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ABSTRACT

This document briefly describes the systems submitted by theCenter
for Robust Speech Systems (CRSS) from The University of Texas at
Dallas (UTD) to the 2016 National Institute of Standards andTech-
nology (NIST) Speaker Recognition Evaluation (SRE). We devel-
oped several UBM and DNN i-Vector based speaker recognitionsys-
tems with different data sets and feature representations.Given that
the emphasis of the NIST SRE 2016 is on language mismatch be-
tween training and enrollment/test data, so-called domainmismatch,
in our system development we focused on: (1) using unlabeledin-
domain data for centralizing data to alleviate the domain mismatch
problem, (2) finding the best data set for training LDA/PLDA,(3)
using newly proposed dimension reduction technique incorporating
unlabeled in-domain data before PLDA training, (4) unsupervised
speaker clustering of unlabeled data and using them alone orwith
previous SREs for PLDA training, (5) score calibration using only
unlabeled data and combination of unlabeled and development (Dev)
data as separate experiments.

1. INTRODUCTION

The main task for NIST’s speaker recognition evaluations isspeaker
detection, i.e., to determine whether a specified target speaker is
speaking during a given segment of speech or not. Compared with
previous SRE challenges, there are some differences: (1) target
speaker data will not be distributed in advance like in SRE12, (2)
fixed condition is introduced, (3) more duration variability is in-
troduced in the test data, (4) language mismatch between training
(mainly English) and enrollment/test (non-English) data.All these
new traits make this SRE very challenging, especially with limited
labeled data in the fixed condition [1].

This report introduces how CRSS systems address the problem.
The whole report is organized as follows: Sec.2 describes several
baseline systems focusing on the front-end level overview,including
both data sets and feature representations, Sec.3 introduces several
core techniques that we used in SRE16, including speaker clustering
for unlabeled training data, discriminant analysis via support vectors
(SVDA) to reduce dimension and compensate domain mismatch,un-
labeled data PLDA, calibration and fusion strategies etc. Sec.4 and
Sec.5 details the configuration of every CRSS sub-system andthe
formation of CRSS final Eval submissions to NIST. Sec.6 showsthe
CRSS sub-system performance on Dev data. We also briefly intro-
duce the CPU/GPU hardware systems that we used for NIST SRE
2016 in Sec.7.

2. CRSS BASELINES

We developed 4 baseline systems in this SRE, all of them are i-Vector
based systems but with different acoustic modeling, i.e., UBM or dif-
ferent DNN models [2, 3]. For back-end, we mainly use LDA/SVDA
to reduce the dimension of i-Vectors and PLDA to calculate likeli-
hood scores.

Table 1 summarized the number of speakers, speech segments
used for training UBM, total variability matrix (TV), LDA/SVDA
and PLDA models as well as the statistics for the Dev set provided
by NIST for the system development purposes.

2.1. CRSS1: UBM i-Vector

This system is mainly modified version of Kaldi (sre10/v1). 60 di-
mensional feature vectors for each frame is adopted here including
20 dimensional MFCC features appended with∆+∆∆. Unvoiced
parts of the utterances are removed with energy based voice activity
detection (VAD). For training 2048-mixture UBM and total variabil-
ity (TV) matrix, SRE2004, 2005, 2006, 2008, telephone data of SRE
2010, Switchboard II phase 2,3 and Switchboard Cellular Part1 and
Part2 (SWB) and Fisher English are used. Next, 600 dimensional
i-Vectors are extracted and their dimensions are reduced to580 with
LDA. For training LDA/PLDA, only SRE 04-08 are used; in addi-
tion, speakers who have less than 4 utterances is filtered out. Also,
unsupervised speaker clustering is performed (see Sec. 3.1for the
details of speaker clustering), 75 speaker clusters for unlabeled mi-
nor data and 300 for unlabeled major data are generated. These clus-
tered in-domain data are used separately to train PLDA and also for
calibration. Before PLDA scoring, mean subtraction is alsoapplied.
For SRE16 development (Dev) trials, the mean i-Vector is generated
using only unlabeled minor data, while for SRE16 evaluation(Eval),
the mean is from unlabeled major data.

2.2. CRSS2: SWB DNN i-Vector

We developed a DNN i-Vector system based on Kaldi (swbd/s5 &
sre10/v2). The DNN acoustic model is used to generate the soft
alignments for i-Vector extraction. The DNN architecture has 6 fully
connected hidden layers with 1024 nodes for each layer. Cross-
entropy objective function is employed to estimate posterior prob-
abilities of 3178 senones. The ASR corpus which we used for train-
ing DNN acoustic model is Switchboard. 11-frame context of 39
dimensional (∆ +∆∆ ) MFCC feature is projected into 40 dimen-
sional using fMLLR transform for each utterance, which relies on a
GMM-HMM decoding alignment.

The reason we apply fMLLR feature here is that, by speaker nor-
malization, we expect to acquire more accurate phonetic alignment
in the following TV matrix training, see more details in [3].After
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Table 1. Statistics of training data used for modeling DNN, UBM, TV, LDA/SVDA/PLDA, and also Dev set enrollment and trials data.

Sub-system DNN UBM/TV LDA/SVDA/PLDA Enrollment Trials
Spkrs Segments Spkrs Segments Spkrs Segments Spkrs Segments Target nonTarget

CRSS1 - - 38110 89860 2921 37037

80 120 4828 19312
CRSS2 4878 4878 5767 57517 2921 37037
CRSS3 - - 5756 57273 3794 36410
CRSS4 1239 1239 5756 57273 3794 36410

i-Vector extraction, we apply similar strategies for back-end such as
LDA and PLDA, briefly described in the above section (as CRSS1).

2.3. CRSS3: UBM i-Vector

An alternative UBM i-Vector system also adopted from Kaldi
(sre10/v1). In this system, feature vectors contain 20 MFCCs
appended with (∆ + ∆∆) coefficients. The window length and
shift size are 25-ms and 10-ms, respectively. In addition, we did
cepstral mean normalization using 3-sec sliding window. Next,
non-speech frames are discarded using energy-based voice activity
detection. 2048-mixture full covariance UBM and total variability
matrix have been trained using data collected from SRE2004,2005,
2006, 2008 and Switchboard II phase 2,3 and Switchboard Cellular
Part1 and Part2. At the back-end, after extracting i-Vectors, the
global mean calculated from minor and major unlabeled data is
subtracted from all i-Vectors. Next, i-Vectors are length-normalized
and their dimension are reduced from 600 to 400 using LDA/SVDA.
In some developed systems based on CRSS3 configuration, we used
both LDA and SVDA; more specifically, first SVDA reduces the
dimension from 600 to 500 and then LDA is used to reduce the
dimension to 400. Again, i-Vectors are length-normalized.Finally,
trial-based mean subtraction is used (the participant i-Vectors in a
trial are averaged and the value is subtracted from both i-Vectors)
and scores are calculated using PLDA. The front end is trained with
SWB and SRE04-08; however, the back-end only uses SRE04-08
and unlabeled training data. For back-end, mostly MSR [4] toolkit
has been adopted.

2.4. CRSS4: Fisher English DNN i-Vector

The last baseline is a DNN i-Vector system using Kaldi (sre10/v2)
that is based on the multisplice time delay DNN (TDNN) [5]. TDNN
is trained with only a small portion of Fisher English data (1239 ut-
terances). The feature vectors contain 40 dimensional f-bank fea-
tures. TDNN has six layers; the hidden layers have an input dimen-
sion of 350 and an output dimension 3500. The softmax output layer
computes posteriors for 3859 triphone states. More detailson the
TDNN structure and training procedure are provided in [5]. After
TDNN training, 20 MFCCs appended with (∆ + ∆∆) coefficients
(overall 60 MFCCs) are employed for training TV matrix. Next,
600-dim i-Vectors are extracted.

After i-Vector extraction, we apply similar strategies forback-
end such as LDA/SVDA and PLDA, briefly described in the above
section (as CRSS3).

3. CORE COMPONENTS IN SYSTEM DEVELOPMENT

In the fixed condition of SRE 2016, we have a huge amount of out-
of-domain data, i.e., previous SREs, SWB, Fisher English etc. Only
a small in-domain data is available (without speaker labels), which

make existing techniques very difficult to work with this so-called
domain mismatch. In SRE 2016, NIST provided unlabeled training
data, which contains two subsets, i.e., unlabeled minor andunlabeled
major. The unlabeled minor data set has 200 utterances, while the
major set contains 2272 utterances. The minor set has two languages
for the purpose of system development, while the major set contains
two different languages corresponding to the final evaluation.

In order to address this problem, several techniques are proposed
in this evaluation.

3.1. Speaker clustering of unlabeled data

For compensating the domain mismatch, the use of unlabeled data
becomes very important. There are several stages where we can
use the unlabeled data, such as, LDA/PLDA training and calibra-
tion. First, it is very intuitive to do a speaker clustering of the unla-
beled data, and then generate an “estimated” speaker label for each
utterance, similar with the method that we used in 2015 NIST LRE i-
Vector challenge[6]. With these labels, we incorporate thein-domain
information from unlabeled data to train LDA and PLDA. In fact,
in the experiment, this simple operation improved the LDA/PLDA
baseline performance for development set.

In practice, we train a gender identification using previousSRE
data before speaker clustering, and then apply a simple K-means
algorithm over gender dependent subsets, finally, we pool these two
subsets together. In the experiment, we found this can provide more
accurate speaker clustering and more benefits to the following LDA
and PLDA training.

3.2. Discriminant analysis via support vectors (SVDA)

Discriminant analysis via support vectors (SVDA) is a variation of
LDA that only uses support vectors to calculate the between and
within class covariance matrices. In contrast to LDA, SVDA cap-
tures the boundary of classes, and performs well for small sample
size problem (i.e. when the dimensionality is greater than sample
size). The idea of using support vectors with discriminant analysis
has been previously introduced in [7] which made significantim-
provement over LDA. In addition, the effectiveness of SVDA in i-
Vector/PLDA speaker recognition for NIST SRE2010 is studied in
[8] previously for both long and short duration test utterances.

More specifically, LDA defines speaker classes separation crite-
rion in directionA as,

λ =
ATSbA

ATSwA
, (1)

whereSb andSw are between class and within class covariance
matrices. In traditional LDA every sample of all classes participate
in calculating these covariance matrices; however, for SVDA only
support vectors are used. The between class covariance matrix in
SVDA is defined as,



Table 2. Description of the CRSS sub-systems. Speaker clustering means using the unlabeled data to do clustering and using estimated
labels for LDA/PLDA training. The systems that have SVDA, for training SVDA they use LDA data in addition to Minor and Major data. For
sub-systems 3 and 4, for Dev set Minor data are used for training PLDA; however, for Eval set Major data are used.

Sub
system

i-Vector LDA/SVDA data PLDA data SVDA LDA
Speaker

Clustering
Filtering

1 CRSS 4 SRE 04-08 SRE 04-08 ✕ ✓ ✕ ✕

2 CRSS 4 SRE 04-08/ + Minor, Major SRE 04-08 ✓ ✓ ✕ ✕

3 CRSS 2 SRE 04-08, Minor, Major SRE 04-08, Minor or Major ✕ ✓ ✓ ✓

4 CRSS 1 SRE 04-08, Minor, Major SRE 04-08, Minor or Major ✕ ✓ ✓ ✓

5 CRSS 3 SRE 04-08 SRE 04-08 ✕ ✓ ✕ ✕

6 CRSS 3 SRE 04-08/+ Minor, Major SRE 04-08 ✓ ✓ ✕ ✕

7 CRSS 3 SRE 04-08/+ Minor, Major SRE 04-08 ✓ ✕ ✕ ✕

Sb =
∑

1≤c1≤c2≤C

wc1c2w
T

c1c2
. (2)

Wherewc1c2 is the optimal direction to separate two classesc1
andc2 by a linear SVM (for calculatingwc1c2 only support vectors
of the two classesc1 andc2 are participating). If we definêX =

[x̂1, x̂2, ..., x̂N̂
] to contain all support vectors and̂N to be their total

number; then, the within class covariance matrix for SVDA will be
formulated as,

Sw =
C∑

c=1

∑

i∈Îc

(x̂i − µ̂c)(x̂i − µ̂c)
T
, (3)

the index for support vectors in classc and their mean are represented
by Îc and µ̂c, respectively. Finally, similar to LDA, the optimum
transformationÂ will contain thek eigenvectors corresponding to
thek largest eigenvalues ofS−1

w Sb. More details on the advantages
and properties of SVDA are provided in [8].

Two strategies can be adopted here for training linear SVM in
SVDA framework: 1) one-versus-one and 2) one-versus-rest.We
used the second approach as it can use minor and major unlabeled
data optimally. More specifically, for training the SVM classifier to
separate one class against data from the rest classes, minorand major
unlabeled data are added to the rest class. Therefore, the class labels
are not needed here.

3.3. Unlabeled data PLDA

To fully explore the information from the in-domain unlabeled data,
we did an interesting experiment, which uses only the in-domain un-
labeled data to train PLDA (however, SRE04-08 are used for training
LDA). To do that, we use the “estimated” labels from speaker clus-
tering. Surprisingly, PLDA with only 75 estimated speakersfor 200
minor language i-Vectors achieved 20.5% EER on Dev experiment
(using i-Vectors for CRSS1 baseline), which is not so bad. However,
if we add more data (i.e., 75 + 300 estimated speakers from 2472
i-Vectors in minor and major languages) for PLDA training, the per-
formance degraded from 20.5% to 26.3%. This observation suggests
that out-of-domain language data is not helpful to train a discrimi-
native classifier, because in the view of Dev enrollment/test data, the
major language data is also out-of-domain. We argue that even for
data-driven algorithm such as PLDA, choosing a proper data set to
train the classifier is still essential.

Motivated by this, we believe the use of unlabeled data in the
SRE 2016 evaluation will be more beneficial. Compared with only
200 minor language utterances, major language set has 2272 utter-
ances. Although the speaker label is not given, we say the estimated

label is still useful, and could probably perform better than 20.5%
EER in the Eval set.

3.4. Calibration and fusion

The CRSS calibration and fusion system is mainly based on the
BOSARIS toolkit [9]. The PAV algorithm is used to create cali-
bration transformation matrix. We used two data sets for calibration.
The first one is Dev data, we use all the Dev trials informationthat
NIST provided for system development to train the calibration sys-
tem. Again, because in this SRE, the Dev and evaluation set have to-
tally different languages, it’s not guaranteed that the calibration will
work well for the final Eval set. For this consideration, we created
a new trial list to calibrate evaluation scores, and we used unlabeled
data with estimated speaker labels. We believe the score distribution
of unlabeled data will be closer to that of evaluation.

After calibration, we fused our sub-systems for final submission.
For system fusion, we employed a simple linear fusion systemusing
logistic regression.

4. CRSS SUB-SYSTEMS

We developed 7 sub-systems from 4 CRSS baselines that used SREs
to train SVDA, LDA and PLDA. Also, as described above, we devel-
oped 4 sub-systems with just unlabeled data PLDA idea. The details
of each system about data and techniques they used are listedin Ta-
ble 2 and Table 3. More specifically, sub-systems 8, 9, 10, 11 are
respectively share the same configuration as sub-systems 3,4, 6, 2;
however, only unlabeled data are used to train PLDA.

Table 3. Description of CRSS sub-systems using just unlabeled data
to train PLDA.

Sub-system i-Vector SVDA LDA

8 CRSS 1 ✕ ✓

9 CRSS 2 ✕ ✓

10 CRSS 3 ✓ ✓

11 CRSS 4 ✓ ✓

Table 4. CRSS submission for NIST SRE2016.

Submission sub-systems Calibration Data Fusion

Primary 1-7 Dev+Unlabeled LR
Contrastive1 1-7 Dev LR
Contrastive2 1-11 Dev+Unlabeled LR



Table 5. Calculated scores for the single systems. With using different data for calibration just the value of act-Cprimary willbe changed.
These scores are calculated using NIST scoring software forthe Dev set, the equalized and unequalized scores are separated with – in the
table.

Sub EER/min-Cprimary act-Cprimary
system Calibrate With Dev Calibrate With Unlabeled Calibrate With Dev+Unlabeled

1 17.14/0.768 – 18.64/0.779 0.768 – 0.779 0.881 – 0.891 0.812 – 0.822
2 17.11/0.755 – 18.87/0.757 0.768 – 0.769 0.794 – 0.8 0.777 – 0.775
3 17.84/0.754 – 18.41/0.734 0.754 – 0.734 0.834 – 0.826 0.788 – 0.766
4 17.17/0.719 – 17.50/0.694 0.722 – 0.694 0.820 – 0.813 0.769 – 0.747
5 15.59/0.701 – 16.08/0.671 0.709 – 0.671 0.813 – 0.813 0.747 – 0.726
6 15.58/0.679 – 15.95/0.629 0.688 – 0.629 0.744 – 0.735 0.694 – 0.647
7 15.53/0.685 – 16.63/0.658 0.686 – 0.658 0.775 – 0.769 0.697 – 0.672

5. CRSS SUBMISSIONS

The final submissions of CRSS is the fusion of several sub-systems.
In the final submission, we tried different system combinations as
well as different calibration strategies. We submit a 1-7 sub-systems
fusion with Dev+unlabeled data for calibration as our primary sub-
mission. To test our hypothesis that unlabeled PLDA idea will ben-
efit for the Eval set, we submitted this as a contrastive submission.
All these combinations make our final submissions to SRE 2016.

6. PERFORMANCE OF CRSS SUB-SYSTEMS ON SRE 2016
DEV DATA

Tables 5, 6, and 7 shows the equal error rate (EER), minimum
Cprimary(min-Cprimary) and actual Cprimary (act-Cprimary) costs
for single systems and fusion systems using NIST scoring software.
These results are evaluated on Dev set.

Table 6. EER, min-Cprimary and act-Cprimary costs for single sys-
tems that only use unlabeled data for training PLDA. NIST scoring
software is used to calculate the scores for Dev set. The equalized
and unequalized scores are separated with – in the table. Forthe
calibration Dev + unlabeled data are used.

Sub EER/min-Cprimary act-Cprimary
system

8 29.48/0.901 – 26.84/0.9 0.917 – 0.914
9 29.72/0.898 – 26.15/0.908 0.92 – 0.933
10 26.48/0.943 – 24.96/0.954 0.956 – 0.96
11 26.76/0.957 – 26.45/0.968 0.986 – 0.989

Table 7. Fusion scores calculated on Dev set with NIST scoring
software. The equalized and unequalized scores are separated with
– in the table.

Submission EER/minCprimary act-Cprimary

Primary 14.24/0.590 – 14.98/0.561 0.612 – 0.58
Contrastive1 13.81/0.585 – 14.66/0.554 0.589 – 0.56
Contrastive2 14.27/0.592 – 15.04/0.562 0.618 – 0.589

7. COMPUTATIONAL RESOURCES

7.1. CPU cluster

The speaker recognition system was implemented on our in-
house high-performance Dell computing cluster, running Rocks
6.0 (Mamba) Linux distribution. The cluster comprises of eight 6C
Intel Xeon 2.67 GHz CPUs, four 10C Intel Xeon 2.40 GHz CPUs,
and 18 quad-core Intel Xeon 2.33 GHz CPUs, yielding a total of
408 processors. The total amount of internal RAM on the cluster
exceeds 1 TB. All our data including audio files, features, statistics,
etc. are stored on a 30 TB Dell PowerVault MD1000 direct attached
storage.

7.2. GPU machines

For DNN training on SWB data, GeForce GTX TITAN Black
graphic card is used, 6144 MB Ram. For DNN training on Fisher
English, we used a 12 GB Tesla K40.

7.3. CPU execution time

We tested the systems scoring process using one CPU of 2.67 GHz
clock speed and 32 GB RAM. We selected a 3 minute utterance (ex-
act duration of 181.45 seconds) and calculated the time required to
perform feature extraction (20 dimensional MFCC), voice activity
detection (Kaldi SRE10/v1 default), extraction of zero andfirst or-
der statistics and the 600 dimensional i-Vector. The time required for
this chain of processes is for the selected utterance is 37.58s. This is
computed by averaging the elapsed time obtained from three inde-
pendent runs. Scoring an utterance using our PLDA model takes less
than 0.1 seconds on average. For training the models, it depends on
how many enrollment utterances are provided. Since the UBM and
TV matrices are trained off-line, speaker enrollment requires only
to extract the corresponding i-Vectors, thus the time required will
be a multiple of the number of enrollment utterances provided for a
speaker.
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