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ABSTRACT

Room reverberation and environmental noise present chal-
lenges for integration of speech recognition technology in
smart room applications. We present a multichannel enhance-
ment framework for distributed microphone arrays to mitigate
the effects of both additive noise and reverberation on distant-
talking microphones. The proposed approach uses techniques
of nonnegative matrix and tensor factorization to achieve both
noise suppression (through sparse representation of speech
spectra) and dereverberation (through decomposition of mag-
nitude spectra into convolutive components). Results of ASR
experiments on the DIRHA-GRID corpus confirm that the
proposed approach can achieve relative improvements of up
to +20% in recognition accuracy in highly reverberant and
noisy conditions using clean-trained models.

Index Terms— distant speech recognition, distributed
microphone array, nonnegative matrix/tensor factorization

1. INTRODUCTION

The emerging interest in achieving smart interactive homes
or office environments with automated appliances/technology
has led to a growing interest in replacing the current modes of
interaction (primarily touch screens or keyboards) with hu-
man speech. The ability to operate home technology systems
by issuing voice commands is not only of critical importance
to many elderly or disabled individuals, but also provides a
degree of convenience which is desired by the general user.
The challenge with employing audio and speech technology
in the context of smart rooms is that such technologies re-
quire the use of close-talking (headset or lapel) microphones,
which is in many cases not possible or too limiting. It is often
desired to let an untethered user freely issue voice commands
from any random location in the house, with one or more mi-
crophones capturing his/her voice from different locations in
the smart room space.
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Many current Automatic Speech Recognition (ASR) sys-
tems fail in such distant-talking scenarios, hindered by the
corrupting effects of room reverberation and environmental
noise. While these problems have conventionally been al-
leviated by the directional response of uniform arrays with
closely-spaced microphones (i.e., by employing beamform-
ing techniques), these solutions are limited to rooms that are
equipped with such uniform arrays at fixed pre-determined
positions (e.g., on the walls or ceiling). In addition, speaker
location information is often not available and very difficult
to estimate in reverberant rooms, further limiting the use of
beamforming on conventional arrays as a general solution.

An attractive aim in automated home and office environ-
ments is the use of distributed microphone arrays for distant
speech capture. In a distributed array, the microphones are
far apart in random unknown locations, and there might be no
synchrony among them due to the use of independent record-
ing devices [1]. Such a distributed array is formed, for ex-
ample, by the collection of microphones in smart phones or
laptops within a room. In this flexible framework, using con-
ventional time-delay based methods is not possible due to the
lack of synchrony among channels, non-uniform array geom-
etry, and the possibility of different signal-to-noise ratios and
direct-to-reverberation ratios among the different channels.
We should thus resort to feature enhancement techniques that
are independent of signal phases and fuse the information of
different channels at the magnitude spectrum level.

Feature enhancement techniques based on sparse repre-
sentations of speech signals have recently accquired consid-
erable popularity in ASR research [2, 3]. These approaches
assume that the information contained in a speech spectro-
gram can be represented as a linear combination of a finite
number of elementary bases, often referred to as atoms or ex-
emplars. A collection of such atoms, called a dictionary, is
created using clean training data. For feature enhancement,
the closest representation of the noisy spectrum in terms of
these clean exemplars is obtained and replaced by the orig-
inal noisy spectrum (using techniques from the Nonnegative
Matrix Factorization (NMF) field [4]). Such sparse represen-
tation (SR) approaches were originally used for speech sepa-
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ration [5], and later employed for single-channel noise-robust
ASR through the use of fixed pre-trained speech and noise
exemplars [2]. Although it has been shown in [2] that the
noise suppression provided by the SR-based approach yields
significant improvements in recognition accuracy in noisy en-
vironments, this approach is less effective in mitigating rever-
beration effects. While the SR-based approach achieves en-
hancement by weighting each time-frequency bin separately
by a gain function (details in Sec. 3.2), the reverberation prob-
lem is a long-term effect involving multiple time frames [6]
and thus cannot be handled by the SR frame-work.

In this study, we propose a multichannel feature enhance-
ment framework based on the combined use of a general-
ized SR-based denoising approach and a previously proposed
multichannel dereverberation algorithm based on Convolutive
Nonnegative Tensor Factorization (CNTF) [7]. Unlike [2], we
do not make use of a fixed pre-trained noise dictionary. We
will instead use silence regions between utterances to build
smaller local noise dictionaries, and show that this can pro-
vide a reasonable degree of noise suppression. This will in
turn enable the system to effectively deal with previously un-
seen types of noise. Moreover, we propose to use a more gen-
eral parametric gain function in SR-based denoising, which is
shown to improve the recognition accuracy in low SNRs.

The benefits of using CNTF together with SR-based en-
hancement is two-fold. First, it compensates for the inade-
quacy of the SR algorithm to address reverberation effects.
Moreover, it provides an efficient way of combining informa-
tion from different channels of a distributed array, providing
a multichannel framework in which SR-based denoising can
be employed individually on each channel before dereverber-
ation. In addition, the CNTF algorithm has been shown to
be robust against unequal levels of direct-to-reverberation ra-
tio (DRR) among different channels, blindly increasing the
contribution of higher DRR channels to the final output [7].
This would be particularly helpful in a smart room application
where it is not known in advance which microphone is closer
to the source.

The remainder of this paper is organized as follows. In
Sec. 2, we describe the signal model for distant speech in
the magnitude spectrum domain. In Sec. 3, we present the
proposed multichannel enhancement approach for mitigating
the effects of noise and reverberation. In Sec. 4, we provide
results from ASR experiments performed to evaluate the pro-
posed method, and in Sec. 5 we provide a summary and final
conclusions.

2. TIME-FREQUENCY MODEL FOR DISTANT
SPEECH

A speech signal captured by a distant-talking microphone is
modeled by a convolution between the Room Impulse Re-
sponse (RIR) and clean speech, on which an additive noise
term is also imposed. For the purpose of feature enhancement

Noise 
Dictionary

𝑥 1 (𝑛) VAD STFT |•| SR

CNTF

exemplar 
generation

{STFT+vec(|•|)}

𝑥 2 (𝑛) VAD STFT |•| SR

𝑥 𝑄 (𝑛) VAD STFT |•| SR

Signal
Reconstruction

MFCC

Speech
Dictionary

arg(•)

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

Fig. 1. The proposed front-end for noise and reverberation ro-
bust ASR. The dashed ouputs from VAD units represent non-
speech (noise-only) intervals.

in ASR, it is common to use the following approximate model
for the magnitude spectrum of the received signal [6, 8],

X(i)(m, k) =

LH−1∑
p=0

H
(i)
k (p)S(m− p, k) +B(i)(m, k), (1)

where S(m, k),B(i)(m, k) andX(i)(m, k) are the magnitude
short-time Fourier transforms (STFTs) of the clean speech
signal, the additive noise from the i’th microphone, and the
received signal of the i’th microphone, respectively. Here, m
and k are frame and frequency indices, and H(i)

k (m) repre-
sents the subband envelope of the RIR from the source loca-
tion to the i’th microphone location. The superscript (i) will
be used to denote channel index throughout this paper. The
first term in Eq. 1 represents the reverberant signal and will
be denoted by Y (i)(m, k). Arranging the STFT components
in the spectrogram matrices will result in,

X(i) =

LH−1∑
p=0

H(i)(p)
p→
S + B(i). (2)

where S, B(i) and X(i) are K ×M spectrogram matrices of
the correponding signals (K is the number of frequency bins,
M is the number of time frames), and H(i)(p) is a diagonal
matrix of the form H(i)(p) = diag([H

(i)
0 (p), . . . ,H

(i)
K−1(p)]).

The operator p → shifts the rows of its argument matrix by
p positions to the right, filling in zeros from the left. The
matrices X(i), B(i) and H(i)(p) for different channels (i =
1, . . . , Q) can be considered as the frontal slices of the corre-
sponding third order tensors X , B, andH(p) [7].

3. MULTICHANNEL SPECTRUM ENHANCEMENT

3.1. Overview

Fig. 1 shows the overall proposed system for suppressing
noise and reverberation in distant-talking speech. A Voice
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Activity Detection (VAD) unit initially detects whether the
input signal is speech or pure noise corresponding to a si-
lence period. If silence is detected, the magnitude STFTs of
the noise are computed and used to update a noise dictionary
which will be employed to suppress noise in the forthcoming
speech utterance. If speech is detected, sparse representation
based denoising is performed on the magnitude STFTs, using
the current noise dictionary as well as a speech dictionary
which is created in advance using the training database (fur-
ther details on dictionary creation in the next section).

The denoised spectra from all channels are then jointly
processed by CNTF dereverberation algorithm to produce
an estimate of the clean speech spectrum. The phase val-
ues from one of the microphones is used together with the
estimated clean spectrogram to produce an enhanced time
domain signal which is finally submitted to a conventional
Mel Frequency Cepstral Coefficient (MFCC) extraction unit.

3.2. Environmental Noise Suppression based on Sparse
Representaion (SR)

It has been shown that a speech spectrogram can be repre-
sented as a nonnegative linear combination of a few basic ex-
ample spectrograms, and that this linear combination is of-
ten very sparse [9]. To obtain representative vectors that can
be decomposed into such linear combinations, we divide the
magnitude spectrogram matrix into overlapping windows of
length T and stack the spectrogram portion under the window
into a column vector of length K · T . We can create a clean
speech dictionary by sliding this window on the spectrogram
matrices of the training data and arranging the resulting ex-
emplars (asj) as the columns of a matrix. A noise dictionary
can also be constructed in a similar fashion using the noise
samples collected by the microphones during silence periods.

As = [as1, . . . ,a
s
Ns

]. (3)

An = [an1 , . . . ,a
n
Nn

]. (4)

Here, Ns and Nn are the number of speech and noise exem-
plars, respectively.

In order to enhance a received speech utterance, we use
the same windowing and column-stacking procedure de-
scribed above to obtain representative vectors from the mag-
nitude spectrograms of the received signals, and express the
resulting vectors as a linear combination of the speech and
noise exemplars (here we drop the channel index (i) for
simplicity of notation):

x̃l = vec([xl∆, . . . ,xl∆+T−1]), (5)

x̃l =

Ns∑
j=1

vsj,la
s
j +

Nn∑
j=1

vnj,la
n
j = Avl. (6)

In the above equations, xm is the magnitude DFT of the m’th
frame of the received signal, vec(.) is the column stacking op-
erator, ∆ is the skip rate used in windowing the spectrogram,

vsj,l and vnj,l are the non-negative weights (activations) in the
linear combination, vl = [vs1,l, . . . , v

s
Ns,l

, vn1,l, . . . , v
n
Nn,l

]T ,
and A = [As,An].

Based on Eq. (6), the collection of all vectors resulting
from sliding the window on the spectrogram of i’th micro-
phone signal can be written as,

X̃(i) = AV(i), (7)

where X̃(i) = [x̃
(i)
0 , . . . , x̃

(i)
L−1], V(i) = [v

(i)
0 , . . . , ṽ

(i)
L−1],

and L is the total number of spectrogram windows within the
utterance.

The decomposition in Eq. (7) can be achieved by means
of performing nonnegative matrix factorization on X̃(i), keep-
ing the base matrix A fixed and only updating V(i) using the
multiplicative update rules introduced in [10]:

V(i) ← V(i). ∗
AT X(i)

AV(i)

AT1
. (8)

In Eq. (8), ‘.∗’ represents elementwise multiplication and the
matrix divisions are elementwise as well, and 1 is a vector of
all ones (of length Ns +Nn).

Following the NMF iterations of Eq. (8), the resulting ac-
tivation values can be used to separate the speech and noise
contributions:

Ỹ(i)
s = AsV

(i)
s (9)

Ỹ(i)
n = AnV

(i)
n (10)

In the above equations, Ỹ
(i)
s and Ỹ

(i)
n are the speech and

noise components in X̃(i), and V
(i)
s and V

(i)
n represent the

upper Ns rows (speech activations) and the lower Nn rows
(noise activations) of V(i), respectively.

Denoting the columns of Ỹ(i)
s by ỹ

(i)
s,l , (l = 0, . . . , L− 1),

an estimate of the denoised spectrogram segments can be ob-
tained by

[y
(i)
s,l∆, . . . ,y

(i)
s,l∆+T−1] = unvec(ỹ

(i)
s,l), (11)

where the unvec(.) operator reshapes a vector of length K · T
into a K × T matrix. The overall speech spectrogram matrix
Y

(i)
s can be constructed by overlap-adding the segments ob-

tained from Eq. (11). Additionally, we can obtain an estimate
for the spectrogram of the additive noise on channel i in a
similar fashion to (11), but using the columns of Ỹ(i)

n instead.
Although it is possible to directly use the above estimated

Y
(i)
s (m, k) as the denoised spectral components, we have

found that doing so results in poor recognition performance,
stemming from the residual speech energy not expressed
by the linear combination of the exemplars (similar results
have been reported in [2, 11]). We thus use the following
parametric gain function instead,

G(i)(m, k) =

(
ξ(i)(m, k)

α+ ξ(i)(m, k)

)β
, (12)
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where,

ξ(i)(m, k) =
Y

(i)
s (m, k)

Y
(i)
n (m, k)

, (13)

can be interpreted as a measure of the a priori SNR in the
spectral amplitude estimation [12]. Note that by selecting
α = β = 1, the Wiener amplitude estimator used in [2] will
be obtained. However, it is known that in low SNRs the op-
timal gain function given by Minimum Mean-Square Error
(MMSE) estimation of the spectral amplitudes deviates from
the Wiener solution [12], and thus the added degrees of free-
dom provided by α and β will lead to more precise amplitude
estimates. Similar improvements provided by such general-
ized gain functions have been reported in other enhancement
techniques as well (e.g. in [13]). Using the gain function of
Eq. (12) and the original magnitude STFT values X(i)(m, k),
the denoised spectral amplitudes of the i’th channel can be
obtained by the following spectral weighting:

Y
(i)
d (m, k) = G(i)(m, k)X(i)(m, k) (14)

3.3. Multichannel Dereverberation based on Convolutive
Nonnegative Tensor Factorization (CNTF)

Based on the model of Eq. (1) and the estimated reverberant
spectral amplitudes from Sec. 3.2, the dereverberation task
can be stated as finding the nonnegative factors H(i)

k (m) (for
all i) and S(m, k) (common among all channels) which min-
imize the total error defined by,

E =
∑
i,m,k

(
Y

(i)
d (m, k)−

LH−1∑
p=0

H
(i)
k (p)S(m− p, k)

)2

. (15)

We have shown in [7] that by considering the channel spectro-
gram matrices as the frontal slices of a third order tensor X ,
the factorization provided by Eq. (15) can be interpreted as a
special case of convolutive nonnegative tensor factorization,
in which the base matrices are constrained to be diagonal. It
was shown that the nonnegative factors can be obtianed by
iterating the following multiplicative update rules:

Ĥ
(i)
k (p)← Ĥ

(i)
k (p)

∑
m
Y

(i)
d (m, k)Ŝ(m− p, k)∑

m
Z(i)(m, k)Ŝ(m− p, k)

, (16)

Ŝ(l, k)← Ŝ(l, k)

∑
i

∑
m
Y

(i)
d (m, k)Ĥ

(i)
k (m− l)∑

i

∑
m
Z(i)(m, k)Ĥ

(i)
k (m− l)

, (17)

where Z(i)(m, k) is the estimate of the reverberant spectral
amplitudes based on the current values of the factors. Note
that in the case of a single microphone (Q = 1), the CNTF al-
gorithm simplifies to the single-channel convolutive nonneg-
ative matrix factorization (CNMF) algorithm of [14].

Table 1. Average T60s and SNRs for the selected channels*.
Microphone

(location/name)
Room
T60

Avg. T60 of
cross-room RIRs

Avg. SNR
of utterances

LivingRoom/LA2 0.77 s 1.23 s 13.8 dB
Kitchen/KA2 0.82 s 1.40 s 11.6 dB
Bedroom/B1L 0.62 s 1.66 s 9.8 dB
Corridor/C1L 0.70 s 1.05 s 11.9 dB

* Values based on development dataset (for which this in-
formation is provided). The test dataset is expected to
have similar values to those reported here.

4. EXPERIMENTAL RESULTS

4.1. Evaluation Database

We evaluate the performance of the proposed method on the
DIRHA-GRID corpus [15]. The DIRHA-GRID corpus con-
tains multichannel 16 kHz recordings of different acoustic
scenes collected in an apartment with multiple rooms (living
room, kitchen, bedroom, corridor). Each acoustic scene has a
duration of 1 minute and includes a variable number of speech
utterances (short commands derived from the GRID corpus
[16]), as well as different non-speech sources representing
typical noises in domestic environments such as radio, TV,
knocking, ringing, vacuuming, etc. Multiple microphones are
attached to the walls or ceiling of each room to capture the
commands which are issued randomly from different rooms.
This creates a realistic multiroom scenario in which speech
and noise instances can occur in one room and captured by
microphones both in the same and other rooms. As a result,
many of the RIRs we are dealing with in this corpus are
cross-room RIRs with very high reverberation times (T60)
exceeding 1 second. These large reverberation times together
with the variety of noise sources in each scene make for a very
challenging ASR task. In our experiments, we use only one
microphone from each room, limiting ourself to a distributed
array scenario in which no closely-spaced microphones are
available. Table 1 lists the microphones used and the corre-
sponding average reverberation times and SNRs. The corpus
contains a training set (containing 17,000 clean utterances
from 34 different speakers in the GRID corpus), as well as a
development dataset and two test sets. The ASR experiments
reported here are all performed on test set 1. (Further details
on the DIRHA-GRID corpus are provided in [15]).

4.2. ASR experiments

We used HTK toolkit to conduct ASR experiments on the
DIRHA-GRID corpus. We used 13-dimensional MFCCs
along with their delta and double-delta coefficients as speech
features. Cepstral Mean Normalization (CMN) was used in
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Table 2. word error rates in ASR experiments*.

Acoustic
Models

No. of
channels Channel(s) No

Enhancement

SR,
Wiener gain func.

(α = β = 1)

SR,
General gain func.
(α = 2, β = 1.2)

SR,
General gain func.
(α = 2, β = 1.2)
+CNMF/CNTF

Clean-
trained

1 LA2 80.6 77.1 74.7 69.3
1 KA2 81.7 77.2 75.4 71.9
2 LA2+KA2 80.1 76.1 73.8 67.5
4 LA2+KA2+B1L+R1C 78.1 75.2 73.0 62.7

MLLR-
adapted

1 LA2 70.3 67.9 64.6 53.7
1 KA2 73.6 71.9 70.2 60.2
2 LA2+KA2 67.4 64.2 60.6 49.2
4 LA2+KA2+B1L+R1C 68.1 65.1 60.5 42.6

* In multichannel experiments, including CNTF is necessary to combine information from different channels and obtain a
single set of features. Those WERs belonging to multichannel experiments without CNTF have been obtained by simply
selecting the channel with the highest SNR, according to Eq. (13).

all experiments. Using the clean utterances in the training
set, left-to-right HMMs with 12 mixtures per state and a vari-
able number of states (ranging from 3 to 10, based on the
number of syllables) were trained for each of the 51 words
in the speech commands and used as speaker-independent
acoustic models. The front-end processing scheme illustrated
in Fig. 1 was used to obtain features for speech recognition.
A basic GMM-based voice activity detector trained on the
development set was used to obtain VAD information for
all channels, and further refined manually to minimize the
effects of VAD errors on recognition accuracy. The STFT
analysis for each channel uses a Hamming window of length
64 ms, a skip rate of 16 ms, and DFT length of 1024 sam-
ples. For each 1 minute recording in the test set, the channel
spectrograms are first enhanced by the SR-based denoising
algorithm, using 4000 speech exemplars created from the
training set and a variable number of noise exemplars created
using the silence regions in the recording. The noise dictio-
nary for each 1-minute scene is created solely based on the
silence regions within the same scene. The sliding window
used for windowing the spectrograms is of length T = 20
and uses a skip rate of ∆ = 10 frames (both in dictionary
creation and the enhancement of noisy spectra). The activa-
tion values in V(i) were all initialized by 1, followed by 20
NMF iterations (Eq. 8) to obtain the sparse representations.
In the CNTF algorithm, a filter length of LH = 16 was used
for all subband filters H(i)

k (m), which were initialized with
H

(i)
k (m) = 1 − m/2LH , (m = 0, . . . , LH − 1). 20 itera-

tions of the update rules (16) and (17) were used to obtain
an estimate of the clean speech spectrogram. The estimated
amplitudes were then used together with the phase values
from channel 1 (living room channel) to reconstruct an en-
hanced time domain signal, which is finally submitted to a
conventional MFCC extraction unit with a frame length of
25 ms and a frame skip rate of 10 ms.

Table 2 shows the word error rates (WERs) obtained from
ASR experiment on test set 1 from the DIRHA-GRID corpus.
We report recognition results both by using clean-trained
models as well as models that are MLLR-adapted towards the
development set. To facilitate separate analysis of the contri-
bution from each sub-system, we also report WERs obtained
by applying SR-based denoising only (skipping dereverber-
ation). Moreover, we use the SR algorithm both with the
Wiener gain function (i.e., with α = β = 1), as well as
the general gain function of Eq. (12) (values of α = 2 and
β = 1.2 were selected based on experiments performed on
the development dataset). It is observed from the table that
the proposed enhancement method achieves considerable im-
provement in both single-channel and multichannel scenarios.
The relative WER improvements for 1-channel, 2-channel
and 4-channel cases are +13.0%, +15.7% and +19.7% using
clean-trained models and +20.9%, +27% and +37.4% using
adapted models. Note that a considerable improvement is
provided by CNTF in the 4-channel scenario, because in this
case there is a microphone present in all of the 4 rooms (In
single-channel and dual-channel experiments, speech events
may happen in rooms where there is no microphone used,
hence relying only on cross-room recordings).

5. CONCLUSIONS

In this study, we presented a front-end processing strategy for
noise and reverberation robust distant speech recognition in
distributed microphone arrays. The proposed approach is in-
dependent of speaker location and adapts to varying levels
of SNR and DRR among different channels. Using clean-
trained models, relative WER improvements of +13-19.7%
are achieved, with improvements increasing to +20.9-37.4%
when models are MLLR adapted. The proposed enhancement
strategy effectively addresses reverberation and noise in di-
verse smart room scenarios.
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