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ABSTRACT 

I n  this paper, we address the problem of isolated word 
recognition of speech under various stressed speaking con- 
ditions. The  niain objective is to formulate an alternate 
training algorithm for hidden Markov model recognition, 
which better characterizes actual speech production under 
stressed speaking styles such as slow, loud and Lombard 
effect, without the need for collecting such stressed speech 
data.  The  novel approach is to first construct a previously 
suggested source generator model of word production em- 
ploying knowledge of the statistical nature of duration and 
spectral variation of speech under stress. This is used in 
turn to produce simulated stressed speech training tokens 
from neutral tokens, and thus replace neutral da ta  used in 
the recognizer training phase. The  token generation train- 
ing method is shown to improve isolated word recognition 
by 8% for slow speaking style, 14% for loud speaking style, 
and 24% for speech under Lombard effect when compared 
to neutral trained isolated word recognition. 

1. INTRODUCTION 

Studies conducted on human speech production show that,  
depending on task workload, environmental conditions such 
as a high noise environment, as well as the speaker’s phys- 
ical and psychological state, a person’s speech characteris- 
tics change with time. Examples of environmental settings 
which affect the manner of speech production include, i) 
task-workload (flying an aircraft, operating an automobile), 
(ii) normal intra speaker variability such as variable speak- 
ing style (e.g., speech spoken loud, soft, fast, slow, etc.), or 
(iii) speech spoken in noise (i.e., Lombard effect [9]). The 
variability introduced by a speaker under stress causes neu- 
tral token trained recognizers to fail [ 2 ,  3 ,  6, 81. linlike 
the human auditory system, which is capable of extract- 
ing this variability as additional perceptual information of 
the speaker (i.e., emotion, situational speaker state),  typical 
recognition algorithms do not, at tempt to extract this infor- 
mation and and do not address such speaking conditions. 
It has been shown that recognition rates drop for a discrete 
observation hidden Markov model (HMM) system by 28% 
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for slow speech, 25% for Lombard speech, and 38% for loud 
speech [6]. The goal of this study is to formulate a pro- 
cedure for artificially generating stressed speech tokens for 
HMM training to achieve improved automatic recognition 
of speech spoken under stressful conditions. This is not in- 
tended to result in solving the problem of robust automatic 
speech recognition under stress, but instead to better under- 
stand the physiological based speech production variations 
under stress, and to determine the influence of including 
such knowledge within a H M M  training procedure. Artifi- 
cially simulated stressed tokens are neutral tokens for which 
speech production features such as duration and frequency 
content have been altered to statistically resemble stressed 
speech tokens. The  proposed training procedure differs from 
a direct modification of the H M M  word model, since direct 
modification may not fully portray the actual changes in 
speech production under stress. The  stressed speaking con- 
ditions which constitute the focus of this study are slow, 
loud and Lombard effect. 

2. PREVIOUS APPROACHES 

In a previous study, Lippniann, Martin, and Paul proposed 
a iiiultistyle training procedure for speech recognition in 
stress [ 8 ] .  Though successful, this technique requires speak- 
ers to produce simulated speech tokens as they might per- 
ceive that stressed condition. (:onsequently, the speech to- 
kens may fail to characterize the actual variability of speech 
in an actual stressed speaking environment. Hansen and 
Clements [ 6 ]  proposed compensating for formant bandwidth 
and formant location in the recognition phase. This re- 
sulted in improved speech recognition unver noisy stressful 
conditions. However, this compensation required knowledge 
of phoneme boundaries and is coniputationally expensive. 
Alternatively, (:hen [2] compensated for cepstral changes 
through transforniations using neutral token training. This 
coinpensation is applied to word models where all speech 
sections within a word use the same compensation vec- 
tor. Since stress does not affect all phonemes of a word 
cqually[B], Hansen and Bria proposed a new approach for 
mel-cepstral compensation [7]. I n  their approach, each word 
is partitioned in the time domain into three broad speech 
classes (e.g., voiced/transitional/unvoiced speech sections). 
Similar speech classes are then grouped together and con-  
pensation is applied to each speech class separately for each 
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Style in the recognition phase was shown to improve speech recog- 

The lnllin objective here is to achieve reliable recognition 
performance under stressed speaking conditions without the 

Table 1: Source generators d u r a t i o n s  for zero across 
d i f fe ren t  speaking styles.  

yl (msec) 11 yo (msec ) I/ y:, (nlsec) 
PI I 6 1  II Po I 0 3  II P5 I 0 5  

requirement of having speakers produce simulated stress to- 
kens. This is achieved by suggesting a training procedure 
which employs statistically generated stress speech tokens. 
The  motivation for generating simulated stress tokens is due 

I 
1 

8 s )  = __ (dj?,, - (3 )  
3.k 1 - 1  

,= 1 

to (i) the inconvenience of collecting stress da ta  for train- 
ing from and (") the of human simulated 
stress tokens in representing actual speech under stress, A 
brief discussion of each processing phase is discussed below. 
Further details can be found in [l]. 

where s spans the possible stressed speaking styles, k spans 
all possible keywords from a speaking style, i sPalls the 
domain Of 

from all speakers, j spans the nuniber of source generators 
for that word, and I is the total number of tokens. 

the availab1e tokens Of a keyword 

3.1. Source Generator Frainework 
As described in [4], the production of an isolated word 

can be described as a sequence of speech articulator move- 
ments to achieve desired vocal tract target shapes. This 
collection of speech articulator movements is represented 
by a sequence of source generators y , ; ~  = 1 , 2 ,  ... J in an 
F-dimensional feature space. Speech production of a word 
can be modeled as a sequence of movements from one source 
generator to another in this feature space. These move- 
ments represent a well defined path between source gener- 
ators in the F-dimensional space. When a particular stress 
condition is introduced, deviations will result in this path. 
The  analysis of these deviations will be used to model the 
effects of stress speaking styles on speech. 

3.2. Source Generator Based Analys is  
For the purpose of this study, a source generator se- 

quence is assumed to represent detected phoneme-like 
speech classes partitioned into voiced/transitional/nnvoiced 
(v/tr/uv) regions across time. The  v/tr/uv classifier is 
based on the energy contour of an input utterance [5]. Here, 
a statistical study is conducted to develop models for du- 
ration and spectral content of stressed speech source gen- 

Next, stressed speech production variation within spec- 
tral content are modeled for artificial token generation. One 
inel-frequency cepstral coefficient (MF(;C)  vector h((;,)(j, k) 
is found for each source generator j of a word t across all 
available tokens. A mel-cepstral adaptation factor of a sin- 
gle sonrce generator within a word is given by equation (4)  
below. The  MFCC of individual source generators of a neu- 
tral word are scaled according to equation ( 5 )  to yield the 
adapted mel-cepstral vector. The  spectral characteristics of 
word k spoken under style s are represented by the following 
equations: 

(4) 

where I spans the number of extracted mel-cepstral coeffi- 
cients per frame. Table 1 along with Fig. 1 ilustrate the du- 
ration and spectral characteristic changes froin one source 
generator class to another within the same style, as well 
as the differences among similar source generators across 
different speaking styles. 

erators. These models are later used to adapt the source 
generators duration and spectral features of neutral speech. 
A source generator is characterized by its duration d!;Ik 
and spectral content as represented by mel.cepstral 
eters @ s ) ( i , j ,  tj. ~~~h SOnrCe generator duration d!8lk  of a 

word t is assumed Ganssianly distributed with mean p::i, 

and variance uf:;', and is characterized by the following 
equations: 

3'3' 
Generating simulated stress tokens is achieved by first 

adapting the individual source generator duration of neu- 
tral tokens, followed by controlled perturbation of the spec- 
tral characteristics of each duration modified neutral to- 
ken (refer to the flow diagram in Fig, a), This adap- 
tation/perturbation is achieved by modeling the changes 
from each source generator class between neutral and each 
stressed speaking style, and using these models for con- 
trolled perturbation of neutral speech during HMM train- 
ing. Duration adaptation is performed by (i) statisticalli 
determining the source generator durations of a typical 
stress token using the duration PDF's generated earlier, 
and (U) adapting the source generator durations of the neu- 
tral token at the mel-cepstral parameterization stage. A 

( d - I . y l 2  

(1) 
1 2 r x s )  

f(')(d) = - exp 3 . k  

f i r ;  ;i 3 , b  

( 2 )  f i 3 . k  - 
, = I  
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Figure 1: MFCC for source generators y ~ ,  y3, and y5 of the word zero across different speakiug styles. 

fixed-length, variable skip rate Hamming analysis window 
is used for extracting mel-cepstral coefficients. Depending 
on the stress dependent statistical durations, more observa- 
tions are extracted from a source generator section and sub- 
mitted to the recognizer if an increase in duration is required 
for a source generator, and less observations are extracted 
in c a e  of a decrease, After extracting the required number 
of stressed duration based mel-cepstral vectors, each vector 
within a speech class j is perturbed using equation (5) for 
each mel-cepstral coefficient for stress condition s. 

After information has been obtained from this statisti- 
cal characterization, the speaker is no longer required to 
produce speech tokens under stress conditions. Subsequent 
training requires collecting only neutral tokens from the 
speaker, with application of the apriori estimated statistical 
model for that stress condition. 

4. RECOGNITION RESULTS 

The statistical studies conducted in this work are based 
on a previously collected da ta  base, called SUSAS(Speech 
Urtder Simulated and Actual Stress) [3]. A discrete obser- 
vation, 5-state le f t -br ight ,  isolated word H M M  recognizer 
was used for all experiments. The  stress word models were 
created rising a total of 12 training tokens per word (6 neu- 
tral + G simrilated stress). A 256 entry vector quantizer 
codebook was generated from a 35-word vocabulary spo- 
ken by one speaker under normal, slow, loud, and Lombard 
conditions [3]. 

The da ta  used for this study consists of isolated words 
spoken by 9 inale speakers under the three stressed speak- 
ing styles of slow, loud, and Loncbard. The  confusion ma- 
trices in Figure compare the performance of our system to 
the neutral trained system. The  shade in each block is di- 
rectly proportional to the recognition rate. A darker shade 
along the diagonal indicates improved performance. As can 
be seen, the proposed system consistently improves recog- 
nition performance. The  best performance is achieved for 
the word "ten", for which recognition increased from 3G% 
to 86%). When compared to neutral trained models in iso- 

lated word recognition, the simulated stress trained iiiodels 
a s  illustrated in Figure 4, improved recognition by 8% for 
slow speaking style, 14% for loud speaking style, and 24% 
for Lombard speech. 

==.=i7 M U  CEFSTM PAFAMRER I Enwcncw I 

HMM 5T- MOW. 

Figure 2: A block diagram representation of siinu- 
lated stress tokens generation. 

5. CONCLUSION 

A new approach for generating siinulated stressed train- 
ing tokens has been presented and demonstrated for a dis- 
crete observation hidden Markov model recognizer in iso- 
lated speech scenario. The  generated artificial stress tokens 
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can allow a user a controlled level of variability in the degree 
of stress for recognizer training. This provides a training al- 
gorithm which is capable of representing a wider range of 
stressed speech levels in speakers by adjusting source gen- 
erator modeling features. 

The  simulated stress trained speech recognizer presented 
in this work improved overall recognition when tested on a 
sample da t a  set from three stressed speaking styles. Dura- 
tion and mel-cepstral parameter modification proved to be 
effective in improving stressed speech recognition. The  pro- 
posed training method could potentially be used to model 
day-to-day speaker variability caused by task stress. Also, 
the results of this study suggest tha t  training with gen- 
erated stress tokens is a promising approach for achieving 
stress resistant and/or speaker-independent isolated word 
recognition in adverse (task-demanding) conditions. 
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Figure 4: Isolated word recogn i t ion  performance 
of the neutral trained models arid the simulated 
stressed speech trained models when tested w i t h  
stressed speech i n  noise-free cond i t ions .  
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F i g u r e  3: Perforniance of the neutral and simulated 
stress trained isolated word recognizers for stressed 
speech conditions. 
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