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Abstract
Conversational telephone speech (CTS) collections of Arabic dialects
distributed trough the Linguistic Data Consortium (LDC) provide an in-
valuable resource for the development of robust speech systems includ-
ing speaker and speech recognition, translation, spoken dialogue model-
ing, and information summarization. They are frequently relied on also
in language (LID) and dialect identification (DID) evaluations. The first
part of this study attempts to identify the source of the relatively high
DID performance on LDC’s Arabic CTS corpora seen in recent litera-
ture. It is found that recordings of each dialect exhibit unique channel
and noise characteristics and that silence regions are sufficient for per-
forming reasonably accurate DID. The second part focuses on phonotac-
tic dialect modeling that utilizes phone recognizers and support vector
machines (PRSVM). A simple N-gram normalization of PRSVM input
supervectors utilizing hard limiting is introduced and shown to outper-
form the standard approach used in current LID and DID systems.
Index Terms: Arabic dialect identification, channel characteristics,
LDC corpora, PRSVM

1. Introduction
With the increasing presence of speech enabled systems in the multi-
cultural setting, language and dialect identification (LID and DID) plays
a crucial role in directing speech input to corresponding language-
or dialect-specific acoustic and linguistic models (phonology, lexicon,
grammar). The fast progress in the field of LID and DID is well docu-
mented in outcomes from the periodic NIST LRE campaigns [1].

Current state-of-the-art DID systems adopt many approaches pre-
viously developed for speaker and language recognition. In particu-
lar, short-term cepstral features with shifted delta cepstra (SDC) and
Gaussian mixture modeling (GMM) [2–4], phonotactic models utilizing
parallel phone recognizers and language modeling (PPRLM) [5–8], and
phone recognizers with N-grams modeled by SVM classifiers (PRSVM)
[9] are frequently used in state-of-the-art schemes.

In a recent study [10], SDC–GMM, PPRLM, and PRSVM systems
were successfully applied in the task of Arabic dialect identification.
The evaluations were performed on four Arabic dialects captured in the
conversational telephone speech (CTS) databases available through the
Linguistic Data Consortium (LDC): Levantine Arabic CTS, Iraqi Arabic
CTS, Gulf Arabic CTS, and Egyptian CALLHOME/CALLFRIEND.
The study [10] notes that the Egyptian data collection preceded the other
databases and as a result might exhibit different channel characteristics
versus the rest of the databases. The authors argue that proceeding with
evaluations on this dataset is still useful as it allows for performance
comparisons with previous efforts such as those reported in [11, 12].

In the first part of this study, channel and noise characteristics of
selected LDC Arabic dialect CTS corpora are analyzed and found to be
unique and fairly distinctive for each dialect corpus. As a consequence,
silence segments are found to carry sufficient information to perform a
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reasonably accurate DID. It is also demonstrated that performing chan-
nel normalization may, to a large extent, help equalize channel differ-
ences between the dialect databases, but this is not sufficient in address-
ing other, most likely noise-related non-speech ‘dialect cues’ present
in the recordings. In the second part of our study, a normalization of
PRSVM input supervectors is proposed and evaluated alongside with
the standard normalization on the LDC corpora as well as on an in-house
Pan-Arabic corpus.

2. Corpora
This study uses two sets of Arabic dialect data. The first is represented
by LDC’s Arabic conversational telephone speech corpora: Iraqi Ara-
bic CTS (IRQ), Gulf Arabic CTS (GLF), Arabic CTS Levantine Fisher
Training Data Set 3 (LEV), and CALLHOME and CALLFRIEND
Egyptian Arabic Speech (EGY). It is noted that [10–12] used Levan-
tine Arabic CTS (LDC2007S01) instead of the Fisher corpus. While
this represents a difference between our study and the past literature, it
is assumed that the observations made in the following sections do apply
also to the mentioned studies as 3 out of 4 dialect sets are overlapping.

The second data set is drawn from the Pan-Arabic corpus [13]
provided by our sponsor. The corpus consists of Arabic dialect data
from five different regions, including United Arab Emirates (AE), Egypt
(EGY), Iraq (IRQ), Palestine (PS), and Syria (SY). Each dialect set con-
tains 100 speakers (genders balanced). In each session, two speakers
complete four combined conversational recordings. A lapel microphone
is used in conversational recording for each speaker per conversation.

All speech recordings were segmented using an energy-based voice
activity detector (VAD) which uses adaptive thresholding derived from
the dynamic range of the energy envelope. To prevent possible dropping
of low-energy consonants, time boundaries of the speech islands found
by VAD are expanded by 0.4 sec. in both directions. This ensures the
presence of a small portion of silence at the beginning and end of every
speech island and is expected to benefit accuracy of phone recognition in
a phonotactic DID by preserving natural transitions between silence and
speech. The speech islands are concatenated into approximately 11–12
seconds long speech chunks. The amount of training and evaluation data
for both data sets is shown in Table 1. Training and test sets comprise
different speaker sessions.

LDC Corpora In-House Pan-Arabic 
GLF IRQ LEV EGY PS IRQ SY EGY

Train Set (Hrs) 32.7 16.1 11.9 33.9 10.6 9.3 10.8 9.9 
Test Set (Hrs) 2.0 2.3 1.6 10.1 2.8 2.7 2.5 2.6 

Avg. Chunk Length 11.3 sec 11.9 sec 

Table 1: Data set content.

3. Analysis of LDC Corpora
In the preliminary experiments involving a naı̈ve maximum likelihood
GMM classifier, separate 32-mixture GMMs were trained for each of
the 4 dialects captured in the LDC data set. The number of training
chunks was as follows: Iraqi (5075), Gulf (10526), Levantine (3771),



Hamming
,m kX

, ,log logm m k Ref mExp Exp X H

ie
FFT Re{IFFT}

Overlap 
&

Add
Recordings 

with 
Transformed IR 

Database 
Recordings 

VAD
Speech

Silence

Hamming

|FFT| _ ,log dBase q mHLog( . )Database 
Recordings

Figure 2: Block scheme of channel estimation, normalization, and signal reconstruction in time domain.

and Egyptian (10628). The signal was parameterized with an MFCC-
like front-end where the triangular Mel frequency filterbank was re-
placed by 20 non-overlapping rectangular filters uniformly spread in
linear frequency [14]. Thirteen static, delta, and delta-delta cepstral co-
efficients were extracted using 25 ms/10 ms windowing. The confusion
matrix for an in-set dialect identification (pick 1-out-of-4) on the level of
individual speech chunks is shown in Table 2. It can be seen that in spite
of the simplicity of the system, the initial performance on short speech
chunks is relatively high compared to the chance performance (25 %).
In order to verify to what extent can the DID performance be attributed

 Assigned Dialect (Speech Chunks) 

Ground Truth Gulf Iraqi Levantine Egyptian

Acc (%) 
Avg 82.0 

Gulf 510 120 4 1 80.3 
Iraqi 184 527 1 2 73.8 

Levantine 120 10 370 0 74.0 
Egyptian 8 0 0 3174 99.7 

Table 2: GMM-based DID on speech chunks.

to the linguistic content present in the recordings, another experiment,
where pure silence chunks were used both for GMM training and eval-
uation, was conducted. As can be seen in Table 3, the average dialect
classification accuracy increased from 82.0 % seen for speech chunks,
to 83.3 % using silence chunks. This suggests that the silence regions
themselves carry sufficient information for identifying the database ori-
gin and, in the case of the simplistic GMM classifier, presence of speech
is actually not helpful to the task. Since the individual dialect databases

 Assigned Dialect (Silence Chunks) 

Ground Truth Gulf Iraqi Levantine Egyptian

Acc (%) 
Avg 83.3 

Gulf 260 78 0 0 76.9 
Iraqi 96 228 0 0 70.4 

Levantine 24 1 158 1 85.9 
Egyptian 0 0 0 1973 100

Table 3: GMM-based DID on silence chunks.

were acquired in separate efforts, it can be expected that channel char-
acteristics captured in the recordings may vary and contribute to the
identification of the data origin. It is noted that the concern expressed
by [10] about the possible different acoustic characteristics captured in
the Egyptian corpus compared to the other LDC corpora is confirmed
by Table 3 as the Egyptian silence chunks are distinguished from the
other data sets with the highest (100 %) accuracy. To further verify the
hypothesis about the channel differences across the corpora, a channel
estimation procedure was performed as depicted in the upper part of
Fig. 2. For each database, the long-term channel transfer function was
estimated by averaging short-term log-amplitude spectra of silence seg-
ments in the recordings. During the procedure, all segments containing
either digital silence or having some of the energy spectrum bins equal

to zero were omitted from the estimation. Average transfer function es-
timates for the four dialect recordings are shown in Fig. 1. The plots
are accompanied by dashed lines representing intervals of ±5σ (±σ
interval plots were below eye resolution). It can be seen that the chan-
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Figure 1: Arabic dialect-specific channel characteristics in LDC corpora es-
timated as long-term averages of log amplitude spectra in silence segments.
Dashed lines – intervals of ±5σ.

nel characteristics are very consistent across each dialect recordings and
fairly distinctive between dialects. In order to equalize database channel
differences, a normalization procedure was implemented (see bottom
part of Fig. 2). While the normalization could be conveniently applied
directly on the cepstral coefficients, our goal is to reconstruct the nor-
malized time-domain speech samples that could be later processed by
any DID scheme of choice (e.g., utilizing embedded phone recognizers
that perform their independent feature extraction). While the channel es-
timation was conducted in the log-spectral domain, the normalization is
performed in the linear amplitude spectrum by dividing the actual short
term amplitude spectrum by the delta-channel transfer function. This
allows for normalization of all segments, including those in which some
of the spectral bins are zero. The delta-channel transfer function Δm,
where m is the index of spectral bin, is estimated as a difference between
the average of non-zero short-term spectra of noise and target channel.
The Iraqi transfer function was chosen as a target and all recordings were
normalized towards it (including the Iraqi recordings, to ensure that all
samples went through the same processing chain). Standard overlap-
and-add technique utilizing a Hamming window shifted with an overlap
step of 25 % is used in the time-domain signal reconstruction. The esti-
mated average transfer functions of the normalized silence segments are
shown in Fig. 3.

It can be seen that as a result of the normalization, the transfer func-
tions migrate towards the target Iraqi channel transfer function. In an in-
formal perceptual test, the reconstructed recordings did not contain any
perceivable signal processing artifacts (such as loudness bursts, speech
distortion, etc.). At the same time, the change in the channel character-
istics was well audible, causing an impression the speech was acquired
by different types of microphones or produced through different loud-
speakers. Although the channel normalization seems to be successful,
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Figure 3: Normalized channel characteristics estimated from silence segments.
Dashed lines – intervals of ±5σ (depicted for clarity only for Gulf and Levan-
tine).

an experiment on the normalized silence chunks resulted in similar high
DID accuracy as seen prior to normalization. In parallel, a repeated
experiment on the unprocessed silence segments, where cepstral mean
normalization was applied in the feature extraction front-end was also
performed, providing comparable results to those on the normalized au-
dio recordings. This suggests that the silence samples contain additional
strong database-specific cues. Fig. 4 shows distributions of the first cep-
stral coefficient c1 extracted from 100 silence chunks per dialect, prior
and after the channel normalization. It can be seen that while the dis-
tribution means are, as a result of the normalization, aligned, the distri-
bution contours are fundamentally different. Considering stationarity of
the channel characteristics as suggested by Fig. 3, the variance and fine
details in the distribution contours can be attributed to the noise present
in the recordings. This suggests that additional signal processing will be
necessary to equalize the non-linguistic content. It is noted that the CTS
samples contain numerous non-stationary noises (random bursts of elec-
trical noise, handset noises) and noise suppression techniques developed
for stationary noises may not be as effective.
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Figure 4: Distribution of c1 before and after channel normalization; extracted
from 100 silence chunks.

For a comparison, an identical GMM-based classification procedure
was repeated also for silence segments from the in-house Pan-Arabic
corpus. A classification accuracy in a four-way task on PS, SY, IRQ,
and PS silence chunks (AE was omitted to mimic the complexity of the
LDC task) yielded a slightly below chance (24.7 %) accuracy. This sug-
gests that the acoustic characteristics of the silence segments here are
much more consistent across the dialects. Figure 5 details correspond-
ing long-term average transfer functions estimated from the silence seg-
ments (including AE). It can be seen that the transfer functions in this
case exhibit much lower variance across dialects compared to the LDC
corpora. This can be attributed to the fact that all dialect samples here
were recorded in a single effort using a unified framework.
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Figure 5: Arabic dialect-specific channel characteristics in in-house Pan-Arabic
corpus estimated as long-term averages of log amplitude spectra in silence seg-
ments.

4. PRSVM System
In this section, a phonotactic dialect recognition system that combines
phone recognition and N-gram modeling via SVM classifiers (PRSVM)
is tested on the LDC and in-house Pan-Arabic dialect sets described
in Sec. 2. The purpose is to evaluate the impact of the presence of
channel/noise dialect cues on the PRSVM system. New normalization
of the SVM input supervectors is also presented.

AvgEER (%) 
(1-vs-3)

LDC Corpora In-House Pan-Arabic Phone 
Recognizer 

GBF
+Log

GBF 
+Sig. Sig. Hard GBF

+Log
GBF
+Sig. Sig. Hard

Czech 21.1 19.0 19.9 18.7 35.2 33.7 34.3 33.6 
English 7.7 7.1 7.0 6.8 33.6 33.2 33.8 33.3 
German 19.8 15.8 15.5 14.7 34.9 30.6 31.1 30.4 
Hindi 16.7 14.2 14.5 13.8 31.6 29.4 30.3 29.4 

Hungarian 16.6 14.9 15.0 14.8 36.6 35.0 35.4 34.9 
Japanese 15.6 14.8 14.2 14.2 31.0 30.5 30.3 30.3 
Mandarin 16.8 13.5 13.2 12.7 31.5 29.7 30.5 29.6 
Russian 21.1 19.3 20.1 18.9 36.7 35.7 36.1 35.6 
Spanish 19.0 17.3 16.7 16.1 33.9 33.1 34.7 33.4 

AvgErr (%) 17.2 15.1 15.1 14.5 33.9 32.3 32.9 32.3 

Table 4: Average EER (AvgEER) in PRSVM setup with various phone recog-
nizers. Comparison of PRSVM input supervector normalizations (GBF – nor-
malization of local bigram frequency (LBF) with a square root of global bigram
frequency).

Our PRSVM implementation follows the ones in [4, 9]. A set of 9
phone recognizers developed by Brno University of Technology (BUT)
[15] is evaluated in the PRSVM system: English, Czech, Hungarian,
Russian, German, Hindi, Japanese, Mandarin, and Spanish. Each input
speech sample is phone-decoded using a phone recognizer of choice.
The recognizer output is parameterized by N-gram relative frequencies
(number of occurrences normalized by the number of N-grams). N-
gram relative frequencies are scaled by the inverse square root of the
global frequency of the corresponding N-grams, following [4, 9], pro-
cessed by a log squashing function gj = log (x) + 1 [16], and stacked
into a supervector where each dimension represents a normalized fre-
quency of a particular N-gram. The supervectors are in general sparse
since the decoded sample is likely to contain only a few of all the pos-
sible N-grams [9]. In our implementation, the log squashing function,
as well as its alternatives, are applied only to the non-zero dimensions
of the supervectors. The supervectors extracted from the training set are
used to train binary SVM classifiers, where one class represents a target



dialect and the anticlass the remainder of the dialects. This yields a set
of 4 SVM classifiers.

Following [10], the experimental results are presented in the form
of average EER of the four SVMs (the task is to decide whether the
sample contains a claimed dialect or the remaining dialects – pick 1-
vs-3). The results for PRSVMs utilizing various phone recognizers and
bigram modeling are summarized in Table 4. In our preliminary ex-
periments, bigram-based PRSVM outperformed a trigram setup, hence,
bigram frequencies are used in the following experiments. The column
‘GBF+Log’, where GBF stands for global bigram frequency, represents
a standard normalization as described above. In the adjacent column
‘GBF+Sig’, a sigmoid function is applied instead of the logarithm. Sig-
moid represents a popular choice for activation functions in neural net-
works and provides, among other properties, an attractive means to com-
press outlier sample amplitudes into a compact dynamic range. The fol-
lowing column ‘Sig’ represents a case where GBF is excluded from the
normalization and only the sigmoid is applied on relative bigram fre-
quencies (denoted local bigram frequencies; LBF). We have observed
that in the ‘GBF+Sig’-based setups, the non-zero scores tend to be com-
pressed to a numerically coherent cluster. This led to an idea to substi-
tute all non-zero relative frequencies by a fixed constant – hard limit-
ing (column ‘Hard’). The constant was experimentally set to 0.3. Ta-
ble 4 suggests that the performance of PRSVM is very sensitive to the
choice of the phone recognizer. The best dialect identification accuracy
in the LDC task is provided by the English-based PRSVM. The base-
line AvgEER 7.7 % provided by the English PRSVM is lower than the
one reported for the best performing Levantine-based PPRSVM (9.5 %)
in [10] on a similar task (note the previously discussed difference in the
database setup and that [10] utilized 30 sec. speech segments compared
to 11–12 sec. segments used in our study). For the in-house Pan-Arabic
corpus, Hindi-based PRSVM provided the best performance across the
setups. In order to evaluate the global impact of the different super-
vector normalizations, independent of the individual phone recognizers,
AvgEERs are averaged across all phone recognizers per each strategy
(AvgErr). It can be seen that using the sigmoid rather than logarithm
in the normalization reduces the classification error in both LDC and
in-house Pan-Arabic setups. Incorporating GBF in the sigmoid normal-
ization has on average little or no effect in the LDC task but is helpful
in the in-house Pan-Arabic task. Applying hard limiting results in con-
siderable error reduction compared to the original ‘GBF+Log’ normal-
ization for all PRSVMs and both database scenarios.

Table 5 details EERs per each dialect for English- and Hindi-based
PRSVMs, repsectively. The hard limit normalization is found to reduce
EERs for all dialects compared to the original ‘GBF+Log’ setup. It can
be seen that similarly as in Sec. 3, Egyptian samples are classified in the
LDC task with a significantly lower error rate than the other dialects. In
the case of the in-house Pan-Arabic task, EERs are well balanced, with
the Iraqi dialect yielding slightly lower errors compared to the rest three
dialects. Finally, it can be seen that the absence of non-linguistic cues in
the in-house Pan-Arabic corpus results in considerable reduction of the
classifier performance compared to the LDC task.

1-vs-3; EER (%) 
LDC Corpora 

(Eng. Recognizer) 
In-House Pan-Arabic 
(Hindi Recognizer) 

Local Bigram Frequency 
(LBF) Normalization 

GLF IRQ LEV EGY PS IRQ SY EGY
GBF + Log 10.3 8.2 9.5 2.8 31.8 28.5 33.3 33.0 

GBF + Sigmoid 9.5 7.8 8.5 2.6 29.9 26.2 30.5 31.1 
Sigmoid 9.6 7.9 8.1 2.5 31.3 27.0 31.7 31.0 
Hardlimit 9.5 7.5 8.0 2.3 30.1 26.3 30.3 30.7 

Table 5: Detailed dialect EERs (1-vs-3 task) of English- and Hindi-based
PRSVM.

5. Conclusions
This study has analyzed the non-linguistic content of the selected Arabic
Conversational Telephone Speech corpora distributed through LDC. It
was found that the LDC data sets used in past studies on Arabic dialect
identification contain strong non-linguistic cues to the database origin
of the recordings. Significant channel differences and distinctive noise
characteristics were found in the LDC dialect corpora that are sufficient
to perform a relatively successful dialect identification from only silence
segments of the recordings. This suggests that normalization of the non-
linguistic content may be necessary in order to obtain a fair framework
for Arabic dialect identification. In the second part of the study, per-
formance of a PRSVM system on the LDC and in-house Pan-Arabic
corpora was evaluated. A simple SVM input supervector normalization
utilizing hard limiting was shown to consistently reduce dialect identifi-
cation errors compared to a commonly used normalization by the global
N-gram frequency and a logarithmic squashing function.
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