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ABSTRACT
Much research recently in speaker recognition has been
devoted to robustness due to microphone and channel ef-
fects. However, changes in vocal effort, especially whispered
speech, present significant challenges in maintaining system
performance. Due to the absence of any periodic excita-
tion in whisper, the spectral structure in whisper and neutral
speech will differ. Therefore, performance of speaker ID
systems, trained mainly with high energy voiced phonemes,
degrades when tested with whisper. This study considers a
front-end feature compensation method for whispered speech
to improve speaker recognition using a neutral trained sys-
tem. First, an alternative feature vector with linear frequency
cepstral coefficients (LFCC) is introduced based on spectral
analysis from both speech modes. Next, for the first time a
feature mapping is proposed for reducing whisper/neutral
mismatch in speaker ID. Feature mapping is applied on
a frame-by-frame basis between two speaker independent
GMMs (Gaussian Mixture Models) of whispered and neutral
speech. Text independent closed set speaker ID results show
an absolute 20% improvement in accuracy when compared
with a traditional MFCC feature based system. This result
confirms a viable approach to improving speaker ID perfor-
mance between neutral and whispered speech conditions.
Index Terms:whisper, speaker identification, linear scale
cepstrum coefficients, feature mapping

1. INTRODUCTION

Whisper is an alternative vocal effort style from neutral
speech which can be employed between speakers when con-
veying information a speaker may consider to be personal.
For example, when making a hotel/car reservation over a cell
phone in a public area, a speaker may not want to speak at the
same vocal effort when giving their credit card information.
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Individuals with low vocal capability also employ whisper
for their oral communication. Compared with neutral speech,
whisper has no fundamental frequency because of the absence
of voice harmonic excitation, and formant shifting exists in
the lower frequency region [1][4]. A significantly differ-
ent spectral structure exists between whispered and neutral
speech and therefore presents unique challenges for effective
speaker ID system performance.
Several efforts have been made recently to enhance the

performance of speaker ID systems for the whispered speech
mode. In [3], a whisper speaker ID system achieved 8-33%
relative improvement based on the assumption that a small
amount of whispered speech per speaker is available. How-
ever, speaker dependent whispered training data is generally
not available in real scenarios. A system based on frequency
warping and score competition was introduced in [8], which
offered an initial step forward in addressing whisper/neutral
speech for seamless speaker recognition. However, this ap-
proach was text-dependent, which limits its application in real
applications. In this study, a 19-dimensional modified lin-
ear frequency cepstral coefficients is used as a feature vector
that aims to remove frequency components that generally dif-
fer between whispered and neutral speech, while maintaining
more spectral information that shares similar traits between
both speech modes. Also, feature mapping, which has not
been considered for mismatch in the speech mode for speaker
ID, is applied here to modify the input test data based on
two general UBMs (Universal Background Models) trained
with whisper and neutral speech respectively. The integration
of these two processing stages provides a meaningful step in
developing a seamless speaker ID system for whispered and
neutral speech.
The remainder of this paper is organized as follows: in

Sect.2, a general introduction to the UT-Whisper database is
presented. Second, we introduce the details for spectral com-
parison and feature extraction. Afterward, specific procedures
for feature mapping are explained. In Sec.3, performance
for closed set speaker ID based on the proposed method is
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compared with an MFCC baseline system. Conclusions and a
summary are drawn in Sec.4.

2. DATABASE AND SYSTEM DESCRIPTION

2.1. UT-whisper Corpus Setup

The UT-Whisper corpus developed in [6] and employed in
[8] is also used here. A small sample of neutral and whis-
pered speech was collected from a total of 10 native English
male subjects. Each subject read 10 phonetically balanced
sentences from the TIMIT database in two different speech
modes: whisper and neutral speech. From [6], we also
note that all recordings include pure-tone calibration test se-
quences to provide ground-truth on true vocal effort for all
speakers and sections. Speech data was digitized using a
sample frequency of 16 kHz, with 16 bits per sample. Speech
from all speakers was windowed with a Hamming window of
32 ms, with a 16 ms overlap rate.

2.2. Linear Frequency Cepstrum Coefficient

In [2] and [4], it was shown that the degree of spectral differ-
ence between neutral and whispered speech varies in different
frequency portions. Therefore, for the whisper/neutral mis-
match situation, a feature extraction method which suppresses
the mismatch spectral information while preserving similar
frequency components, will achieve better performance for
speaker ID. In order to find those frequency portions, we an-
alyze both modes across frequency bands.
Since the spectral slope of whispered speech is known to

be more flat [5], the same adaptive pre-emphasizer used in [8]
is also applied here. Also, an LP-based power spectrum was
chosen here instead of an FFT to compute the spectral energy
of each frame. Since one primary difference between neu-
tral and whisper is the voiced excitation, an LP-based power
spectrum has the advantage of characterizing information of
the vocal tract function while suppressing most excitation in-
formation. A 24-band linear-scaled triangular bandpass filter
shown in Fig. 1(a) with LP-based spectral energy as input is
used to obtain a 24 dimensional vector for each frame to rep-
resent the spectral energy distribution. For each speech mode,
a UBM was trained after applying a log function to the vec-
tors from all speech in our corpus. Next, Eq. (1) is used to
fuse the mean of the UBM mixture together to obtain a gen-
eral difference between whisper and neutral speech among
various phonemes,

μ′ =
M∑

m=1

ωmμm. (1)

where M is the total mixture size for the UBM, which is 32
in this study; ωmis the mixture weight of themth component
of UBM; μm is the mean of UBM’s mth component; and μ′

is the fused mean of the UBM. Two fused means for whisper

and neutral speech respectively can be obtained with Eq. (1),
which are both plotted in Fig. 1(b) for comparison. As can
be seen here, the whisper and neutral speech’s spectral energy
share more similarity above 1000 Hz, while there are signif-
icant differences in the lower frequency portion. It is known
that the Mel-scale emphasizes the low frequency portion and
de-emphasizes higher frequencies by placing more filters in
the lower frequency domain, and therefore, fails to take ad-
vantage of this spectral characteristic of whisper and neutral
speech. Hence, a linear scale filterbank is applied here for
feature extraction to retain more higher frequency structure
and we therefore remove the spectral information from 0 Hz
to 1000 Hz, which corresponds to the range covered by the
first 3 filter banks in Fig. 1(a). The cosine transform is then
applied to the log energy obtained from the remaining 21 lin-
ear filters. Only the first 19 coefficients are kept as the fea-
ture vector in the following experiment. It is noted that while
LFCC was discussed here, it has been employed extensively
in other research studies for speaker recognition. The partic-
ular implementation here is modified based on the knowledge
learned between whispered/neutral speech.

Fig. 1. Comparison between fused mean for whisper and
neutral UBM, (a) linear frequency filter bank, (b) resulting
long-term spectral energy present versus frequency

2.3. Feature mapping for whispered speech

A number of feature compensation and mapping techniques
have been proposed for channel compensation [7,9,10]. How-
ever no methods have considered feature mapping for whis-
per/neutral speaker ID. To compensate for the difference be-
tween neutral and whispered speech and further improve the
performance, feature mapping was applied on a frame-by-
frame basis. Compared with other attempts to compensate for
whispered speech based on fixed statistics[1], feature map-
ping has the advantage of addressing the variability of the dif-
ference between whisper and neutral speech among different
phonemes.
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Fig. 2. System flow diagram for close set speaker ID system for whispered speech.

To begin with, all speech from the UT-Whisper corpus
was used to obtain a speaker and speech mode independent
32 mixtures UBM. Next, a speaker independent whisper and
neutral UBM was obtained by adapting that UBM with avail-
able whisper and neutral data, respectively. For observation
vector xt at time t, both the whisper UBM Λw and neutral
UBM Λn are tested. For each UBM, we first compute the out-
put probabilities of each mixture N(xt|μm,Σm, ωm). Next,
the probability of the mth mixture given vector xt will be
given by Eq. (2) as follows:

Pr(m|xt) =
ωmN(xt|μm,Σm, ωm)∑M

m=1 ωmN(xt|μm,Σm, ωm)
, (2)

where μm, Σm and ωm are the mean vector, covariance ma-
trix, and mixture weight of the mth component of the UBM.
In this study, only diagonal covariance GMM is considered.

Pr in Eq. (2) represents the probability that observation
xt can be classified into the cluster of phonemes represented
by the mth mixture. The higher the probability, the higher
the chance that xt belongs to the corresponding cluster of
phonemes. However, most of the time, an observation will
fall between two or even more clusters of phonemes. There-
fore, selecting the one with the highest Pr is not sufficient.
In this study, based on the fact the total mixture size is 32, we
choose the first two mixtures with the highest probabilities
and combine them to obtain a mean and variance to represent
the possible cluster of phonemes for each observation. The
mathematical expectation of the means belonging to the two
highest possible mixtures are calculated according to Eq. (3),

μsi =
∑2

k=1 Pr(k|xt)μk∑2
k=1 Pr(k|xt)

. (3)

In the same way, it is possible to compute a mathematical
expectation of the variance of these two mixtures. Accord-
ing to Eqs. (2) and (3), a speaker independent mathematical
expectation of mean and covariance of observation xt can be

obtained for both the whisper and neutral UBM and are rep-
resented as: μsiw, Σsiw, μsin, and Σsin. In this study, all
test data, represented as xt in the above equations are whis-
pered speech. Hence, when using μsin, and Σsin obtained
from xt and the neutral UBM, we assume that even whis-
pered and neutral speech differs, for the whisper vowel and
vowel-like part, the neutral UBM can still classify the data
to the corresponding neutral phoneme cluster. This assump-
tion is reasonable considering the fact that each vowel has its
unique vocal tract function and the corresponding whispered
speech keeps the basic structure even with some shift in F1,
F2, which is already partly suppressed by our feature extrac-
tion method (since data from 0-1 kHz is removed). As for
the whispered unvoiced consonant frames, because they share
more similarity with the neutral ones [2], no feature mapping
was applied. Fig. 2 illustrates both unvoiced consonant and
vowel-like/vowel based feature processing. In order to map
xt to a new feature vector that compensates for the differ-
ence between neutral and whispered speech, Eq. (4) is used
to modify each dimension of xt,

x
′
tn = xtn + δ, (4)

δ = (μsin
n − μsiw

n )

√
Σsin

n

Σsin
w

. (5)

where n is the dimension index, which ranges from 1 to 19,
Σn is the nth component of the diagonal matrix Σ. Based on
the above analysis, δ can be seen as the speaker independent
difference between neutral and whispered speech particularly
to the cluster of phonemes corresponding with xt. Hence, a
level of compensation was made to map the test whisper data
to neutral speech.

3. EXPERIMENTAL RESULT

As noted in Sec. 2.3, feature mapping was applied only
to the vowel/vowel-like frames of whisper, so the conso-
nant detection method used in [8] was also employed here.
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Also, in order to compare improvement achieved by our
proposed method, a baseline system was developed based
on 19-dimensional static LP-MFCC. Next, 19-dimensional
static modified Linear Frequency Cepstral Coefficients as
presented in Sec.2.2 were used as the second feature vector.
Finally, feature mapping and LFCC were combined together
to demonstrate the potential impact of our method. Again,
Fig. 2 depicts the overall flow diagram for the final system.
Five neutral sentences from the TIMIT database for each
speaker were used to build ten corresponding GMMs. Also,
five whisper utterances from each speaker, different from the
ones corresponding to the neutral training data, were used
for testing. In order to demonstrate reliability of the models
trained with neutral speech, another five neutral utterances
that were not used in training were employed first for testing,
resulting in a 94% speaker ID accuracy.

Table 1. Experimental results from a close speaker set ID
system.
System(trained with neutral) Speaker Recognition rate

Neutral Whisper
MFCC 94% 48%
LFCC x 58%
LFCC+Feature mapping x 68%

Table 1 summarizes the experimental results. The base-
line system using GMMs trained with neutral 19-dimension
static MFCC vectors provides a closed speaker set recognition
rate of 48% using whispered speech. When 19-dim MFCC
was substitute with 19-dim LFCC, a +10% improvement is
observed. If both feature mapping and LFCC are applied,
the resulting system achieves a 68% speaker recognition rate,
which represents +20% improvement over the original base-
line system performance.

4. DISCUSSION AND CONCLUSION

Whisper is an alternative speech production mode that is com-
monly used for communication in public circumstances to
protect personal privacy. However, the performance of tra-
ditional speech systems degrades due to this whisper/neutral
mismatch situation, because of the significant difference be-
tween neutral and whispered speech production.
In this study, a new closed set speaker ID system was es-

tablished based on a modified set of LFCC feature and fea-
ture mapping. Through spectral distribution analysis for both
speech modes with UBMs combined with linear scaled fil-
ter banks, it was observed that whisper and neutral speech
share similarities in the higher frequency range, while they
differ from each other in the frequency range 0 to 1000 Hz.
LFCC was applied as a feature vector in order to preserve
similar information shared between them, while eliminating
those parts that are different (e.g., 0-1 kHz). Feature map-

ping, which has been used for channel compensation, was in-
troduced in this study to help address challenges brought to
speaker ID systems by vocal effort mismatch since it can cap-
ture the difference in variability between whisper and neutral
speech among various phonemes. Feature mapping was ap-
plied only to frames identified as vowel/vowel-like (includes
vowels, diphthongs, liquids, glides), since a difference be-
tween neutral and whispered speech is seen in vowel/vowel-
like part. Using a previously collected corpus, the advantage
of both techniques were shown. With modified LFCC, +10%
improvement was observed and when modified LFCC was
combined with feature mapping, the system achieved an ab-
solute +20% enhancement compared with an MFCC baseline
system.
For future work, it is clear that a larger and more com-

prehensive corpus is needed to demonstrate the repeatability
of the proposed methods in actual speech communication
systems. Yet, the results do represent one of the first advance-
ments in developing a seamless whisper/neutral speaker ID
system, and also confirms the viability of the proposed meth-
ods for improving performance on whisper/neutral speech
conditions.
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