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1 Abstract Workload/ Task

The problem of speech recognition in noisy, stressful environ-
ments is addressed. The main contribution is the achieve-
ment of robust recognition in diverse environmental condi-
tions through the formulation of a series of speech enhance-
ment and stress compensation preprocessing algorithms. These
preprocessors produce speech or recognition features less sen-
sitive to varying factors caused by stress and noise. Recogni-
tion results from four recognition scenarios based on enhance-
ment and stress compensation preprocessing are reported.
Neutral, stressful, noisy neutral, and noisy stressful speech
styles are considered. Noise reduction is based on constrained
iterative speech enhancement [1,2]. Stress compensation al-
gorithms are based on formant location, bandwidth, and in-
tensity. Enhancement preprocessing increases recognition by
+34% for neutral speech, 18% for stressed speech. Combined
stress compensation, speech enhancement preprocessing in-
creases recognition rates by an average +27% (e.g., +43%
loudly spoken speech, +42% speech spoken under Lombard
effect). As a result, combined speech enhancement stress
compensation preprocessing has been shown to be extremely
effective in reducing the effects caused by stress and noise for
robust automatic recognition.

2 Introduction

Previous studies in speech recognition have largely been di-
rected at issues such as speaker restrictions, type of speech,
and vocabulary size. There has been great interest, but lim-
ited progress in addressing the issue of diverse environmental
conditions for speech recognition. This is due in part to the
fact that past approaches such as dynamic time warping or
hidden Markov modeling (HMM) have largely been applied
in noise free tranquil environments. Studies have shown that
recognition accuracy is severely reduced when speech is ut-
tered in a noisy, stressful environment. If recognition is to be
successful in such diverse environments, (e.g., pilots in aircraft
cockpits, wheelchair control for the disabled, factory use for
assembly lines), changing environmental conditions such as
noise and stress must be taken into account.

The direction taken in this research has been the develop-
ment of robust enhancement and stress compensation prepro-
cessors. These preprocessors take advantage of past recog-
nition techniques formulated in noise free tranquil environ-
ments by producing speech or recognition features which are
less sensitive to varying factors such as stress and noise. The
overall system configuration, illustrated in Figure 1, indicates
three factors which affect speech entering the recognition sys-
tem. First, background noise will have a degrading effect on
the speech signal. Second, since the speaker is able to hear
the background noise, he may alter his speech characteris-
tics in an effort to increase communication efficiency over the
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Figure 1: System environment for recognition of speech under noisy, stressful
conditions.

noisy medium (i.e., the Lombard effect). Lastly, the perfor-
mance of any secondary task may also affect characteristics
of an operator’s speech production system.

Formulation of a solution requires the achievement of two
goals. The first is to improve performance of recognition algo-
rithms in noisy environments. A new set of constrained itera-
tive speech enhancement algorithms were formulated for this
purpose (ICASSP-87 (1], ICASSP-88 [2]), and function as en-
hancement preprocessors to reduce background noise prior to
recognition. Section 3 discusses the enhancement algorithms
used in this evaluation. The second goal is to improve recog-
nition capabilities of speech produced under stressful condi-
tions. To accomplish this, speech parameters most affected by
environmental conditions must be identified. Section 4 sum-
marizes results from a comprehensive investigation of speech
under stress. Stress in this context refers to the result of fac-
tors which act on the speaker from environmental conditions
(e.g., workload stress, background noise as in the Lombard ef-
fect, etc). This evaluation motivated the formulation of stress
compensation preprocessing algorithms presented in Section
5. The final goal of robust recognition in noisy stressful en-
vironments is addressed in Section 6.

3 Constrained Iterative Enhancement
The set of speech enhancement algorithms under consider-
ation were previously developed for improving both speech
quality and all-pole speech parameter estimation [1,2]. The
algorithms are based on sequential two step maximum a pos-
teriori (MAP) estimation of the all-pole speech parameters @
and noise free speech waveform Sp. In order to improve pa-
rameter estimation, reduce frame to frame pole jitter across
time, and provide a convenient and consistent terminating
criterion, a variety of spectral constraints were introduced be-
tween MAP estimation steps. These constraints are applied
based on the presence of perceptually important speech char-
acteristics found during the enhancement procedure. The
enhancement algorithms impose spectral constraints on all-
pole parameters d; across time (inter-frame) and iterations
(intra-frame) which ensure that; i) the all-pole speech model
is stable, ii) it possess speech-like characteristics (e.g., poles
are not too close to the unit circle causing narrow band-
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widths), and iii) the vocal tract characteristics do not vary
wildly from frame to frame when speech is present. Due to
the imposed constraints, improved estimates of &1 result. In
order to increase numerical accuracy, reduce computational
requirements, and eliminate inconsistencies in pole ordering
across frames, the line spectral pair (LSP) transformation was
used to implement most of the constraint requirements. This
method allowed constraints to be efficiently applied to speech
model pole movements across time so that formants lay along
smooth tracks. In addition, constraints are also easily ap-
plied across iterations on a frame-by-frame basis. Figure 2
illustrates the enhancement framework.

These algorithms were shown to be preferable to exist-
ing techniques in several respects. First, results based on
objective speech quality measures show that the current sys-
tems result in substantially improved speech quality and LPC
parameter estimation over past techniques. Second, the en-
hancement algorithms have been shown to perform well on
non-stationary colored noise. Third, the current algorithms
have been shown to possess a much more consistent termi-
nating criterion. Specifically, the optimum terminating itera-
tion was shown to be consistent over all speech sound classes,
and virtually all tested SNR’s, giving a simple procedure for
termination of the algorithm. Finally, the constrained algo-
rithms have been shown to be superior in estimating LPC
parameters as measured by distance measures normally used
for LPC parameters (log-area-ratios, Itakura-Saito distances,
etc.) Estimation of the vocal-tract response is also substan-
tially better in the current systems. This represents an impor-
tant feature in preprocessing for robust recognition. Detailed
discussions of these algorithms can be found in [1,4,5].
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Figure 2: Framework for the class of constrained enhancement algorithms.

4 Analysis of Speech Under Stress

The next step is to identify which speech parameters are most
affected by environmental conditions such as stress or noise.
Previous research directed at this problem has generally been
limited in scope, often suffering from one to five problems.
These include: i) limited speaker populations, ii) sparse vo-
cabularies, iii) qualitative results with little statistical confir-
mation, iv) limited numbers and types of speech parameters
considered, and v) analysis based on simulated or actual con-
ditions with little confirmation between the two. In order to
address these issues, a comprehensive investigation was per-

formed to reveal new and statistically reliable acoustic cor-
relates of speech under stress [3,5,6]. Careful planning was
necessary in formulating and collecting a speech under stress
data base for analysis. Table 1 illustrates the five domains
of the data base. A total of 32 speakers were employed to
generate in excess of 16,000 utterances. The data base was
partitioned into two areas for analysis, i) simulated stress
or emotional conditions and ii), actual stressed conditions or
effects caused by noise. Speech parameter domains consid-
ered in the analysis include characteristics of pitch, glottal
source spectrum, duration, intensity, and vocal-tract shaping
(approximately 200 speech parameters were considered). Ex-
tensive statistical evaluations were performed to identify the
significance of variations in average, variance, and distribu-
tion of each parameter. Results show that characteristics of
the pitch period represent some of the best stress discrimi-
nating parameters. Glottal source characteristics (e.g., spec-
tral tilt, average spectral energy), resulted in wide variations
across stress styles. Finally, first and second formant loca-
tion and bandwidth parameters, along with the variability
of these, were very reliable stress indicators, especially for
vowels. Further discussion can be found in [3,5,6].

Speach Under Stress Data Base
Georgia Institute of Tuchnology
School of Elactrical En T
Tomain | Type of Siress | Number of | Nember of Sowree
or Emation Speakers | Utterances
Prychintric Depression © Femala, 00 Eaory Univarsity
Analysis Fear, Anger 2 Male (present) School of Madicine
Anxisty of Peychiatry
Talking slow, fast All Male 8830 Lincoln Labs
Styles soft, Joud 3 General (total) Boston, Mass,
angry, claar | 8 New York 36 aircradt
queation 3 Boston words
Single ‘orkload Al Male 1890 Lincoln Labs
Tracking | (moderate-C50) (total) Callbrated Workload
Lombard
Dual Workioad 4 Famals 4320 Georgis Tech
Tracking (woderate) 4 Male (total) Acquisition tracking
Task (high) < ory tracking
Subject G-force 3 Femals 400 Georgia Tach
Motion-Fear | Lombard,nojse 4 Male (total) Controlled Mothon
Tasks anxiety,fear Noiay E:

Table 1: The Georgia Tech Speech under Stress Data Base.

5 Stress Compensation Algorithms

The motivation for the analysis of speech under stress was
to uncover those acoustic correlates which vary under stress-
ful conditions. Variation in these parameters may suggest a
possible explanation for adverse recognition performance in
diverse environments. The previous investigation explored
areas of speech production which traditionally have not been
associated with present day recognition algorithms. The rea-
sons for this are twofold. Firat, it may be possible to improve
existing recognition algorithms by allowing preprocessors to
reduce or eliminate parameters which are affected by stress.
Although the effects of some parameters (i.e., pitch, dura-
tion, intensity) are somewhat mitigated in many recognition
procedures, severe variations do adversely affect recognition
performance (e.g., HMM recognizers have certain “time con-
stants” which tolerate only a limited degree of duration vari-
ability). Other stress analysis parameters such as character-
istics of glottal source spectrum (spectral tilt, energy distri-
bution) and vocal-tract (formant center frequencies, band-
widths, spectral tilt, and the variability of these) have di-
rect consequences in recognition performance. Second, other
stress relaying parameters not used for recognition, may be
used to reliably identify when an utterance is under stress so
that appropriate stress compensation can be employed.
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A set of stress compensation algorithms were formulated
based on results from three stress analysis domains. These
approaches assume the stress condition {e.g., loud, angry,
clear, etc.) to have already been identified. The algorithms
are based on obtaining a table of compensation factors for
all phonemes, for each stress condition. The three possible
processing steps include: i) compensate for average formant
location (F1,F2,F3,F4), ii) compensate for average formant
bandwidth (B1,B2,B3,B4), iii) and compensate for overall
word intensity. In order to calculate formant location and
bandwidth values, root solving and pole ordering of the LPC
polynomial for each speech frame was performed. To reduce
the variance of average formant location and bandwidth es-
timates, a smoothing operation was performed prior to cal-
culation of average formant values. This served to improve
the estimation of average values by reducing the effects of
outlying values caused by misclassification during ordering.
Formant compensation factors were obtained by taking the
ratio of average formant values between neutral and stressed
conditions. Parametric and non-parametric statistical tests
were used to verify significance of variation in formant char-
acteristics. Table 2 presents sample compensation factors for
average formant location and bandwidth used for the angry
stressed condition. As an example, consider the compensa-
tion for the vowel /e/. The term F1 (= 0.63), was used to
decrease all first formant locations for phoneme /e/ under an-
gry conditions. The average first formant location will then
have the same average value as that found in neutral condi-
tions. This process was repeated for each formant location
and bandwidth. A similar table was obtained for each of
the ten stress conditions. Once the compensation tables are
known, preprocessing stress compensation algorithms were
implemented. Two additional points are necessary. First,
unlike the fully automated constrained speech enhancement
algorithms summarized in Section 2, the stress compensa-
tion algorithms require both knowledge of the type of stress
and phoneme boundaries in order to apply compensation fac-
tors. Further research is underway to incorporate general
stress compensation within the constrained enhancement al-
gorithms, thereby removing this requirement. Second, as
demonstrated in [1], such compensation schemes could eas-
ily be extended to LSP parameters, and therefore integrated
within the speech enhancement algorithms. This particular
approach was chosen since computational requirements were
not at issue, and that shifts in formant location and band-
width gave a more intuitive feel for how the vocal-tract spec-
‘trum was being adjusted.

6 Recognition Framework & Results

Advances made in the analysis of speech under stress and
speech enhancement domains are joined to address the final
goal of recognition in noisy stressful environments.

A fairly standard, isolated-word, discrete-observation hid-
den Markov model recognition system was used for evalu-
ation. This system was LPC based and had no embellish-
ments. In all experiments, a five state, left-to-right model was
used. System dictionary consisted of twenty highly confusable
words from the second and third domains of the speech un-
der stress data base. These words are also used by Texas
Instruments and Lincoln Labs to evaluate recognition sys-
tems. Subsets include {go, oh, no}, {six, fix}, and {wide,
white}. Thirty-two examples of each word were used in the
evaluation, six neutral examples for training, six neutral ex-
amples for recognition, and two examples for each of the ten
stressed speaking styles (i.e., soft, loud, etc.) for recognition
(i.e., all tests fully open employing a neutral trained HMM
system). A vector quantizer was used to generate a 64 state
codebook using two minutes of noise free, neutral training
data. The twenty models employed by the HMM recoghnizer
were trained using the forward-backward algorithm.

Figure 3 illustrates the recognition scenarios in the eval-
uation. Results from each are summarized in Figure 4. The
first four evaluations establish baseline recognition scores for
neutral, stressful, noisy neutral, and noisy stressful speech
conditions. The recognition rate of noise free neutral speech
(88%) confirms the confusability of the chosen vocabulary.
Independent evaluations of this system with distinct vocabu-
laries resulted in recognition rates of 100% [5]. Baseline scores
indicate that stress, with and without background noise, has
a profound effect on recognition performance. Recognition
rates dropped by an average 31% for stressful speech, with
an additional 19% for noisy stressful speech. Thus indicating
that recognition degrades rapidly whether a speaker is under
stress, in noise, or a combination.

The fifth recognition scenario employed enhancement pre-
processing of noisy neutral speech. In ICASSP-88[2], the
constrained enhancement algorithms were shown to be su-
perior to implementations of past enhancement techniques
(e-g., spectral subtraction, noncausal Wiener filtering) in pre-
processing for recognition of noisy neutral speech. There-
fore, only the constrained enhancement techniques are con-
sidered here. The constrained enhancement algorithm used
(FF-LSP:T,Auto:I) was based on fixed-frame constraints ap-
plied across time, and constraints applied to autocorrelation

A £3 TOR lags across iterations (see [1,5] for further discussion). The
2 BS . . - . N iy
Cutegory Phoneme | FI_F¢ F5 F | Bt B 4 noise degradation was additive white Gaussian, with SNR’s
CONSONANTS
nasals N/ 74 104 98 101 ] 71 133 141 139 1. 2.
stops
iced: /D, 92 6 102 98 {136 81 .65 88 WEUTRAL
un::::d: §K§ 9 99 102 102 | B4 53 8T 80 recoanmion m neocauTon
whioper /B a5 &% L4 97 @6 ta  e1 . (Fond) . (D)
offricates /TSH/ 127 B3 102 101 | % 106 102 108 ) -
s 5 :
voiced:  /THf 134 106 105 102103 110 76 1.0 SYSTEM
unvoicsd: _/S/ 88 93 101 107 (128 73 96 93
VOWELS = HWW
drony:  fIY, 70 93 96 9B | 60 138 100 . .““,,,m,,, coupenEATIGN
mid: _fe/ ! 6 93 97 g5 | 6t 9¢ 68 115 PAEPROCSSSOR SYSTEW
DIPHTHONGS
oUf [ & o4 100 101] 28 136 149 113 .
SEMIVOWELS STRESS COMPENSATION
Lquid: W/ [103_ 161 105 100136 135 112 .93 e T
Tabie 2: Sample compensation factors for average formant location (F1,F2,F3,F4) Figure 3: Robust upeéch iti employing enh andfor

and bandwidth (B1,B2,B3,B4} for angry spoken speech.
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determined over entire utterances. A 34% increase in recog-
nition was observed for enhanced neutral speech. For the
sixth recognition scenario, the same enhancement preprocess-
ing was employed for noisy, stressful speech. Recognition
rates significantly increased for all types of stress (an aver-
age +17.8%). It should also be noted that SNR's in low
energy consonantal portions which discriminate confusable
pairs (e.g., “go - oh - no”) may well be 20 dB lower then
global SNR measurements. The enhancement preprocessors
are therefore successful in reducing background noise as well
as reducing some vocal-tract variations caused by stress.

Next, stress compensation preprocessing of noise free stress-

ful speech was considered. Three stress compensation al-
gorithms were evaluated, i) average formant location com-
pensation (FL), ii) average formant bandwidth compensation
(FB), iii) combined formant location and bandwidth compen-
sation (FL+FB). All compensators included intensity com-
pensation. Figure 4 presents results from these evaluations.
Collectively, nine of the ten stressed conditions benefited from
stress compensation. FL+FB is preferable for varying vocal
effort (soft,loud) and angry speech (half of all recognition er-
rors were eliminated). Stress compensation did not improve
recognition performance for the clear speaking style, thereby
suggesting that other stress factors (beside formant location
and bandwidth) should be considered. Finally, for speech un-
der the Lombard effect, FB compensation provided the best
recognition improvement (+13%). Overall recognition perfor-
mance was consistent across varying stress styles, indicating
the success in reducing effects caused by stress.
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The final recognition evaluation combined enhancement
and stress compensation preprocessing. In half of the noisy
stressful conditions, compensation did not appreciably raise
recognition rates over enhancement preprocessing alone, thus
suggesting that either enhancement preprocessing has the
performed necessary stress compensation, or that other forms
of compensation are required. Improvement was observed in
several key stress styles {e.g., loud, angry, Lombard). In-
creased recognition ranged from +22% to +27% over en-
hancement preprocessing alone, and +35% to +43% over
original noisy stressful speech. These results are encourag-
ing, since recognition in loud, angry, and Lombard conditions
are most closely associated with speech from actual noisy
stressful environments (such as an aircraft cockpit). The
graph in Figure 4 summarizes the best combined enhance-
ment, stress compensation preprocessing results. A cursory
inspection reveals consist recognition performance over vary-
ing noisy stress conditions, thereby indicating the effective-
ness of preprocessing robust speech recognition.

7 Conclusions

The problem of speech recognition in noisy, stressful environ-
ments has been addressed in this paper. A series of speech en-
hancement and stress compensation preprocessing algorithms
were formulation which produce speech or recognition fea-
tures which are less sensitive to varying factors caused by
stress and noise. Previous results have shown the constrained
enhancement algorithms to improve recognition performance
for neutral speech over past enhancement techniques for a
wide range of SNR’s. Enhancement preprocessing also results
in marked increases in recognition under noisy stressful con-
ditions. Stress compensation techniques (based on formant
location, bandwidth, and intensity), have been shown to re-
duce the effects of stress present in changing vocal-tract char-
acteristics, thereby improving recognition of noise free stress-
ful speech. Finally, combined stress compensation, speech

enhancement preprocessing increased recognition rates by an
average +27% (e.g., +43% loudly spoken speech, +42% speech
spoken under Lombard effect). In conclusion, combined speech
enhancement and stress compensation preprocessing has been

-shown to be extremely effective in reducing the effects caused
by stress and noise for robust automatic recognition.

This research sponsored in part by DoD.
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