig. 12(e).
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Fig. 12. Comparison of the separation performance (SIR improvement) of FN-
MCBD and FDMCBD algorithms. (a) causal BSS problem at � � ��� ms,
(b) causal BSS problem at � � ��� ms, (c) noncausal BSS problem at
� � ��� ms, (d) noncausal BSS problem at � � ��� ms, (e) artificial
mixing of Fig. 13.

Fig. 13. Zero distribution of the artificial nonminimum phase mixing system.

While the FNMCBD algorithm reaches a satisfactory SIR of
nearly 17 dB, the causal filters of FDMCBD algorithm fail to
provide any degree of separation.

For further comparison, notice the spectrograms of Fig. 14,
which have been plotted for 5 seconds of the original female
speech, and the corresponding outputs of FNMCBD and
FDMCBD algorithms for the situation of Fig. 4(a). As observed
in the figure, the output spectrogram of the FNMCBD algo-
rithm closely resembles that of the original source. In contrast,
the output of the FDMCBD algorithm exhibits considerable
spectral differences with the original source signal.

It can therefore be concluded that merely by center-spike ini-
tialization, causal MCBD algorithms cannot be forced to con-
verge to a delayed form of the noncausal demixing system that
is required. As a result, for a BSS solution with global appli-
cability, we have to consider noncausal MCBD algorithms that
train causal and anti-causal components of the demxing system
separately.

VII. CONCLUSION

We presented a novel algorithm for efficient and fast imple-
mentation of noncausal multichannel blind deconvolution. A
noncausal overlap-save procedure was developed for frequency
domain filtering, and equivalent frequency domain update equa-
tions for both causal and anti-causal filters were derived.

The proposed algorithm offers a considerable saving in the
number of operations required for filtering and adaptation.

Fig. 14. Spectrogram plots for 5 seconds of original and recovered source
signals. (a) original female speech, (b) output of FNMCBD algorithm, and
(c) output of FDMCBD algorithm.

Our evaluations indicate that the computational complexity of
the proposed algorithm rises slowly as the filter lengths are
increased, unlike the exponential growth in the computational
burden of the original time domain algorithm. The significance
of these computational savings is revealed when the algorithm
is used for blind source separation in realistic reverberant
rooms, in which long demixing filters must be adapted by a
large number of input samples. The extensive computational
burden of the original time domain algorithm makes it in-
feasible for such situations. Furthermore, simulation results
indicate the superior performance of the proposed algorithm
over causal MCBD algorithms. It is shown through simulations
that causal MCBD algorithms with center-spike initialization
do not provide promising results for blind source separation in
many possible arrangements of the sources and microphones,
whereas the noncausal MCBD approach successfully achieves
separation in such situations.
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