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Abstract 

This paper describes the systems developed by the Center for 

Robust Speech Systems (CRSS), Univ. of Texas - Dallas, for 

the National Institute of Standards and Technology (NIST) i-

Vector challenge. Since the emphasis of this challenge is on 

utilizing unlabeled development data, our system development 

focuses on: 1) unsupervised clustering methods to estimate 

development data labels; 2) build efficient classifier without 

clustering method. Our results indicate substantial 

improvements obtained from incorporating one or more of the 

aforementioned techniques. 

Index Terms: i-Vector challenge, clustering, speaker 

verification,  development data, data labeling. 

1. Introduction 

In large scale speaker verification tasks, such as the NIST 

Speaker Recognition Evaluation (SRE) [1] and DARPA RATS 

(Robust Automatic Transcription of Speech) [2], it is shown 

that low dimensional feature vectors (namely i-Vectors) and 

probabilistic linear discriminant analysis (PLDA) modeling 

are two of the main constituents of state-of-the-art technology 

[3~12]. In the 2013-2014 Speaker Recognition i-Vector 

Machine Learning Challenge, some new challenges are 

introduced. One of which is that no label information is 

provided for development data. This study will investigate 

ways to improve performance in this scenario. One of our 

approaches is using clustering to recover the label information. 

Another is to build classifiers without using any clustering 

since non-ideal clustering will inevitably introduce erroneous 

information.  

In 2014, in an effort to encourage all researchers involved in 

pattern recognition and machine learning research, NIST held 

a new competition. With the goal of reaching out to a broader 

community, NIST collaborated with Johns Hopkins 

University’s Human Language Technology Center of 

Excellence and MIT Lincoln Laboratory to supply participants 

with i-vectors [13], instead of speech recordings for model/test 

speakers and development data. This approach short-circuits 

variations such as feature extraction and other signal related 

aspects, allowing those that are less familiar with the signal 

processing aspects of speech to be able to participate. Five i-

Vectors are provided for each model speaker. Development 

and test i-vectors are unlabeled, preventing participants from 

using commonly used channel compensations methods such as 

applying PLDA to the i-Vector space. Other information 

provided by NIST includes file durations (as a form of meta-

data) and evaluation guidelines. The distribution of file 

durations is provided in Fig. 1. The semi-normal distribution 

of log-duration values indicates that using file durations as 

meta-data could be useful in the decision-making process.  

NIST provides an implementation of cosine scoring as a 

baseline system [3, 13]. The cosine scoring system uses a 

global mean and variance to project the i-Vector space onto a 

unit sphere, making it possible to compare different i-Vectors.  

Evaluations are performed in two phases. The first phase is a 

gradual process where participants can submit their system 

outputs (in the form of score vectors) and see the min-DCF 

value for a subset of the trials (40%) [13]. Participants can also 

see where they stand in the overall competition. This phase 

started from November of 2013 and lasted until Apr-07-2014. 

The second phase of the evaluation is a one-time event in 

which NIST releases the min-DCF values for all submissions 

over a different trial subset (the remaining 60%). Relying on 

the second evaluation phase has the benefit of ruling out over-

tuned submissions.  

 

Figure 1. Histogram of the logarithm of file durations 

in the i-Vector challenge data. 

2. Baseline System 

The baseline system is cosine distance scoring (CDS) [13]. 

One of the useful properties of CDS is symmetry, that is in the 

scoring process there is no difference between model and test 

i-Vectors in each trial. The system description in summary is: 

1. Use the unlabeled development data to estimate a global 

mean and covariance. 

2. Center and whiten the evaluation i-Vectors based on the 

computed mean and variance. 

3. Project all the i-Vectors into the unit sphere. 

4. For each model, average its five i-Vectors and then project 

the resulting averaged model i-Vector into the unit sphere. 

5. Compute the inner product between all the average-model i-

Vectors and test i-Vectors.  
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3. Proposed System 

This i-Vector challenge is based on NIST SRE data from 

2004 to 2012. This suggests some of the popular algorithm 

may still fit this i-Vector challenge. But it also has its new 

flavor. One of the major challenges is the development comes 

with no speaker label information. Here we will mainly focus 

on two variations of PLDA and an SVM-based approach.  

3.1. PLDA  

PLDA is a process that follows factor analysis in order to 

separate the between-speaker and within-speaker variability in 

the i-vector space. However, to model PLDA properly, a large 

amount of labeled data is required.  

In order to find the development data labels, we employ 

an iterative bottom-up classification algorithm. To improve 

both clustering speed and reliability, the i-Vectors extracted 

from audio files of less than 20 seconds are excluded from the 

process. We apply a bottom-up hierarchical clustering using k-

means algorithm by treating each i-vector as a separate cluster 

to start with. The similarity between two clusters is then 

determined by averaging the distance between i-Vectors in the 

first cluster and those in the second cluster. Here, the distance 

is defined as the cosine distance between two i-Vectors. The 

termination criterion of each iteration is set according to the 

inconsistency coefficient which is a measure of similarity 

decreasing gradient during clustering. After each iteration, i-

Vectors from each cluster are averaged followed by length 

normalizion. New iteration starts by treating each averaged i-

vector as separate cluster. The best performance was achieved 

when using 4 iterations.   

The two algorithms described below are designed to 

combine the information obtained from different model i-

vectors supplied for each speaker. Each of these method 

results in a different set of scores which contain 

complementary information useful for the final submission. 

3.1.1 Before-scoring Average PLDA (PLDA1): 

In this approach, the five i-Vectors of the jth enrollment 

speaker are grouped and averaged before applying PLDA to 

perform verification. Using the average model i-Vector helps 

to omit potential noise and/or channel mismatch. 

3.1.2 Post-scoring Average PLDA (PLDA2) 
 

Each i-Vector of the target file is treated as if originated 

from a different speaker. After applying PLDA, scores of the 

jth test file against instances of ith enrollment speaker are 

averaged, and used as the likelihood score of the (i-j)th trial. 

This is equivalent to a majority vote on the decision with the 

hope that each individual sample/utterance captures some 

combination of the acoustic-based speaker characteristics and 

environment distortion. This basically can be considered 

multi-condition training and is an echo to the multi-condition 

preparation for the enrollment files, which is neglected in 

PLDA-1 (described in the previous section). 

3.2. SVM 

1300 i-Vectors are randomly selected from the 

development set and used as pseudo model files (also known 

as imposter model files). An additional 8700 files are selected 

and used as pseudo test files (also known as imposter test files). 

The remaining of the development data is used as imposter 

data to help build SVM models for each enrolment speaker.  

4. Score normalization 

Score normalization methods are employed to reduce the 

effects of variability in decision making. They normalize the 

decision score with mean, m, and standard deviation, v, 

derived from some extra data: 
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 Depending on the background data from which these 

parameters are derived, score normalization has three 

variations in current speaker verification systems.  

4.1. Zero Normalization (ZNorm) 

Zero Normalization (ZNorm) can compensate inter-speaker 

variability. It estimates the mean and standard variation of 

scores of a list of pseudo test files (called ZList) against a 

target model. That is, it assumes the scores take the following 

form: 

( , ) ~ ( , )i i iscore enr ZList N m v                          (2) 

Note that this only depends on the ith target model. This 

normalization is a function of the speaker models. From (1), 
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4.2. Test Normalization (TNorm) 

Test Normalization (T-norm) can compensate inter-session 

variability. It estimates the mean and standard variation of 

scores from a list of pseudo model files (called TList) against 

test utterances. That is, it assumes their scores take the 

following form: 

( , ) ~ ( , )j j jscore TList tst N m v                     (4) 

 

In T-norm, normalization parameters are a function of test 

utterances.  
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4.3. Symmetric Normalization (SNorm) 

The abovementioned score normalization techniques are either 

model dependent or test dependent.  For some symmetric 

back-ends, such as cosine distance scoring, it is desirable to 

preserve the symmetry between the test and model set for 

better performance. This is done by combining normalization 

results from T-norm and Z-norm.    
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4.4. Straightforward Implementation 

Figure 2 illustrates the score-normalization process. All 

cohort score matrices needed by the three score normalization 

methods mentioned above can be derived in one run. 

5. Experiment Results 

The results from all the methods are summarized in Table 1. 

From experimental observation, SNorm fails to boost the 

performance of PLDA. So it is only used to other systems 



 

 

 

 
Figure 2. Straight implementation of score normalization. Enrollment list can be augmented by appendix pseudo model list, that is, TList. Test list 

can be augmented by appendix pseudo model list, that is, ZList. Then we can use any proper back-end to do the scoring to derive an augmented score 

matrix, which include original score matrix (Left-top sub matrix), TNorm score matrix (Left-bottom), and ZNorm score matrix (Right-top sub matrix). 
Here, the feature vector can be any dimension-fixed feature, such as i-Vector. 

  

Table 1. System Performance on NIST i-Vector Challenge 

Progress set. The final fusion includes PLDA1 scores 

without SNorm, and system 1 and 4 with SNorm. 

system minDCF With SNorm 

System 1: baseline 0.386 0.384 

System 2: PLDA1 0.349 / 

System 3: PLDA2 0.576 / 

System 4: SVM 0.334 0.312 

Fusion: 1+2+4 

 

0.287 

The system is then fused with another pre-fused system of 

Agnito and BUT (its minDCF on progress set is: 0.271) and 

get 0.256 on progress set (equal weight is applied)i. 
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 See AGNITIO and BUT’s system description for 

details. 
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