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Morphological Constrained Feature Enhancement 
with Adaptive Cepstral Compensation (MCE-ACC) 
for Speech Recognition in Noise and Lombard Effect 

John H. L. Hansen, Senior Member, IEEE 

Abstract- The use of present-day speech recognition tech- 
niques in many practical applications has demonstrated the need 
for improved algorithm formulation under varying acoustical 
environments. This paper describes a low-vocabulary speech 
recognition algorithm that provides robust performance in noisy 
environments with particular emphasis on characteristics due 
to the Lombard effect. A neutral aod stressed-based source 
generator framework is established to achieve improved speech 
parameter characterization using a morphological constrained 
enhancement algorithm and stressed wurce compensation, which 
is unique for each source generator across a stressed speaking 
class. The algorithm uses a noise-adaptive boundary detector to 
obtain a sequence of source generator classes, which is used to 
direct noise parameter enhancement and stress compensation. 
This allows the parameter enhancement and stress compensation 
schemes to adapt to changing speech generator types. A phonetic 
consistency rule is also employed based on input source generator 
partitioning. Algorithm performance evaluation is demonstrated 
for noise-free and nine noisy Lomhard speech conditions that 
include additive white Gaussian noise, slowly vr~ying computer 
fan noise, and aircraft cockpit no&. System performane is 
compared with a traditional diserete-observation recognizer with 
no embellishments. Recognition rates are shown to increase from 
an average 36.7% for a baseline recognizer to 74.7% for the 
new algorithm (a 38% improvement). The new algorithm is also 
shown to be more consistent, as demonstrated by a decrease 
in standard deviation of recognition from 21.1 to 11.9 and a 
reduction in confusable word-pairs under noisy, Lombard-effect 
stressed speaking conditions. 

I. INTRODUCnON 

N IMPORTANT problem that has become increasingly A evident as speech recognition technology matures is the 
ability of recognition algorithms to perform reliably under 
diverse, noisy, stressful conditions. One application for recog- 
nition is in military aircraft and helicopter cockpits. Studies 
have shown that recognition accuracy is severely reduced 
when speech is uttered in aircraft cockpit environments [34], 
[45]. Since the majority of past recognition algorithms assume 
noise-free, tranquil environments, recognition rates have been 
observed to decrease by as much as 60% under noisy, stressful 
conditions [12]. Factors that affect such speech entering a 
recognizer include additive background noise, Lombard effect, 
and task stress. Since the speaker is able to hear background 
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noise, he will alter his speech characteristics in an effort to 
increase communication efficiency over the noisy medium 
(which is known as the Lombard effect [33]). Therefore, 
reliable recognition in such environments requires more than 
simply canceling additive acoustic noise. 

In earlier studies, Hansen and Clements [20], [12], [13] 
considered an analysis of vocal tract and speech parameters 
under stressful conditions, including the Lombard effect. These 
results show that when a talker experiences the Lombard 
effect, the following occur: 
i) Average bandwidths decrease for most phonemes. 

ii) Formant locations for vowels increase. 
iii) First formant locations increase for most phonemes. 
iv) Formant amplitudes increase, producing increased spectral 

These findings were supported in an independent study by 
Stanton et al. [47]. In [21], it was demonstrated that speech 
enhancement preprocessing could improve recognition rates 
of a traditional isolated-word speech recognizer. However, 
such processing does not address changing speech production 
effects brought on by the Lombard effect. In [22], a speech 
recognition algorithm was introduced that incorporates stress 
compensation and iterative speech enhancement steps for 
robust recognition. Compensation was performed on formant 
location and bandwidth over labeled phonemes. Recognition 
rates increased by 42% for noisy Lombard conditions, demon- 
strating the usefulness of such vocal tract perturbations during 
recognition. Since labeling phonemes in noisy recognition 
scenarios is impractical, altemate algorithms are needed. Other 
approaches to speech recognition in stress or noise include 
multistyle training [31], nonlinear spectral subtraction [32], 
neural network-based stress equalization [8], altemate distance 
metrics for recognition in noise [35], and others [24], [43], 
[401, [481, [25l. [61, Wl. 

In another study, Chen [7] proposed a method where each 
mel-cepstral recognition parameter is assumed to be contam- 
inated by an additive deterministic component, resulting in a 
constant stress vector for an entire word. Earlier analysis of 
speech under stress, however, suggests that vocal-tract varia- 
tion due to the Lombard effect is not uniform over an entire 
utterance. Significant duration variation also suggests nonuni- 
form spectral variation of isolated words [12]. In studies by 
Hansen and Bria [17], [4], [18], it was shown that mel-cepstral 
parameters vary differently over an entire word under Lombard 

tilt (especially true for sonorants). 
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Fig 1 General framework for the introduction of noise and the Lombard effect and processmg employed by the MCE-ACC-HMM Ypeech 
recognition algonthm 

condition. Initial results from an improved compensated mel- 
cepstral-based recognizer demonstrated improvement in recog- 
nition employing a single voiced and unvoiced compensator 
across an utterance. In this paper, an algorithm for adaptive 
cepstral compensation with morphological-based constrained 
enhancement is formulated for isolated-word recognition in 
noise and the Lombard effect. The general framework for 
introducing noise and Lombard effect/stress and the basic 
processing for robust speech recognition is shown in Fig. 1. 
The recognition approach is based on a source generator 
framework for stress modeling [16]. In Section 11, we discuss 
the database used for these studies and illustrate the effects of 
stress and noise on recognition. Section I11 briefly considers the 
effects of noise and the Lombard effect on speech recognition 
parameters, which motivates the proposed algorithm. Section 
IV presents the algorithm formulation, followed by algorithm 
performance in Section V. 

11. SPEECH RECOGNITION IN 
NOISE AND THE LOMBARD EFFECT 

A. SUSAS Stressed Database 

The studies conducted in this research were based 
on data previously collected for analysis and algorithm 
formulation of speech recognition in noise and stress. 
This database is called speech under simulated and actual 
stress (SUSAS) and has been employed extensively in the 
study of how speech production and recognition vanes 
when speaking during stressed conditions [20], [12], [13], 
[15], [18]. SUSAS consists of the following five stress 
domains: 
i) psychiatric analysis data (speech under depression, fear, 

ii) talking styles' (slow, fast, soft, loud, angry, clear, question) 
iii) computer tracking task or speech produced in noise (Lom- 

anxiety) 

bard effect) 

1 Approximately half of the SUSAS database consists of style data donated 
by Lincoln Laboratories 171. [311, 1401. 

iv) dual tracking computer task 
v) subject motion-fear tasks (G-force, Lombard effect, noise, 

The database offers a unique advantage for analysis and design 
of speech processing algorithms in that both simulated and 
actual stressed speech are available. A common vocabulary 
set of 35 aircraft communication words make up over 95% of 
the database. These words consist of mono and multisyllabic 
words that are highly confusable. Examples include /go-oh- 
no/, /widewhite/, and /six-fix/. A more complete discussion 
of SUSAS can be found in the literature. 

The subset of data for this study consists of neutral training 
and test data and speech under the Lombard effect. Speech data 
under the Lombard effect was produced by having speakers 
listen to 85 dB SPL pink noise binaurally while uttering test 
tokens (i.e., all tokens are noise free). Data used in this study 
consist of three adult male speakers, all sampled at 8 kHz 
using a 16-bit AD converter. 

fear). 

B .  Effects of Stress and Noise on Recognition 

It is known that talkers vary their speech characteristics 
when speaking in a noisy environment. For example, overall 
speech level as a function of external noise level has been 
shown to rise at the rate of 0.3 dB/dB noise to 1.0 dB/dB 
noise, depending on noise level and the specific task assigned 
to the speaker [11], [41]. Speakers also tend to vary those 
factors related to speech clarity when presented with external 
noise. It has also been shown that auditory fatigue consisting 
of temporary modifications in hearing can be caused by 
prolonged exposure to noise [27], 1461. Studies show that 
even a slight and transient auditory fatigue gives rise to 
a clear reduction in intelligibility and the rate of correct 
lexical decision making when speech is transmitted at low 
levels with masking noise. It is also known that recognition 
algorithms formulated for noise-free tranquil environments 
perform poorly when operating in noise. It is suggested that 
auditory fatigue reduces the ability of the auditory system to 
properly process speech in noisy environments; whereas it is 
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STRESSFUL SPEECH RECOGNITION RESULTS t 
Condr1:oii N SI F So L A C Q C50 C70 Loiu 
Stressful, Noise-free 88% 60% 66% 48% 60% 20% 68% 76% 63% 63% 63% 

FF-LSP:T, Auto:I 83% 

Stressful, Noisy 49% 46% aa% 33% 18% 16% 40% 28% 35% 39% 28% 

TABLE I 
RECOGNITION PERFORMANCE OF STRESSFUL SPEECH, NOISY STRESSFUL SPEECH, AND NOISY STRESSFUL SPEECH 

USING A TANDEM CONSTRAINED ITERATIVE ENHANCEMENT AND STRESS COMPENSATION PREPROCESSING 

AoglO StDevlO 
57.5% 15.35 
30.3% 9.12 

plus FL/FB/FL+FB I I 61% 53% 63% 61% 60% 58% 56% 56% 66% 70% 11 57.2% I 5.69 

Speaking S i g h  Keg: 
N - neutral . F - famt L - Loud C - elear C50 - Moderate Ihsk Condition Lom - Lombard effect 
SI - slow so - soft A - angry Q - quation C70 - High Task Condition noise condition 

suggested that speech recognition systems fail in noise because 
they are either unable to overcome the statistical variation of 
speech parameters in noise or unable to extract only those 
features that reflect noise-free speech production. 

To illustrate the effects of stress and noise on recognition 
performance, a baseline hidden Markov model recognizer 
(VQ-HMM) was tested using data from the SUSAS database. 
Recognition* rates for 11 stressed speaking styles are shown in 
Table I. The baseline VQ-HMM recognizer is described later 
in Section V. Under noise-free stressed speaking conditions, 
recognition rates decrease by an average of 31% (i.e., from 
88% for neutral to AVGlO =57.5% for stressed). When 30- 
dB additive white Gaussian noise is introduced, the average 
recognition rate decreases by 58% (i.e., from 88% for noise- 
free neutral to AVGlO =30.3%). Recognition performance 
also varies considerably across noise-free and noisy stressed 
speaking conditions as reflected in the large standard deviation 
in rate of recognition (STDEVIO =15.35, 9.12 for noise 
free and noisy stressed conditions). Recognition performance 
therefore seriously degrades in the presence of noise and/or 
stress. 

111. PARAMETER ANALYSIS IN NOISE AND LQM~ARD EFFECT 
Let s’ be a sample vector of noise-free neutral speech in 

a sample space Ys. Let the sample space Y. consist of 
J independent and mutually exclusive random speech type 
sources, 

s‘E Ys : {yj; j = 1 ,2 , .  . . , J } .  (1) 

Here, the collection of generators ?span the entire source gen- 
erator space and could represent isolated phonemes, diphone 
pairs, or a temporal partition of detected speech sections. Let 
f be a sample vector from some source generator yj, which 
is corrupted by an additive noise vector d 

Here, the effect of additive noise on characteristics that con- 
tribute to speech quality or intelligibility will depend on the 
specific source generator -yj. Next, we consider the effects of 
stress on speech production for the observation vector X It 
is known that the presence of stress will cause changes in 

’The term ‘recognition’ rate is used in this context with the understanding 
that no rejection or deletion was allowed by any of the recognizers. Other 
studies may refer to this as a ‘substitution’ me. 

phoneme production with respect to intensity, duration, and 
spectral shape. Let this change be represented by a change in 
the speech source generator from y3 to @ [ T ~ ] % ,  corresponding 
to the zth-type stress generator class for speech type y j 3  

(3) 

where j = 1,. . . , J spans the number of possible source 
generators, and i = 1, . . . , I spans the domain of stressed 
speech classes. The resulting noise corrupted stressed speech 
vector is 

s’E Ys : {@[y3Iz; 3 = 1 ,2 , .  . . , J ;  2 = 1 ,2 , .  . . ,I} 

! k % I .  = S7tra1. + d’ (4) 

where the level and type of noise dwill effect specific variation 
in speech production under a given stress condition. 

Next, consider a speech parameterization of each vector s’,,> , 
&:, s’,p[7,1., corresponding to noise-free neutral, 
noisy neutral, noise-free stressful, and noisy stressful speech. 
At this point, we consider a statistical parameter analysis of 
these vectors to determine how noise and/or stress influences 
the set of speech source generators. The first 10 mel-cepstral 
parameters c k ,  k = 0, 1, . . . , 9  were estimated in a manner 
similar to those in [9]. Each speech vector C,, is obtained using 
a 32-111s Hamming window with subsequent vector frames 
overlapping by 16 ms. Nineteen triangular band-pass filters 
are formed, centered at the following mel-scale frequencies: 
m, = 2595 . log,, [l + A]. The output log energy for 
each is obtained as X,, 3 = 1,2, .  . . ,19, and 10 mel-cepstral 
parameters ck are computed as the symmetric cosine transform 
of these energy values 

A representative set of source generators were selected for 
statistical parameter analysis. Although the notion of stressed 
induced source generators is general, the present study will 
focus on stress associated with the Lombard speaking condi- 
tion. Fig. 2 illustrates how the Lombard effect causes changes 
in spectral content, duration, and intensity on recognition 
parameters for the word “degree.” The figure shows time 
evolution of the relative magnitudes of mel-cepstral parameters 

’Here. the 1 1  stressed speaking styles from Table I are considered to 
represent a finite set of stressed speech source generator classes. 
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Fig. 2. Time evolution of normalized mel-cepstral coefticien! variation for the word “degree” under noise-free neutral and Lombard effect speaking 
conditions. The key reflects the relative change in mel-cepstral parameter across time, where + I  and -1  represent the maximum positive and negative 
parameter values across time. 

for each speaking style? It is clear that individual phoneme 
duration, as well as changes in the spectral magnitude, vary 
considerably across the isolated word. These results are further 
supported by earlier statistical studies on the variation of 
speech production under stressed speaking conditions [ 121. 
This suggests that a given stress class, S[ . ] i  will nonuniformly 
influence the sequence of speech-type source generators rj ( t )  
needed to produce an isolated word. 

4The magnitude of each mel-cepstral parameter has been normalized with 
respect to the maximum and minimum value of coefficient r~ across the 
utterance. 

To verify this, a statistical parameter analysis was performed 
on mel-cepstral parameters for long duration phonemes (i.e., 
vowels, nasals, fricatives, etc.). The analysis was conducted 
on four data sets: 
i) noise-free neutral s‘ 

ii) noise-free Lombard S Q [ ~ , I ,  

iii) noisy neutral &> 
iv) noisy Lombard S;.[r,l,. 
Additive white Gaussian noise at a SNR of 6 dB is introduced 
into both neutral and Lombard effect speech to obtain noisy 
vectors. All isolated phoneme speech types were hand labeled 
for statistical data analysis. Vectors of mel-cepstral parameters 
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TABLE I1 
STATISTICAL CHARACTERIZATION OF THREE SPEECH SOURCE GENERATORS y, BETWEEN NEUTRAL AND LOMBARD EFFECT 

SI'RESS CLASSES IN NOISE-FREE AND NOISY CONDITIONS (6 dB ADDITIVE WHITE GAUSSIAN NOISE). SOURCE GENERATORS ARE 
PARAMETEREFXI USING MEL-CEPSTRAL PARAMETERS. THE ESTIMATU) MEAN AND VARlANCE RATIOS, STUDENT'S T TEST, F TEST, AND 

KOLMOGOROV-SMIRNOV TESTS ARE SHOWN. 0 INDICATES A STATISTICALLY SIGNIFICANT VARIATION FROM NOISE-FREE OR NOISY NEUTRAL. 

Cs 1.56 0.42 0 

CS 1.00 0.78 
C4 1.09 0.78 
Cs 0.61 1.85 
Cs 0.29' 0.90 o 
C, 0.08 0.49 0 

CO 0.34 0.86 

- 
KS - 
0 

0 

0 

- - 

- 
KS - 
0 

072 108  
1.82 0.47 o 
1.74 1.01 o 

-2.09 1.94 0 

-10.7 1.48 0 

-1.09 1.70 0 

5.20 1.70 o 

-20.5 0.w o 

rERIZATION OF NOISE FREE SOURCE GENERATORS 
IN I II 

IN I 

CI 062 0 5 1  

were extracted over labeled sections from the the SUSAS 
database corresponding to individual source generators. The 
mean m2,3,k, variance U& and distribution jz (s ,3) (sz ,3 ,k)  of 
each source generator were estimated corresponding to stress 
class i, speech generator j ,  and model parameter k. The ratio 
of source generator means and variances between neutral and 
Lombard effect speaking style in both noise-free and noisy 
conditions were found for each mel-cepstral parameter ck 

E[Ck I stress class = Lombard,y,] 
Pm(3' k, = E[Ck I stress class = Neutral, y,] 

ljlCr ( i  = Lom,j) 
ljlcr ( i  = Neu, j )  

- - 

VAR[Ck I stress class = Lombard,yj] 
P,.(j, k) = VAR[Ck I stress class = Neutral, yj] 

6& ( i  = Lom, j )  
6& ( i  = Neu, j )  ' 

- - (7) 

In (6),  ljlck ( i  = Lom,j) corresponds to the estimated 
mean of mel-cepstral parameter IC for speech source j under 
the Lombard effect, and ljlch ( i  = Neu,j) corresponds 
to estimated mean for neutral speaking conditions. Here, 
unknown parameters are assumed to be Gaussian distributed. 
The estimated variance of mel-cepstral parameter k for speech 
source j under neutral and Lombard styles is U;, (i = Neu, j )  
and u&(i = Lom,j). 

Table II summarizes ratios for three source generators in 
noise-free and noisy conditions. The Student's T test, F test, 

KS C; x - Pm 

-4.29 
1.73 
0.99 
1.78 
6.44 

-1.69 
-0.77 
-1.10 
-1.57 

so1 

- 

- - 
- 

0.98 
0.81 
1.51 o 
1.31 o 
1.72 
1.09 
1.91 

0 0  

ERATORE 

KS Ci p,,, p , ~  T F KS 
o CI 0.13 1.78 o o 0 

o Cs 0.74 1.17 0 

C4 1.69 0.99 0 0 

C, -0.14 1.58 o 0 o 

Cs -0.95 0.63 0 

CT 0.15 1.07 0 

CO 1.68 0.99 
CO 0.07 1.00 

C, 0.92 0.79 

and Kolmogorov-Smimov tests were used to analyze changes 
in mean, variance, and distribution. In the table, o is used 
to indicate that a statistically significant change was observed 
between characteristics of the two source generators (a 95% 
confidence interval was used). For noise-free Lombard speech, 
approximately half of all average mel-cepstral parameters re- 
sulted in statistically significant shifts from neutral. However, 
the major stress-induced variations for vowels occurred in 
the moderate to most rapidly varying spectral components, 
whereas for liquids, glides, and diphthongs, they occur in 
the most slowly to moderately varying spectral components. 
Parameter variance generally decreases under the Lombard 
effect for vowels, remains unchanged for slowly varying spec- 
tral components in nasals, and increases for rapidly varying 
spectral components in nasals, diphthongs, and glides. 

When 6 dB of additive white Gaussian noise is introduced, 
the first mel-cepstral coefficient is always significantly differ- 
ent from neutral. This shows that when speech is produced 
under the Lombard effect in noise-free or noisy conditions, a 
change occurs in the spectral tilt. However, when speech under 
the Lombard effect is corrupted with broad-band additive 
noise, the variation in spectral tilt is found to be present 
across more phoneme classes than for noise-free conditions. 
This occurs since high levels of broad-band background noise 
can have a diminishing effect on the changes in spectral 
tilt for low-energy phonemes. Some source generator types 
such as nasals displayed less of a change in stress-induced 
spectral variation when noise is added. Other types, such as 
glides and liquids, were more consistent in their statistically 
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significant variation between noise-free and noisy conditions. 
These results suggest that the stress-induced Lombard ef- 
fect causes spectral content of speech source generators to 
vary differently across phonemes. Therefore, compensation of 
speech modeling parameters for recognition cannot be fully 
characterized across isolated words by a fixed vector of means. 

This result is further supported by previous studies using 
a tandem constrained iterative speech-enhancement algorithm 
with stress compensation based on formant location and/or 
bandwidth5 [19], [12], [22]. Table I shows results using this 
tandem processor to enhance speech and compensate for 
stress over the ten speaking styles of the SUSAS database. 
Enhancement and compensation of average formant location 
and/or bandwidth increases recognition by +26.9% with a 
decrease in recognition variance from 9.12 to 5.69, indicating 
a more consistent level of performance over noisy stressed 
speaking styles. The algorithm proposed in the next section, 
however, does not require a priori knowledge of phoneme 
boundaries, is more computational efficient, and achieves 
higher and more consistent levels of recognition over noisy 
Lombard effect conditions. 

IV. MCE-ACC-HMM ALGORITHM FORMULATION 

Employing the stressed speech source generator framework 
from Section III, a new recognition algorithm is proposed that 
performs improved speech parameterization using morpholog- 
ical constrained enhancement and Lombard effect compensa- 
tion across an estimated source generator sequence. Fig. 3 
illustrates a block diagram of the new algorithm entitled 
morphological constrained feature enhancement with adap- 
tive mel-cepstral compensation based hidden Markov model 
recognition (MCE-ACC-HMM). The algorithm uses a noise- 
adaptive boundary detector and voiced/transitionaI/unvoiced 
classifier to partition input speech into sequences of source 
generator vectors. Nonlinear frequency domain feature en- 
hancement employing morphological operator theory is used 
to suppress additive noise distortion in the source generator 
observation sequence. Next, Lombard effect stress compensa- 
tion is performed for each detected generator across the input 
utterance. Using a statistical model of generator duration for 
each word model, a phonetic consistency rule is applied that 
partitions utterances into single and multisyllabic classes prior 
to hidden Markov model recognition. Each processing step is 
discussed in the following subsections. 

A.  Noise Adaptive Boundary Detection 

An adaptive boundary detector proposed in [14] is used 
to provide the necessary source generator information to 
subsequent processing sections. The detection method is sim- 
ilar to many energy thresholding methods such as the hy- 
brid technique proposed in [28] but differs in that thresh- 
olds are adapted based on background noise levels. The 
process begins by obtaining a sequence of frame energy 

The front-end processor uses iterative speech enhancement with interframe 
constraints applied to the line-spectral-pair (LSP) parameters and intraframe 
constraints on the autocorrelation lags, followed by various forms of formant 
bandwidth compensation (IT-LSPT, Auto:I, plus FL/FB/FL+FB). 

measurements e ( i )  over analysis windows of 87.5 ms every 
1 ms. A sequence of potential begidend points (pb l ,  pb,, . . .) 
and (pel, p,,  , . . .) are detected using frame-to-frame energy 
e ( i )  amplitude, curvature, and duration. Seven noise adaptive 
thresholds (01,. . . , ( ~ 7 )  are defined as follows: 0 1 ,  az. and 
0 3  are used for rise and fall-time begidend detection, a4 is 
the peak frame energy that must exist for detection, and a5 
is the maximum frame energy for isolated words in a given 
background noise. The last two thresholds (06 and a?) are used 
to distinguish unvoiced, transitional, and voiced speech frames. 
Each threshold adapts based on peak and RMS signal energy 
across isolated words. Duration and energy curvature rules are 
employed to obtain the sequence of possible begirdend point 
pairs. Adaptive thresholds are needed since it has been shown 
(see [12]) that word duration and intensity vary significantly 
when speech is spoken in Lombard effect and noise. For 
example, word duration increases by 20% and word intensity 
by 8% under the Lombard effect. Of particular concem is 
that vowels and semivowels show significant increases in 
duration of 24 and 63% respectively. Next, the ( p & ,  p c , )  
begin-end point sequence is examined painvise to determine 
the likelihood of syllable count within the word. The pair 
sequence is also rank ordered into primary and secondary 
boundary pairs. For recognition studies, preference was always 
given to higher duration boundary pairs during training and 
testing. 

Since the Lombard effect and background noise in- 
fluence speech production differently across phonemes, a 
voiced/transitional/unvoiced (v/t/uv) detection procedure is 
also performed. Although it is desirable to obtain true subword 
unit partioning (demisyllable, diphone, phoneme, etc.), this is 
difficult to achieve reliably in noisy environments. Instead, a 
v/t/uv detection approach, which was previously shown to be 
successful for constrained speech enhancement [14], is used. 
The v/t/uv detection produc_s a sequence of phoneme-like 
source generator boundaries bwordc = ( b l ,  bz, . . . , bh), which 
are used in subsequent processing for noise and Lombard 
effect. An example of begirdend and v/t/uv boundary 
detection is shown in Fig. 4. 

B. Feature Enhancement 

A well-known speech enhancement technique originally 
developed by Boll [3] solves for an estimated speech spectrum 
by subtracting a spectral noise bias obtained during nonspeech 
activity. Although this technique was shown to increase ove 11 
speech quality, unnatural sounding artifacts result. Magni ,1 de 
averaging can reduce errors in noise bias estimation, although 
some “musical tone” artifacts persist. McAulay and Malpass 
[37] later formulated a procedure using a soft-decision noise 
suppression filter. The idea was to subtract a larger noise 
bias if the probability of speech activity was low [2], thus 
reducing tone artifacts during silent periods between words. 
Here, a spectral subtraction-based algorithm is formulated 
that employs morphological-based spectral constraints for the 
purpose of recognition parameter enhancement in noise. These 
constraints are applied based on temporal information provided 
by a noise-adaptive endpoint detector, thereby adapting the 
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Fig. 3. Flow diagram of the MCE-ACC-HMh4 speech recognition algorithm in noise and Lombard effect 

enhancement procedure as speech characteristics change on a 
frame-by-frame basis. 

I) Frequency Domain Processing: Consider a zero mean 

random noise d ( t ) .  It is assumed that d ( t )  can be characterized 
during nonspeech activity. To ensure short-time stationarity, a 
Hamming window is applied over 0 I t, 5 T to obtain 
a sequence of sample speech vectors. It is assumed that the 
random process s ( t )  is a sample function from a known or 

detected generator section b j  as determined in Section IV-A, 
resulting in the following degraded speech signal: 

random process s ( t )  that is degraded by additive, uncorrelated A,, (in) = .%> ( tn)  + &,). (8) 

Such ~I+I interpretation is made since the addition of broad-band 
noise d( t , )  will effect each speech generator differently based 
on its perceptual importance across a given isolated word. 
Therefore, the input utterance will consist of a sequence of 
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noisy sample vectors, grouped into source generator sections 

{ f ( tn  : n = 1 , .  . . , N)} 

= { f y b l  (tbl = 1,. . . , Nbl), . . . f y b L  (tbr. = 1,. . ' 3  NbL)}, 

(9) 

where N = c t = l N b ,  and where Nb, corresponds to the 
frame count for source generator b j .  If the autocorrelation 
function of fYb,(tn) is %,(t,,Tn; 'Yb,), then f-,,,(t,) can 
be expanded into a set of Orthonormal functions f,(t,; Yb,) 

on the interval (O,T), 
r 

Here, Pi,$, are. the coefficients in the expansion for each 
detected speech generator section bj. Since f i ( tn; Tb,) are 
orthonormal, the coefficients may be expressed as 

If there is the additional condition that the coefficients &,b, 
be mutually uncorrelated, then the orthonormal functions 

fi(t,;yb,) are the eigenfunctions of the integral equation 

where is the eigenvalue corresponding to the eigen- 
function fi(t;Tb,) for the detected generator type b j .  The 
eigenvalues and eigenfunctions can then be written as 

It can be seen that the eigenvalue is simply a discrete 
sample of the power spectrum P,-( jw,;yb,)  at frequency 
W, = for the detected generator type b,. Since the 
human auditory system is relatively insensitive to phase dis- 
tortion, a reasonable approach for estimating the random 
signal ZYbJ ( tn)  is to estimate the magnitude of its spectral 
component, incorporate the noisy phase from f,,, (in), and 
perform an inverse transform. The Fourier tr_ansform of the 
vector ";, (tn) can then be represented as S,,, (jut). With 
further expansion, it is noted that two cross estimation terms 
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ever, since qt,) is zero mean, and ZYb (in) and qt,) are 
uncorrelated, both terms drop out. The effect of additive noise 
at frequency w, will depend on the particular source generator 
Y b , .  Therefore, estimation of the spectral line component 
P & w t ; ~ b , )  will be performed in a power domain p(b , )  
instead of the normal squared magnitude domain. When a 
smoothed noise spectral line is subtracted from a noisy speech 
spectral component, remaining peaks are perceived as musical 
tones, causing errors in source generator parameterization 
for recognition. To reduce these effects, magnitude averaging 
across time as proposed in [3] is applied across each spectral 
line component. Since the level of perceived interference 
varies for an utterance across the sequence of noisy generator 
vectors, a weighting subtraction coefficient a(bJ) is used. 
The resulting spectral line estimator for source generator T b j  
employing phase information from the original noisy speech 
vector gyb, (t,) as Q&’w,) is abovedisplayskiplopt 

For general feature enhancement, the number of spectral lines 
used for smoothing, power domain 8, and weighting term a 
can all be determined for a given noise degradation. Since the 
spectral magnitude must be positive, half-wave rectification is 
performed by setting all negative estimated harmonics to zero. 
This eliminates errors in over estimating noise bias. 

2) Spectral Constraints and Morphological Processing: The 
spectral line estimator in (16) requires estimates of the power 
exponent p and weighting coefficient a. These parameters 
effect the tradeoff betw2n remaining spectral floor of the 
original broadband noise d(tn) and the residual noise peaks at 
frequency w, for source generator yt,, . An increase in a results 
in further broad-band noise reduction but with a corresponding 
increase in musical tone artifacts. Conversely, a decrease in a 
causes a decrease in musical tones but with a raised broadband 
spectral noise floor. Tradeoffs in the choice of a and p are 
discussed in greater detail in [14]. 

In order to minimize musical tone effects, morphological 
set operators are applied in the time versus spectral component 
domain. This nonlinear processing$Ils in spectral noise valleys 
and smooths irregular spectral noise peaks, thereby constrain- 
ing the frequency spectra so that vocal tract characteristics do 
not vary wildly from frame-to-frame when speech is present. 

The theory of mathematical morphology is based on a signal 
being viewed as a set in Euclidean space, where morpholog- 
ical operations are applied using a predetermined structuring 
element [ a ] .  Employing Minkowski set operations [38] of 
addition and subtraction as followsabovedisplayskip lopt 

(f 9)(z) = supl f (y)  + d” - Y)) (17) 
? E D  

(f e g)(z) = Z ~ U ( Y )  - g(2 - Y)) (18) 

the four basic morphological operations of dilation, erosion, 
closing, and opening can be formed as 

W , g )  = (f fB SS)(”) = fb-1 fB (19) 

By combining morphological operations, an extensive class 
of morphological filters can be formulated that can replace 
standard linear filters in many signal processing applications. 
A more detailed treatment of Minkowski function addition, 
subtraction, and the four gray-scale morphological operators 
can be found in [36] and [a]. 

Let the estimated spectral component prior to magnitude 
averaging at time t ,  be written as 

(23) - @  ’ p,(.7wi; Tb, 1 tn). 

Let g(t,, w i ) ,  be a 3-by-3 parabolically shaped structuring 
element centered at the spectral line wi and time locations 
(tn-l, t,, t,+l). If spectral components from (16) contain 
residual noise peaks, morphological operations of erosion or 
opening are able to attenuate them while preserving the overall 
frequency response structure. Dilation and closing operations 
can also be used to fill in persistent irregular spectral valleys. 
Morphological operators offer the advantage over nonlinear 
median filters in their ability to control the removal of positive 
and negative impulse noise separately. The resulting estimated 
spectral component after application of a dilation operation is 

= P@Ji;T*&) fBg( - tn ,  -Wi). (24) 

With this morphological constrained spectral component, (16) 
can be expressed as 

(25) 

employing a dilation morphological constraint across spectral 
lines wi E [O,a]. The particular morphological operator ap- 
plied reduces spectral fluctuations caused by errors in noise 
characterization, as well as reducing the chance for erratic 
movements of individual spectral harmonics across time. A 
brief evaluation of the spectral line estimator in (25) is 
presented in the next section. For enhancement evaluation, 
detected source boundary information bj was used to adjust 
the extent of the structuring element, power domain p, and 
weighting term a. Although a variety of adaptive constraint 
methods are possible for the sequence of source generators, 
the recognition evaluations presented later employ only an 
opening operation with fixed values of and a across the 
estimated spectral line components. This was necessary due to 
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TABLE III 
SPEECH QUALITY COMPARISON OF ENHANCEMENT ALGORITHMS 

ACROSS SOUND TYPES FOR WHITE GAUSSIAN NOISE. SNR = +10 dB. 

additional processing needed for Lombard effect compensation 
of enhanced noisy Lombard speech. 

3) Feature Enhancement Evaluation: Evaluation of the 
spectral line estimator in (25) is considered in terms of 
estimated speech quality across phoneme classes. This will 
determine if characteristics important to speech quality can be 
improved for source generator parameterization under noisy 
conditions. A subset of continuous speech from the TIMIT 
[39] database was degraded by additive white Gaussian noise 
and was processed. A Bartlett spectral estimate was used 
to characterize noise using data outside primary detected 
endpoints. Objective speech quality measures that have been 
shown to possess good correlation with subjective quality [42] 
were used to determine enhanced speech quality performance. 
The measure used in this evaluation is the Itakura-Saito 
likelihood ratio. Performance over sound classes was 
accomplished by partitioning speech into segments, processing 
entire sentences, and computing objective measures for each 
class. Table 111 summarizes this comparison between basic 
spectral subtraction [3] (three-frame magnitude averaging 
with half-wave rectification), short-time Wiener filtering [30] 
(terminated at the fourth iteration), and the morphological 
constrained approach MO-a, p, 6,. MO-a, @, b ( i )  results in 
improved quality for all types of speech and consistently 
outscored short-time Wiener filtering and spectral subtraction 
techniques. 

C .  Lombard Effect Compensation 

Given a detected sequence of speech source generators 
Y b ,  :( 6, = b l  , . . . , 6 ~ )  and their feature enhanced spectral rep- 
resentations, we now tum to the issue of modeling the change 
in source generator class from neutral to Lombard effect 
speaking conditions. From (4), stressed speaking conditions 
are addressed by the choice of an altemate or modified source 
generator for each phoneme-like section. Let the estimated 
speech vector under th: noisy neusal and Lombard stress 
conditions be written as .'y6, (t,) and &+,j~, (tn) respectively, 
where *[ .IZ represents a stress-based change in the source 
generator. 

Next, let eYb, (t,):t, E [l, N b , ]  be a sequence of mel- 
cepstral vectors over time index t, from source generator 
Y b ,  under neutral speaking conditions. we  further assume that 
this sequence is obtained over an input utterance token set 
during the training phase of the HMM recognizer. Let the 

same sequence for generator Yb3  under Lombard effect stress 
be modeled as 

where 6 * , ( b , )  represents an additive stress effect component 
that depends on the particular stress class T!i and source 
generator b, .  It is assumed that the output of each source 
generator can be modeled as a sequence of independent 
identically distributed random vectors with an estimated mean 
and variance. In a manner similar to [7], we assume that this 
component takes on an exponential form, but as suggested in 
[17], the actual exponential form is unique for each source 
generator across stressed speaking conditions 

Here, ~ ( 6 3 ,  @i) and u ( b j q i )  are fixed for each source genera- 
tor under stress condition qi. The kth mel-cepstral parameter 
under stressed conditions from (26) will have the following 
probability density function: 

assuming a sequence of source generator vectors over time 
instances t l  t ,  5 tNbJ ,  which are statistically independent 
random variables. The mean of the above random variable 
C*[, ] , ( k )  will consist of the kth varying mel-cepstral pa- 
ramet& CTb, ( I C ,  t,) under neutral conditions, plus a modeled 
stress term Cq*(b,)(k). The variance u : , ~ ~  for each coefficient 
k will depend on source generator Y b , .  Given an estimate 
of the mel-cepstral coefficients over time t ,  and the stress 
component c*%(!+)(k), the log-likelihood of C*,~-,~,l,(t,) can 
be found as follows: 

tNb' [ C q [ 7 b j ] r ( k l t n )  - (''Yb, ( k , t n )  + C'€',(b,)(k))]z - c  t,=t, 2Ui,b,  

(30) 

The unknown model parameter Cq,(b,)(k) is estimated by 
maximizing (30), resulting in the maximum likelihood estimate 
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The sequence of detected source generators is obtained during 
the HMM training phase and used to obtain the sample esti- 
mate for Cyb, (k,  tn) .  A sample estimate for C*p,a,~, (k,  tn) is 
obtained from tokens of actual Lombard effect stressed speech, 
which is also obtained during the HMM training phase. Since 
the number of observations from a given source generator 
’yb, will vary under stress, the observation number Nb, will 
normally differ in each summation in (31). Since the number 
of Lombard effect training tokens is limited, a smoothed 
exponential decay of the form in (28) is applied to 6 * , ( b j )  
with the conditions that for each source generator, ~ ( b , ,  @%) = 
c*,(bJ)(l), and &, = - l n ( c * , ~ * ~ ) ( k ) / c * ~ ~ b , ) ( l ) )  for 
c*.(bj)(k)fi*,(b,)(l) > andjc*,(~3)(1) l  ’ IcV,(b,)(k)l. 

A compensation model vector e@,@,) is estimated for each 
detected source generator section during HMM training and 
applied during recognition evaluation. The result of mor- 
phological constrained enhancement and adaptive cepstral 
compensation is the provision of a sequence of speech gen- 
erator parameters that characterize the changing features of 
S;, across sources but limit the effects of additive noise and 
stress-induced Lombard effect on speech production for im- 
proved recognition performance. The following section briefly 
describes the final details of MCE-ACC-HMM recognition 
framework. 

D. Hidden Markov Model Recognition 

The MCE-ACC-HMM algorithm requires the model inputs 
to be sequences of discrete symbols chosen from a finite 
alphabet. These discrete symbols are obtained via vector 
quantization of the source generator-compensated mel-cepstral 
coefficients. A 64-state vector quantizer is used and trained 
using a binary-split procedure similar to the Lloyd algorithm. 
Next, a speaker-dependent, isolated word, five-state left-to- 
right hidden Markov model is formulated for each entry 
in the recognizer dictionary. Forward at( i)  and backward 
probabilities Pt(z) are obtained and used to form the familiar 
Baum-Welch forward-backward estimator 

N N  

P ( 0  I A) = at(z)a23P,(Ot+l)Pt+l(j) 
z = 1  ,=1 

1 5 t 5 T - 1. (32) 
Reestimation relations can $en+be obtained for model param- 
eters ii,,, ii,, b , ( k )  in M ( A , B , a ) .  Details can be found in 
[lo] and [29]. Ip the training phase, each model was initiated 
with essentially random choices for nonzero elements and then 
iteratively adjusted to increase_P( @Ih4), where the probability 
of the observation sequence @ has been generated by model 
- M. A separate Lombard stress compensation model is obtained 
and associated with each HMM word model for recognition. 

E. Phonetic Consistency Rule 

Since vlt luv profiles are obtained during training and 
recognition, a probabilistic decision criterion was employed 
to augment the HMM-based recognition procedure. Using 
mean vltluv training profiles, a phonetic consistency rule was 

implemented for preclassification of the input utterance under 
test. The consistency rule was based on the following: 
i) number of labeled phonemes 

ii) sequence particular phonemes 
iii) duration of phonemes 
iv) the contour of speech energy as represented by the first 

Implementation of this rule required a statistical characteri- 
zation of duration variation of labeled phoneme sections. A 
confidence interval of 3u is used in this phase. 

mel-cepstral parameter %,L(*) ( i ) .  

V. MCE-ACC-HMM EVALUATION 

Performance of the new MCE-ACC-HMM recognition al- 
gorithm is considered in five recognition scenarios, which are 
shown in Fig. 5. The first four scenarios establish baseline 
recognition scores for comparison, whereas the fifth represents 
the framework used for MCE-ACC-HMM evaluation in noisy 
Lombard effect speech conditions. Input speech recognition 
conditions considered for algorithm evaluation include the 
following: 
i) noise-free neutral speech 

ii) noise-free Lombard speech 
iii) neutral speech with additive noise 
iv) Lombard speech with additive noise. 
Speech data used for evaluation consisted of a 35-word vocab- 
ulary spoken by three male speakers (denoted as speakers S1, 
S2, and S3). For each speaker, 12 tokens for each word under 
neutral noise-free conditions, and two tokens under Lombard 
conditions, were used. The vocabulary consists of highly 
confusable word pairs such as /six-fix/, /go-oh-no/, and /wide- 
white/. In all evaluations, recognition training employed 10 
neutral tokens and tested using two neutral and two Lombard 
tokens of each word for each speaker. Although HMM training 
is fully open, limited Lombard effect data required the use of 
both Lombard tokens for statistical characterization of source 
generators under Lombard condition for each model (i.e., 
Lombard recognition not fully open). In the evaluation, three 
noise sources are considered: 
i) white Gaussian noise (WGN) 

ii) nonstationary cooling fan noise from an IBM PS-2 work- 

iii) nonstationary Lockheed C130 aircraft cockpit noise (AIR). 
Fig. 6 illustrates time versus spectral plots of the three sample 
noise sources. Noise levels were adjusted using the following 
relations to obtain overall signal-to-noise ratios (SNR) of 10, 
20, and 30 dB. 

station (PS2) 

~ ( i )  = ~ ( i )  + G . d ( i )  (33) 

Here, s(z) represents the noise-free neutral or Lombard effect 
speech, and d ( i )  a sample noise sequence. A closer analysis 
of noisy input data revealed that confusable word pairs such 
as /six-fix/, with distinguishing lead or trailing phonemes, had 
frame oriented segmental SNR’s  that were consistently 14-28 
dB below global averages. Therefore, recognition perfor- 
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Fig. 5.  Automatic speech recognition scenarios. The five environments consist of various levels and/or types of noise for neutral and Lombard effect speech. 
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Fig. 6. Time versus power spectral response for three background noise distortions. 

mance will be more dependent on local SNR of distinguishing 
phonemes in confusable word groups than for homogeneous 
high-energy voiced sections such as the vowel /IY/ in /freeze- 
three/ or diphthong /AI/ in /wide-white/. 

To compare performance, a fairly standard, isolated-word, 
discrete-observation hidden Markov model (VQ-HMM) rec- 
ognizer was used. The baseline system was mel-cepstral pa- 
rameter based with no embellishments. In all experiments, a 
five-state, left-to-right model was used. A vector quantizer was 
used to generate a @-state codehook using 2 min of noise- 

free training data. The 35 models employed by the VQ-HMM 
recognizer were trained using the forward-backward algorithm 
with 10 tokens used to train each model and two for testing. An 
earlier version of this baseline recognizer based on LPC pa- 
rameters was used in earlier recognition evaluations for noisy 
speech under stress [12], [22]. The only modification is that 
mel-cepstral parameters are used in place of LPC coefficients.6 

6The modification from LF‘C to mel-cepstral parameters for the baseline 
recognizer used for Table I was performed for consistency so that differences 
in input speech parameterization would not effect recognition performance. 
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Condition 
Neutral & VQ-HMM 

Lombard & VQ-HMM 
Lombard & MCEACC-HMM 

1W 

2 3 AVO. . 

Speaker S1 Speaker S2 Speaker S3 Mean L St.Dev. u. .~, ,~ 

88.6% 98.6% 100.0% 95.7% 6.23 

74.2% 42.9% 80.0% 65.7% 19.98 

89.4% 77.1% 93.9% 86.8% 8.69 

2 3 AVO. 
I 

A. Noise-Free Recognition Results 

The first evaluation step is to establish performance for 
noise-free conditions (see Fig. 5, scenarios 1 and 2). Fig. 7 
summarizes noise-free recognition results for baseline VQ- 
HMM and MCE-ACC-HMM recognizers in neutral and Lom- 
bard effect speech conditions. The VQ-HMM recognition 
rate of 96% establishes an upper limit of performance for 
the chosen confusable vocabulary.’ Individual results over 
speakers SI. S2, and S3 are also shown. The standard deviation 
in recognition rate URECOG of 6.23 confirms reliable perfor- 
mance across speakers. The second baseline average recogni- 
tion rate of 66% establishes a lower limit of performance for 
noise-free Lombard speech. For this system, speech production 
variation reflected in speaking under the Lombard effect 
has reduced recognition performance by an average -30% 
(individual losses range from -14.4 to -55.7%). The actual loss 
in performance will depend on vocabulary confusability and 
the concentration of phonemes most susceptible to Lombard 
effect speaking s tykg The corresponding increase in URECOG 

from 6.2 to 19.9 reflects irregular recognition performance 
due to individual inter-speaker variations caused by the Lom- 
bard effect. Next, MCE-ACC-HMM is evaluated in noise-free 
Lombard speaking conditions (speech enhancement sections 
are disabled for this evaluation). Individual recognition rates 

’The same VQ-HMM recognizer achieved a recognition rate of 100% for 
a less-confusable IO-word vocabulary. 

‘An earlier evaluation, using a 20-word vocabulary and an LPC parameter- 
ized discrete-observation HMM recognizer, resulted in a -25% loss in noise 
free recognition rate 112). 1221. 

increase for all speakers, with an average improvement over 
VQ-HMM of +21%. The influence of the Lombard effect 
on recognition was almost eliminated for speaker 5’1 and 
significantly improved for speakers S 2  and 5 3 .  In addition 
to raising the mean recognition rate to 87%. a more consistent 
level of performance is achieved as reflected in by a decrease 
in URECOG from 19.9 to 8.69. 

B. Baseline VQ-HMM Noisy Recognition Results 

Baseline VQ-HMM recognition rates are established for 
noisy neutral and Lombard effect speaking conditions (see 
Fig. 5, scenarios 3 and 4). Fig. 8 summarizes performance 
across three speakers for neutral and Lombard effect styles 
in nine noise conditions. Mean and standard deviation across 
all speaker evaluations are shown. Performance for VQ-HMM 
is severely effected in noisy Lombard conditions. These rates 
establish lower limits of recognition performance in noisy 
environments for the confusable vocabulary. For noisy neutral 
speaking conditions, performance was reasonable for speech 
corrupted by PS-2 cooling fan noise and aircraft cockpit 
noise at 30 dB. As SNR decreased, however, recognition 
rates dropped sharply. Additive WGN had a more pronounced 
impact on recognition performance than either PS2 or AIR 
noise. This was attributed to the fact that these noise sources 
contained little high-frequency content; therefore, although 
average time-domain segmental SNR for distinguishing con- 
sonants in confusable word-pairs would be the same for 
WGN, high-frequency segmental SNR is higher for aircraft 
and computer fan noise cases. Thus, the effective SNR for 
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nine noisy environmental conditions for neutral and Lombard effect speaking styles. 

Summary of mean ~,,,,,(S1. S2. S 3 )  and standard deviation U ~ ~ ~ ~ , ~ ( S ~ ,  S2. S 3 )  in recognition rate for the baseline (VQ-HMM) recognizer under 

distinguishing consonants in word-pairs such as /six-fix/ is 
higher for low-frequency degradation such as aircraft cockpit 
noise but lower for broad-band white Gaussian noise. The 
final overall mean Lombard effect recognition rate across all 
speakers, noise types, and SNR’s (27 noise conditions) is 
ZRECOG = 36.7%, with a standard deviation in recognition 
of ‘TRECOG = 21.1. 

C. MCE-ACC-HMM Noisy Recognition Results 

Noisy Lombard speech recognition performance for the 
MCE-ACC-HMM recognizer is considered (see Fig. 5 ,  sce- 
nario 5). Fig. 9 summarizes recognition results for the nine 
noisy Lombard speech conditions for both VQ-HMM and 
MCE-ACC-HMM recognizers. With the exception of source 
generator statistical characterization for Lombard effect com- 
pensation, all results are open tests for noisy Lombard con- 
ditions using a neutral trained vector quantized codebook 
and hidden Markov models. Mean and standard deviation in 
recognition rate over all speaker evaluations are shown. MCE- 
ACC-HMM outperforms the baseline VQ-HMM recognizer 
for all tested noisy conditions. Performance across 10-30 dB of 
additive white Gaussian noise resulted in a +44.4% improve- 

ment in recognition performance over VQ-HMM baseline 
system (mean increase from 25.7 to 70.1%). For varying 
levels of C130 aircraft cockpit noise, average recognition rates 
increased by +30.1% to a mean rate of 76.3%. Finally, for 
PS-2 cooling fan noise, average recognition rates over 10-30 
dB increased +39.4% to 77.8%. The variability of recognition 
as measured by standard deviation in recognition consistently 
decreased for each noise type over the SNR range of 10-30 dB. 
Evaluations showed that oi decreases using MCE-ACC-HMM 
from 19.0 to 11.6 for AWGN, 20.1 to 12.8 for aircraft cockpit 
noise, and 20.9 to 1 1. I for PS-2 cooling fan noise. Employing 
individual recognition scores for all 27 noisy conditions, the fi- 
nal mean recognition rate increased from 36.7% for VQ-HMM 
to 74.7% for MCE-ACC-HMM, with a corresponding decrease 
in the variability of recognition from ~ R E C O G : V Q - H M ~ I  = 
21.1 to CJRECOG:MCE-ACC-H\I~I = 11.9. These results demon- 
strate the consistency of MCE-ACC-HMM recognition im- 
provement for noisy Lombard effect speaking conditions. 

D. Confusion Matrices 

Although mean and standard deviation in recognition rates 
demonstrate improvement for MCE-ACC-HMM, confusion 
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Fig. 9. 
and standard deviation arc.,,,R in recognition rate across all speakers are shown. 

TABLE IV 
OVERALL RECOGNITION RESULTS FOR THE VQ-HMM RECOGNIZER AND THE NEW ROBUST RECOGNIZER MCE-ACC-HMM FOR THREE TYPES OF 

NOISE. NOISE FREE, AVERAGES OVER ALL NOISY CONDITIONS, AND THE STANDARD DEVIATION OF NOISY RECOGNITION RATES ARE ALSO SHOWN. 

OVERALL NOISEFREE & NOISY LOMBARD EFFECT RECOGNITION PERFORMANCE 

Recognition results for HMM-VQ and new robust MCE-ACC-HMM recognizers for three types of noise and three SNR's. Overall mean TlrulR 

I 11 Noise Free 11 Noinv Lombard Conditions I OVERALL I 

matrices can more clearly illustrate how mel-cepstral-based 
Lombard compensation is able to reduce errors caused by low- 
energy consonants. Fig. 10 shows example confusion matrices 
for VQ-HMM and MCE-ACC-HMM algorithms using speech 
under the Lombard effect with additive aircraft cockpit noise 
(30 dB SNR) for one speaker. A black square refers to two 
tokens, whereas a gray square indicates a single token in place 
(i.e., a normal error). Here, 11 of the 27 errors for VQ-HMM, 
due to confusable word pairs under noisy Lombard effect 
speech conditions, are corrected when MCE-ACC-HMM is 
used. As a result, the error rate is reduced from 37 to 17%. 
This was due to improved feature representation resulting from 
morphological constrained enhancement and cepstral compen- 
sation along with application of the phonetic consistency rule. 
It is noted that in all recognition evaluations, the phonetic 

consistency rule worked flawlessly (i.e., the correct model was 
always included as part of the final search set). This rule also 
reduces Lombard stress compensation processing by roughly 
a factor of three by limiting the dictionary search from 35 to 
an average of 13 word models. Further studies show that half 
of all errors due to confusable word pairs are eliminated with 
the new MCE-ACC-HMM algorithm. 

VI. DISCUSSION AND CONCLUSION 

This paper has described a new low-vocabulary speech 
recognition algorithm (MCE-ACC-HMM) that provides robust 
performance in noisy environments with particular emphasis 
on characteristics due to the Lombard effect. A stressed-based 
source generator framework is established to achieve im- 
proved speech parameter characterization using morphological 
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Fig. IO. Sample: (a) VQ-HMM and (b) MCE-ACC-HMM confusion matri- 
ces for one speaker under Lombard effect and aircraft cockpit noise conditions 

constrained feature enhancement and stressed source compen- 
sation, which is unique for each source generator across a 
stressed speaking class. It has been shown that the impacl 
of stress effects the sequence of speech source generators 
differently in noise-free and noisy conditions. Therefore, the 
proposed algorithm uses a noise adaptive boundary detector to 
obtained a sequence of source generator classes, which in tum 
directs noisy feature enhancement and stress compensation. 
This allows the parameter enhancement and stress compen- 

sation schemes to adapt to changing speech generator types. 
A phonetic consistency rule is also employed based on input 
source generator partitioning. 

A stress source compensation model is obtained for each 
word in the input vocabulary during training, whereas for 
the testing phase, a corresponding stress-compensation model 
for each tested hidden Markov word model is applied to 
the unknown input source generator sequence. If the correct 
word model (HMM) is under consideration, then stress com- 
pensation will limit spectral variations. If an incorrect word 
model (HMM) is considered, then stress compensation using 
the incorrect stress model introduces spectral variations that 
increases word rejection by the recognizer. 

MCE-ACC-HMM was compared with a more traditional 
discrete-observation VQ-HMM recognizer with no embellish- 
ments. The evaluation considered noise-free Lombard effect 
conditions and nine noisy Lombard conditions using a highly 
confusable vocabulary. Noise conditions included additive 
white Gaussian noise, aircraft cockpit noise, and noise from 
the. cooling fan of a computer workstation, all at three levels 
of SNR. Performance increased for these three noise sources 
by 4 . 4 ,  +30.1, and +39.4% respectively, demonstrating 
the method’s ability to perform in stationary and slowly 
varying colored noise conditions. Overall recognition rates 
for noisy Lombard speech were shown to increase from 
an average of 36.7% for the baseline recognizer to 74.7% 
for the new algorithm (a +38% improvement). The new 
algorithm was also shown to be more consistent under vary- 
ing noisy conditions as demonstrated in a decrease in the 
standard deviation of recognition rates from 21.1 to 11.9 
and a reduction in confusable word-pairs shown in confusion 
matrices. Finally, it is noted that while MCE-ACC-HMM 
improves recognition performance in noisy Lombard effect 
conditions, additional computational resources over baseline 
VQ-HMM are needed. If computational resources are limited, 
future studies might consider limiting feature enhancement or 
stress compensation to only those source generators that have 
the largest influence on overall recognition performance. In 
addition, further studies might also consider varying the type 
of morphological processing based on background noise type 
and level. 
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