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A new approach to speech enhancement is proposed where constraints based on aspects of the 
auditory process augment an iterative enhancement framework. The basic enhancement framework 
is based on a previously developed dual-channel scenario using a two-step iterative Wiener filtering 
algorithm. Constraints across broad speech sections and over iterations are then experimentally 
developed on a novel auditory representation derived by transforming the speech magnitude 
spectrum. The spectral transformations are based on modeling aspects of the human auditory 
process which include critical band filtering, intensity-to-loudness conversion, and lateral inhibition. 
The auditory transformations and perceptual based constraints are shown to result in a new set of 
auditory constrained and enhanced linear prediction (ACE-LP) parameters. The ACE-LP based 
speech spectrum is then incorporated into the iterative Wiener filtering framework. The 
improvements due to auditory constraints are demonstrated in several areas. The proposed auditory 
representation is shown to result in improved spectral characterization in background noise. The 
auditory constrained iterative enhancement (ACE-II) algorithm is shown to result in improved 
quality over all sections of enhanced speech. Adaptation of auditory based constraints to changing 
spectral characteristics over broad classes of speech is another novel aspect of the proposed 
algorithm. The consistency of speech quality improvement for the ACE-II algorithm is illustrated 
over time and across all phonemes classified over a large set of phonetically balanced sentences 
from the TIMIT database. This study demonstrates the application of auditory based perceptual 
properties of a human listener to speech enhancement in noise, resulting in improved and consistent 
speech quality over all regions of speech. 

PACS numbers: 43.72.Ew 

INTRODUCTION 

Enhancement of speech in the presence of additive con- 
tinuous broadband noise remains a challenging task, espe- 
cially in moderate to high noise levels (signal-to-noise ratios 
of - 10 to 5 dB). Several reasons contribute to task complex- 
ity. First, broadband noise overlaps the speech signal both in 
time and frequency domains, and local noise characteristics 
cannot be determined exactly in either domain from the 
noisy speech signal. Second, speech is a highly varying sig- 
nal both in terms of time and frequency characteristics, and 
the amount of speech distortion due to background noise 
varies across both time and frequency. In perceptual terms, 
the affect of broadband noise on different speech classes is 
not uniform. Most traditional enhancement aigorilhms are 
limited in terms of suppressing noise (improving SNR) and 
improving perceptual quality at the same time across all 
speech classes. 

A speech enhancement algorithm can be termed success- 
ful if it accomplishes two tasks, (i) suppressing the perceiv- 
able background noise, and (ii) preserving or enhance per- 

•This work was supported in pan by National Science Foundation Grant 
No. NSF-IRI-90-10536. 

b)Dr. Nandkumar was with the Dept. of Electrical Engineering, Duke Univ. 
when this work was performed. He has since joined Martin Marietta Labs, 
Baltimore, MD. 

ceived signal quality. Additionally, it is also desirable to 
improve intelligibility, and improve the performance of other 
speech processing systems (e.g., coding or recognition in 
noise). Traditional speech enhancement algorithms are based 
on optimizing mathematical criteria, which in general are not 
well correlated with speech perception. In general, these 
have not been as successful in preserving or improving qual- 
ity in all regions of speech, especially transitional and un- 
voiced. In fact, many speech enhancement algorithms intro- 
duce additional speech distortion while suppressing noise, 
which can increase listener annoyance and cause preprocess- 
ing for speech coding and automarc recognition systems to 
be unreliable. Recently, enhancement algorithms which aug- 
ment mathematical criteria with perceptual criteria have 
shown reasonable consistency in speech quality enhance- 
ment (Hansen and Clements, 1991; Nandkumar and Hansen, 

1992, 1994; Cheng and O'Shaughnessy, 1991). Perceptual 
criteria can involve aspects of both speech production or 
speech audition. Use of perceptual criteria has also been 
shown to aid in reducing annoying artifacts or speech corre- 
lated distortion in the enhanced speech (Hansen and Clem- 
ents, 1991; Nandkumar and Hansen, 1992, 1994, 1995; 
Peterson and Boll, 1981). 

In an earlier study, we developed a dual-channel itera- 
tive speech enhancement framework augmented with con- 
straints developed on the auditory based mel-cepstral param- 
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eters (Nandkumar and Hansen, 1992) (ACE-I). However, 
critical band frequency analysis is only one aspect of the 
complex processing performed in the human auditory sys- 
tem. Researchers in auditory neurophysiology have proposed 
several auditory functional representations for speech, which 
incorporate peripheral and central auditory processing phe- 
nomena (Jennison etal., 1991; Yang etal., 1992). Other 
studies have also considered psychoacoustic models for 
speech recognition (Zwicker et al., 1979). In order to further 
exploit the auditory based aspects of speech, several auditory 
modeling schemes have also been proposed as front-ends for 
automatic speech recognition (Cohen, 1989; Ghitza, 1986; 
Hermansky, 1990; Hunt and Lefebvre, 1986; Seneft, 1986). 
These techniques augment or replace traditional linear spec- 
tral parameters with parametric representations based on as- 
pects of neurophysiological and psychoacoustic features. 
However, few techniques which incorporate such auditory 
models have been proposed for the purpose of speech en- 
hancement in noisy backgrounds. The main reason for this is 
that most auditory models decompose the speech signal into 
complex auditory neural representations, from which it is 
difficult to resynthesize enhanced speech. Earlier studies, 
such as spectral subtraction in the loudness domain (Peterson 
and Boll, 1981) and adaptive filtering based on a degraded 
speech spectrum convolved with a frequency-dependent lat- 
eral inhibition function (Cheng and O'Shaughnessy, 1991), 
have attempted to augment traditional enhancement frame- 
works with an auditory processing property. In this study, a 
previously developed dual-channel Wiener filtering frame- 
work (Nandkumar and Hansen, 1992) is augmented with 
constraints based on several aspects of the auditory process. 
A new set of parameters termed auditory constrained and 
enhanced linear predictive (ACE-LP) parameters are derived 
based on aspects of auditory modeling which include critical 
band filtering, intensity-to-loudness transformation, and lat- 
eral inhibition. The enhanced speech is then reconstructed 
using ACE-LP parameters within the iterative Wiener filter- 
ing framework. The paper is organized as follows. In Sec. I, 
the iterative enhancement framework is described. A brief 

overview of auditory processing and applications to speech 
engineering problems is presented in Sec. II. The new audi- 
tory process constrained algorithm is developed and pre- 
sented in Secs. III and IV. Results and conclusions follow in 

Secs. V and VI. 

The tools used to assess speech quality improvement in 
this study are informal listening tests and objective quality 
measures. Objective speech quality measures used in this 
study are the spectral distortion based Itakura-Saito log- 
likelihood measure and the auditory perception based 
weighted spectral slope (Klatt) measure. For additive noise 
and speech coder distortions, these Objective measures have 
been shown to be well correlated with perceived quality as 
measured by subjective tests such as the DAM (Quacken- 
bush et al., 1988). It should be emphasized that objective 
measures cannot, and should not, replace subjective testing 
for enhancement algorithm evaluation. In general, a balance 
should exist between subjective and objective methods for 
speech enhancement evaluation. While no formal listener 
evaluation was conducted, extensive informal comparisons 

FIG. 1. The auditory constrained enhancement [ramework. 

were made throughout this study to confirm general direc- 
tions for quality improvement, as seen using objective 
speech quality measures. It should also be noted that spectral 
based distortion measures, while useful for assessment of 
analysis-by-synthesis speech coders, may not be capable of 
representing the complete level of quality with respect to 
certain enhancement or vocoder artifacts and other distor- 

tions such as intelligibility loss and glottal source based dis- 
tortions. It is strongly suggested that the use of objective 
speech quality measures as performance indicators for en- 
hancement be confirmed with either informal or formal lis- 

tener evaluations. Here, extensive informal listening tests are 
performed at each development step to ensure that such dis- 
tortions are not introduced during each phase of enhance- 
ment. 

I. THE ITERATIVE ENHANCEMENT FRAMEWORK 

The iterative enhancement framework developed in an 
earlier study (Nandkumar and Hansen, 1992, 1995) in a dual- 
microphone scenario is used in all simulations. It is noted 
that the auditory process based constraints presented in later 
sections can also be used in single-channel iterative filtering 
scenarios. In fact, the dual-channel framework is an exten- 
sion of the single-channel constrained iterative framework 
developed by Hansen and Clements (1991). Unconstrained 
iterative Wiener filtering was originally considered by Lim 
and Oppenheim (1978) for an autoregressive (AR) speech 
model, and later generalized to an autoregressive-moving av- 
erage (ARMA) speech model by Musicus (1979). 

The dual-channel observations y• and Y2 can be ex, 
pressed in the frequency domain as 

Y•(to) = S(to) +H•(ro)D(to)=S(to)+O'(to), 

y2(to)=D(to)+H2(to)S(to)=D(to)+S,(to). (1) 
Here, H• (to) and H2(to) represent the frequency-dependent 
correlation functions. The assumptions made in this scenario 
are that speech and noise are uncorrelated, s (t) and s'(t) are 
samples from a short-time stationary AR Gaussian process, 
and d(t), d' (t) are samples from a slowly varying Gaussian 
process. In this scenario, a two-step iterative dual-channel 
Wiener filtering solution can be derived as shown in Fig. 1. 
The enhancement solution is based on estimation of noise 
from the second channel in a MMSE sense, followed by 
estimating speech from the primary observation, using a par- 
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ticular interpretation of the iterative EM algorithm. The noise 
and speech spectra are updated at each iteration using the 
current estimates of speech and noise. The speech estimate 
using frequency-domain Wiener filtering at iteration i is 
given by 

] (o,)},] ¾, (o.,). (2) 
The noise estimate at iteration i is also obtained by a Wiener 
filter operation, given by 

{ D(to)}i=[ {P D( O•)}i--•{ p s,( to)}iJ Y2( to ). (3) 
The speech spectra in the above equations are estimated at 
each iteration using the AR model assumption. The noise 
spectra are estimated using FIT based magnitude transforms. 
Estimates of the magnitude spectra of Hi(to) and H2(o•) 
obtained from noise-only and speech-only sections aid in 
transforming the speech and noise spectra between the pri- 
mary and reference channels. At the first iteration, speech 
and noise spectra are estimated from the noisy observations. 

It has been shown in a single-channel case that iterative 
Wiener filtering suppresses noise sufficiently afte[ three to 
four iterations, but produces unnatural sounding speech due 
to narrow formant bandwidths (Hansen and Clements, 1991). 
Moreover, quality enhancement is inadequate in unvoiced 
and transitional regions of speech. In order to improve per- 
formance, auditory based transforms are derived and incor- 
porated into the speech spectrum estimation process. Audi- 
tory process based constraints are then developed to allow 
the iterative process to converge to improved quality across 
all sections while simultaneously keeping residual noise at a 
minimum. 

II. AN OVERVIEW OF AUDITORY PROCESSING 

Various models have been developed by researchers in 
an attempt to describe the peripheral and central processing 
that occurs in the auditory system. Some of the more analyti- 
cally tractable auditory models have been used in applica- 
tions such as analysis, synthesis, and automatic recognition 
of speech signals. However, it is noted that application and 
performance evaluation of complex, nonlinear auditory mod- 
els is a difficult task, and is experimental in nature for most 
cases. Yang et al. (1992) propose an analytical framework in 
order to model the transformations that acoustic signals un- 
dergo during peripheral and central auditory p•ocessing 
stages. They also define auditory models from a biophysical 
point of view as involving three stages--analysis, transruc- 
tion, and reduction. This characterization of auditory model- 
ing provides a functional view of the underlying phenomena. 
The analysis stage involves the relationship between the 
basilar membrane displacements and the amplitude and fre- 
quency content of the sound stimulus. The cochlear mecha- 
nism is seen to segregate incoming frequencies into different 
spatial displacements along the length of the basilar mem- 
brane. This process can also be viewed a6 applying a parallel 
bank of bandpass filters on the incoming signal. Several 
studies in psychoacoustics, which relate acoustic signals to 

what the listener perceives, have experimentally determined 
the center frequencies and bandwidths of such bandpass ill- 
ters termed critical band filters (Zwicker, 1961). Broadly 
speaking, cochlear filtering is seen to be on a logarithmic 
frequency scale which becomes progressively linear for fre- 
quencies below 800 Hz (Scharf, 1970; Zwicker and Terhardt, 
1980). In many auditory based models, spectral intensity is 
perceived as the sum of intensities of the critical bands. The 
critical band intensities are then either amplitude warped 
logarithmically or raised to a noninteger power which trans- 
forms the intensities into perceived loudness. Examples of 
applications which use the above transformations are as fol- 
lows. Hermansky (1990) performs critical band analysis on 
the nonlinear Bark scale, intensity-to-loudness transforma- 
tion, and lower-order linear prediction on the resulting audi- 
tory representation, resulting in a set of perceptual linear 
prediction parameters which have been successfully used in 
speech analysis and speech recognition (Hem•ansky, 1990). 
Davis and Mermelstein (1980) proposed derivation of the 
cepstral parameters based on critical band energies on a reel 
frequency scale, which have been successfully used for 
speech recognition, and have also been applied in an audi- 
tory constrained enhancement (ACE-I) algorithm (Nandku- 
mar and Hansen, 1992, 1995). Critical band filtering based 
on psychoacoustic data has also been used to develop per- 
ceptually relevant objective measures of speech quality 
(Klatt, 1982). 

The transruction stage which follows the analysis stage 
of peripheral auditory processing involves transductio,. of 
the mechanical motion along the basilar membrane of the 
cochlea into electrical firings along an array of auditory- 
nerve fibers. Again, several studies have modeled these 
transruction steps for applications in speech analysis and 
recognition. Yang et al. (1992) model this stage to consist of 
a time derivative representing the fluid-cilia coupling in the 
cochlea, an instantaneous nonlinearity to represent the non- 
linear channels for ionic current flow into hair cells along the 
cochlea, and a low-pass filter with a short-time constant to 
represent the ionic flow through the hair cells which results 
in a temporally smoothed slowly varying signal in each criti- 
cal band. Seneft (I 986) develops an auditory based front-end 
for speech recognition based on critical band filtering and a 
hair-cell/synapse model which involves nonlinearities 'such 
as dynamic range compression and half-wave rectification on 
the time-domain signals in each critical band, short-term ad- 
aptation to represent the current flow, and a low-pass filter to 
represent the partial loss of synchrony with increasing fre- 
quency. The output of such a model which represents 
auditory-nerve firing rates in each critical band is then used 
for speech recognition. Cohen (1989) uses an auditory model 
which incorporates critical band filtering, loudness 'transfor- 
mation, and a short-term adaptive mechanism relating stimu- 
lus intensities to auditory-nerve firing rates, as a front-end to 
a large vocabulary recognition system. Ghitza (1986, 1988) 
proposes a complex model of the auditory periphery which 
represents the intensity to neural firing rate transformation 
along with a neural feedback mechanism. Application of 
Ghitza's model to speech recognition has shown improved 
recognition rates in the pregence of wideband noise. 
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TABLE I. Critical band center frequencies F0k and bandwidths BWk for 
filter number k spanning a frequency range of 4 kHz. 

Critical band specifications 
Num. k Fo• BWk Num. k Fok BWk Num. k Fo• BW• 

I 50.0 70.0 9 617.4 86.0 17 1610.7 183.5 

2 120.0 70.0 10 703.4 95.3 18 1794.2 199.8 
3 190.0 70.0 11 798.7 105.4 19 1993.9 217.2 
4 260.0 70.0 12 904.1 116.3 20 2211.1 235.6 

5 330.0 70.0 13 1020.4 127.9 21 2446.7 255.3 
6 400.0 70.0 14 1148.3 140.4 22 2702.0 276.1 

7 470.0 70.0 15 1288.7 153.8 23 2978.0 298.1 
8 540.0 77.3 16 1442.5 168.2 24 3276.2 321.5 

25 3597.6 346.1 

Finally, the reduction stage which occurs in the auditory 
nerve can be seen as enhancement of spectral characteristics 
of the sound-pressure wave before it is conveyed to the cen- 
tral auditory system. An important aspect of the reduction 
stage is lateral inhibition which occurs due to a biological 
neural network acting on the auditory-nerve responses. Lat- 
eral inhibition networks can be found in all sensory systems 
such as vision, touch, and the auditory system. The essence 
of lateral inhibition is to sharpen spatial and temporal stimu- 
lus variations. In audition, it has been seen that the lateral 
inhibition network produces a spectral profile by rapidly de- 
tecting spatial discontinuities in the auditory-nerve response 
(Shamma, 1985; Yang et al., 1992). In general, lateral inhi- 
bition in several studies has been modeled as a frequency- 
dependent function with an excitatory area flanked by two 
inhibitory areas on either side, which is convolved with an 
auditory representation of the speech spectrum. Yang et al. 
(1992) model lateral inhibition by a spatial derivative, fol- 
lowed by thresholding using a half-wave rectifier and short- 
time integration to obtain a short-time auditory equivalent of 
the magnitude speech spectrum which has been successfully 
integrated into automatic recognition schemes. Ifukube and 
White (1987) use a three-range lateral inhibition function 
convolved with critical band energies in a cochlear implant 
design and evaluation. Similar lateral inhibition functions 
have been used to analyze and recognize vowels (Gro- 
cholewski and Krenz, 1992). A frequency-dependent lateral 
inhibition function has also been used for spectral sharpening 
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FIG. 2. A parallel bank of filters motivated by critical band auditory analysis 
using specifications shown in Table I and Eq. (4). 
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FIG. 3. A functional representation of lateral neural inhibition. 

in an adaptive filtering based speech enhancement scheme in 
the presence of broadband noise (Cheng and O'Shaughnessy, 
1991). 

A novel scheme which integrates aspects of the above 
complex stages of auditory processing into the frequency- 
domain dual-channel enhancement framework described in 

Sec. I will be discussed and evaluated in the following sec- 
tions. 

III. INTEGRATION OF AUDITORY PROCESSING IN 
THE ITERATIVE FRAMEWORK 

As described in the previous section, the auditory pro- 
cess involves a series of complex and nonlinear temporal and 
spatial transformations on the speech stimulus. The scheme 
proposed in this study is to integrate suitable aspects of the 
complex auditory transformations in order to obtain a more 
meaningful auditory representation in an iterative enhance- 
ment framework. The following sections describe three ma- 
jor auditory transformations and the way they are incorpo- 
rated in the speech enhancement scenaxio under 
consideration. 

A. Filters based on psychoacoustic critical band data 

Extensive studies in psychoacoustics have been per- 
formed in order to measure the ear's critical bandwidths and 

spacing in the frequency domain (Zwicker etal., 1957; 
Patterson, 1976; Scharf, 1970; Zwicker and Terhardt, 1980; 
Zwislocki, 1965). The critical band mechanism is seen to 
discriminate between sound energy within a single critical 
band and energy outside the band, thus allowing the auditory 
system to treat subcritical stimuli alike with respect to audi- 
tory phenomena such as masking, loudness, and harmonic 
discrimination (Scharf, 1970). Masking is one of the phe- 
nomena that has led to the determination of critical band 

shapes and frequencies. Masking can occur in two cases, 
frequency masking where a lower frequency sound generally 
masks a higher frequency one, and temporal masking where 
sounds delayed with respect to one another cause masking of 
one or both sounds. It is also seen that when two competing 
sounds occur in a critical band range, the sound with the 
higher energy masks the second (Scharf, 1970). Critical 
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FIG. 4. A detailed flowchart of the proposed auditory processing and speech-specific constraints. 

bandwidths are experimentally determined by the fact that a 
band of noise kept at a constant sound-pressure level while 
its bandwidth is increased is heard with equal loudness until 
critical bandwidth is reached (Schaff, 1970). The shape of 
critical band filters can be determined experimentally by us- 
ing broadband low-pass or high-pass noise to mask a tone. 
One such experiment with wideband noise stimuli and tones 
led to Gaussian critical band filter shapes and a set of center 
frequencies and bandwidths (Patterson, 1976). These critical 
band filter specifications may be approximate for conversa- 
tional speech. However, they have been successfully used to 
derive a perceptually relevant objective speech quality mea- 
sure (Klatt, 1982; Quackenbush et aL, 1988) (refened to as 
the weighted spectral slope or Klatt measure). A parallel 
bank of filters which were motivated by critical band speci- 
fications in these previous studies were used to obtain an 

integrated auditory representation into the enhancement al- 
gorithm. The complete set of 25 critical band motivated filter 
bandwidths and center frequencies is given in Table I for a 
frequency range of 4 kHz. 

The Gaussian approximation for the shapes of the criti- 
cal band filters can be expressed in terms of center frequency 
and bandwidth (Patterson, 1976), and is given by 

aAj):exp - l.•-•--•ff/] for ,•-- 1,2 ..... 2S, (4) 
where j e (aa ,bk). Here, a• and b• are lower and upper lim- 
its of the frequency range of the kth critical filter. The critical 
band filters as described above are illustrated in Fig. 2. 

All processing in the enhancement framework is per- 
formed on overlapping time frames. The first transformation 
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on a given time frame (jth frame) at the ith iteration is to 
obtain the linear magnitude spectrum [Si(w)[ 2. The 25 point 
critical band representation of the magnitude spectrum at the 
ith iteration is then given by 

bt 

x&,•= • &(j)l&(to•)] 2 for k =1,2 ..... 25. (5) 
]= at• 

Thus the critical band transformation is applied in the fre- 
quency domain, and therefore incorporates aspects of co- 
chlear filtering in the analysis stage of the auditory process. 
The critical band energies Xk. i will also be referred to as 
critical band intensities. 

B. Intensity transformation based on loudness 

The next stage in the auditory process is transduction 
where a nonlinearity is applied to the critical band represen- 
tation followed by smoothing across time. The nonlinearity 
in this case is assumed to be a transformation from the criti- 

cal band intensity X•. i to a perceived loudness sensation. 
This transformation is given by the psychophysical power 
law of loudness sensation postulated by Stevens (1955). 
Hence the loudness based transformation of the critical band 

intensities at iteration i can be written as 

Lk,i=(Xk.i) 113 for k=l,2 ..... 25. (6) 
Next, in order to obtain a slowly varying signal in each criti- 
cal band, smoothing over time frames is performed based on 
a broad speech classification technique presented in Hansen 
(1991), as well as in Nandkumar and Hansen (1995) for the 
ACE-I system. The reasoning behind smoothing over broad 
classes (voiced, transitional, and unvoiced) is to constrain the 
auditory processing to match speech production properties. 
An example of a speech production property is that for most 
voiced sounds, specWal characteristics are stationary over the 
entire section rather than just a short-time frame. The specific 
smoothing constraints on the auditory representation Lk, i re- 
suits in an auditory constrained spectrum Lk,i, and are dis- 
cussed in detail in Sec. IV. 

C. Lateral neural inhibition 

The final stage of the auditory process incorporated in 
this study is based on lateral neural inhibition. Lateral inhi- 
bition is a sensory phenomena which, in audition, acts upon 
the auditory-nerve responses in order to obtain and convey a 
spectral representation to the central auditory system (Yang 
et al., 1992). Lateral inhibition is a concept based upon the 
fact that the response of a neuron can be affected by the 
response of adjacent neurons, spatially and temporally. In 
general, lateral inhibition is seen to sharpen spatial input pat- 
terns to highlight edges and peaks, and in some cases 
sharpen temporal input changes (Shamma, 1985). The model 
for a lateral inhibition function used in this study is similar to 
the one used in Grocholewski and Krenz (1992), where the 
excitatory and the inhibitory ranges each span one critical 
band as illustrated in Fig. 3. 

The function of lateral inhibition is applied on the audi- 
tory representation L•. i by a discrete convolution operation. 
The resulting auditory constrained spectrum is given by 

25 

L;!?(m)= • L;.i(n)H(m-n) for m= 1,2 ..... 25, 
(7) 

where H(j) is the functional representation of lateral inhibi- 
tion given by 

H(j)=-0.7, j=-l, 

=1.0, j=0, 

=-0.3, j=l, 

= 0.0, elsewhere. (8) 

The lateral inhibition stage is implemented only on L•. 0, 
which is the auditory representation of degraded speech at 
the start of the iterative enhancement process. This step was 
decided based on the observation that spectral sharpening 
due to lateral inhibition adds to spectral distortion as the 
iterations proceed. However, the spectral estimate of noisy 
speech is shown to be a better starting point for iterative 
enhancement if the auditory constrained spectrum includes 
the lateral neural inhibition stage. This is due to the sharpen- 
ing of spectral features by lateral inhibition which results in 
an enhanced spectral estimate at the beginning of the itera- 
tive procedure, especially when wideband noise has the ef- 
fect of suppressing spectral peaks. In addition, lateral inhibi- 
tion is seen to be effective in the auditory constrained 
spectrum as an initial spectral estimate only for sections clas- 
sifted as voiced. Spectral enhancement was not significant 
over transitional and unvoiced sections of the noisy utter- 
ance. In fact, further spectral distortion was observed over 
some unvoiced sections. Hence the lateral inhibition stage is 
enabled only during sections classified as voiced. 

IV. AUDITORY CONSTRAINTS ACROSS SPEECH 
SECTIONS 

Smoothing constraints over time and iteration are dis- 
cussed in this section based on the auditory representation 
Lk, i . The constraints are directed by a broad classification of 
speech into voiced, transitional, and unvoiced sections. The 
classification is performed by a boundary detector developed 
in Hansen (1991, 1994) and integrated into the enhancement 
algorithm in a manner similar to that in the ACE-I algorithm 
(Nandkumar and Hansen, 1995). A detailed flowchart of the 
proposed auditory constraints is illustrated in Fig. 4. 

A. Constraints on an auditory spectral representation 

Smoothing constraints on the auditory representation are 
applied over time in order to obtain a slowly varying time 
signal for each auditory critical band response. Speech sec- 
tions classified as "voiced" are in general steady state and 
hence the smoothing is performed over an entire given sec- 
tion. Smoothing in "voiced" sections is of the form of three 
frame median filtering in order to remove single frame out- 
liers followed by polynomial smoothing using a least- 
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squares-fitting technique. Speech sections classified as "un- 
voiced" may not have smooth variations over the entire 
section. Hence a triangular weighted smoothing is applied 
over five frames for L i.i...L2o.i, the auditory representation 
up to approximately 2200 Hz, and over seven frames for the 
auditory representation at higher frequencies, L2•,i...L25.i. 
The smoothing over five to seven frames corresponds to 
smoothing over approximately 35-50 ms of the input speech 
signal. A slowly varying signal over 35-50 ms is a reason- 
able assumption over unvoiced sections of speech. An ex- 
ample of smoothing over five frames for the kth auditory 
representation at time frame tj is given by 

L•.i(tj) = [Lt•,i(t j- 2) + 2L•.i(t j- 1 ) + 3Lt•.i(t fl 

+ 2Lk.i(tj + 1 ) + Lk.i(tj + 2)]/9. (9) 
Speech sections classified as "transitional" are transient re- 
gions, and a five frame triangular weighted smoothing is 
maintained over all Lk. • , and seen to result in an improved 
spectral representation. 

Constraints are also applied over iterations on Lk, i in 
order to obtain smoother transitions across iterations and al- 

low the iterative enhancement algorithm to achieve xmproved 
noise suppression along with minimum possible spectral dis- 
tortion at the same iteration. The above constraint was ex- 

perimentally derived with the help of objective quality mea- 
sures, vocal-tract spectra, and informal listening tests. The 
constraints across iterations which achieved the best quality 
are of the form 

band), and compensated in energy for the critical band inte- 
gration, given by 

Xk.i 

IS•o•,•l•-•=a?n(j) for •-- 1,2 ..... 25, (12) 

where as, b•, and Bn are as given in Eq. (4). The resulting 
constrained energy spectrum is linearly interpolated from 25 
points to 128 points. Next, the following steps are performed 
to obtain a smooth vocal-tract spectrum. An inverse discrete 
Fourier transform (IDFT) of the interpolated constrained 
spectrum extended to 256 even symmetric points results in 
the antecorrelation coefficients r•, i given at time frame t./by 

r•.i(tj) = IDFT[lS;a(tfl I•]. (13) 

Applying the Durbin recursion on the first 11 autocorrelation 
coefficients r•. i results in ten linear prediction parameters 
which will be termed auditory constrained and enhanced lin- 
ear prediction (ACE-LP) parameters. Next, an auditory con- 
strained smooth linear spectrum is given by 

L, . , [4L•.i(tfl+L•.i-,(tfll 

where the auditory representation from the current iteration 
is fractionally weighted by the auditory representation from 
the previous iteration. A detailed flowchart of the auditory 
processing and the speech-specific constraints is shown in 
Fig. 4. 

B. Auditory constrained linear prediction based 
speech spectrum 

The auditory transformation in frequency anti magni- 
tude, and speech-specific constraints across frequency, time, 
and iteration, result in a spectral representation termed con- 
strained auditory spectrum. Next, the 25-point, fi'equency 
warped constrained auditory spectrum must undergo further 
transformations in order to obtain a linear vocal-m•ct spec- 
trum for use in the primary channel Wiener filter of the pro- 
posed dual-channel enhancement framework. The following 
transformations lead to such an auditory constrained linear 
speech spectrum. First, an inverse transform converts the au- 
ditory constrained spectrum to an approximation of the in- 
tensity magnitudes from critical bands as follows: 

X;.,=(L;.,p for =1.2 ..... 
Next, the constrained critical band representation X•, i is un- 
warped along the frequency scale (each energy value is 
placed at the center frequency of the respective critical 

^ t . gi.t• 2 
PS(tOk ,t,tj) = 1 -- •]0 la•,tj(l)e-Jl•o•] , (14) 

where g•'9 is a gain term and a;.ti are the ACE-LP param- 
eters tbr time frame t i at the ith iteration. The auditory con- 
strained smooth linear spectrum is then included in the pri- 
mary channel Wiener filter of the proposed dual-channel 
enhancement framework, and the resulting enhancement al- 
gorithm is termed auditory constrained enhancement-II 
(ACE-II). Linear vocal-tract spectra of a single representa- 
tive time frame for four different speech sounds are shown in 
Figs. 5 and 6. Each spectra is illustrated for four 
conditionq---original noise-free, degraded (SNR=5.0 dB), 
ACE-LP on the degraded speech as a starting point for itera- 
tive enhancement, and enhanced speech after three iterations 
of ACE-II. The ACE-LP spectral representations are seen to 
be better starting points than the degraded speech spectrum 
for all speech sounds shown (a vowel/aa/and a nasal ln/in 
Fig. 5(a) and (b), an unvoiced stop/pl and a fricative Is/in 
Fig. 6[a) and (b). Furthermore, the ACE-II algorithm is seen 
to bring the enhanced spectra closer to the original spectral 
variations for all speech sounds shown, especially well in 
higher energy regions of the frequency spectra. Results re- 
garding the quality of speech enhanced by ACE-II are pre- 
sented in the following section. 
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FIG. 5. Linear vocal-tract spectra for (a) a vowel section/an/and (b) a nasal section In/, for four cases: (i) original undograded. (ii) degraded, SNR=5.0 dB, 
(iii) ACE-LP processed and input to first iteration, (iv) ACE-II enhanced after three iterations. 

V. RESULTS FOR THE ACE-II SYSTEM 

The ACE-II enhancement system was developed by 
simulating aspects of the auditory process, resulting in a 
novel auditory spectral representation which is incorporated 
along with perceptual based constraints into the iterative en- 
hancement algorithm. The quality of speech enhanced by 
ACE-II is assessed using the Itakura-Saito (IS) log- 
likelihood objective quality measure and the weighted spec- 
tral slope (Klatt) measure. The weighted spectral slope mea- 
sure (Klatt, 1982; Quackenbush etal., 1988) is a 
perceptually relevant measure based on critical band analysis 

of the speech spectrum. In this study, the Klatt measure was 
implemented with the same critical band specifications as the 
one used for the ACE-II algorithm. Hence the auditory per- 
ception based Klatt measure, along with the IS measure 
which is a good measure of spectral distortion, provides a 
relevant way to assess quality improvement for the ACE-II 
algorithm. 

In all cases, signal-to-noise ratio (SNR) is defined sim- 
ply as the ratio of the noise-free speech energy to the degrad- 
ing noise energy (the two energy values are assumed to be 
known in an experimental scenario where speech and noise 
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FIG. 6. Linear vocal-tract spectra for (a) an unvoiced stop/p/and (b) a fricative section Is/, for tbur cases: (i) original undegraded. (ii) degraded. SNR=5.0 
dB, (iii) ACE-LP processed and input to first iteration. (iv) ACE-11 enhanced after three iteration,;. 

are digitally mixed at controlled SNR levels). The dual- 
channel iterative framework has been shown to be tobust in 

varying cross-talk levels for the ACE-II a]gorithm (Nandku- 
mar and Hansen, 1992, 1994; Nandkumar, 1993). In this 
study, we shall focus on evaluating the new auditory con- 
straint technique at a fixed cross-talk level of zero. So, for all 
results discussed in this section, the best cross-talk condition 
(zero cross-talk) is assumed. The correlation functions 
H•(•o) and H2(to) are estimated during noise-only and 
speech-only conditions in a dual-channel experimental setup. 
Further details about experimental simulation of the dual- 

channel scenario can be found in Nandkumar and tlansen 

(1992; 1995) and Nandkumar (1993). Evaluation for a single 
utterance and a single noise condition will first be presented, 
followed by evaluation over a large set of utterances and 
varying noise conditions. 

A. Evaluation for a single utterance, single noise 
condition 

Enhancement performance is illustrated using several 
tools. First, objective quality measures classified over differ- 
ent speech classes are shown. Time waveforms and time ver- 

3841 d. Acoust. Sac. Am., Vol. 97, No. 6, June 1995 J.H.L. Hansen and S. Nandkurnar: Speech in noisy backgrounds 3841 

Downloaded 03 Oct 2011 to 129.110.5.92. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



TABLE I[. 1S measures for ACE-II over five iterations, for AWGN, SNR=5.0 dB. Optimum perceived objec- 
tive quality is indicated by a O. 

[takura-Saito likelihood measure (across iterations) 
Sound 

type Degraded No. I No. 2 No. 3 No. 4 No. 5 No. frames 

Silence 3.42 1.96 1.54 0 1.38 1.57 2.61 51 

Vowel 5.55 4.13 2.15 00.76 1.05 4.43 158 

Nasal 3.53 2.34 1.74 0 1.40 1.68 3.65 i 3 

Stop 3.33 2.37 1.95 !.67 0 1.60 2.05 72 
Fricative 1.41 1.21 0 !.19 [.29 1.65 2.47 39 

Liquids and glides 3.04 1.92 0.95 00.52 1.14 8.95 21 
Voiced+ unvoiced 4.23 3.11 1.88 O 1.06 1.29 3.89 303 

Total 4. I 1 2.94 1.83 0 1.10 1.33 3.71 354 

sus frequency vocal tract spectra are also used to illustrate 
performance. In many cases, ACE-II performance will be 
compared with the unconstrained dual-channel iterative 
framework. All objective measures are calculated with re- 
spect to the original noise-free utterance. Hence an objective 
measure closer to zero implies lesser spectral distortion or 
lesser deviation from the original. The improvement in 
speech quality is illustrated using the IS measure and the 
Klatt measure classified over different speech classes for the 
degraded utterance and five iterations of ACE-II in Tables II 
and III, respectively, for a single utterance. 

The degrading noise is additive white Gaussian noise 
(AWGN) at a SNR of 5 dB. The IS measure and the Klatt 
measure both show significant and consistent improvement 
over all speech classes. However, the IS measure is seen to 
have a larger variance (that is, the distance between the en- 
hanced and degraded measures is larger) than the Klatt mea- 
sure. Quality improvement for ACE-II using IS measure is 
seen to be similar to that of ACE-I which was illustrated in 

Nandkumar and Hansen (1992, 1995). In addition, ACE-II is 
seen to result in improved spectral distortion for fricatives, 
which are noiselike and difficult to enhance. Quality im- 
provement is seen to be the best at iteration 3 for most 
speech classes. The perceptually relevant Klatt measure in 
Table III also shows significant improvement especially for 
vowels, nasals, liquids, and glides. Optimal speech quality in 
this case is seen to be achieved at both iteration 3 and 4 for 

the different speech classes. There seems to be very little 
perceptual difference between the overall speech quality at 

these two iterations. Informal listening tests confirm the 
above results and provide a choice of the third or fourth as 
terminating iterations. Residual noise at the fourth iteration 
seemed to be lesser than at the third iteration, and hence 

preferred more during informal listening tests. 
Next, time waveforms and frame-to-frame IS measures 

are presented for speech degraded with AWGN, SNR=5.0 
dB in Fig. 7(a), and speech enhanced from iteration 2 of the 
unconstrained enhancement framework in Fig. 7(b), and 
from iteration 3 of ACE-II in Fig. 7(c). Spectral distortion 
due to AWGN is seen to affect low-energy regions of speech 
more than steady-state high-energy sections as seen in Fig. 
7(a). Again, ACE-II is seen to successfully suppress noise, 
and result in consistent quality improvement across the entire 
utterance [Fig. 7(c)]. It can be concluded from the frame-to- 
frame results presented for ACE-I in Nandkumar and Hansen 
(1992; 1995) and Nandkumar (1993) and for ACE-II above 
that auditory based constraints contribute to significant im- 
provement in quality especially for low-energy unvoiced and 
transitional regions of speech, when compared to an uncon- 
strained dual-channel iterative enhancement framework. 

Time versus frequency based vocal-tract spectra for the word 
players are also shown for the original, degraded, and en- 
hanced from iteration 4 of the unconstrained technique, and 
enhanced from iteration 4 of the ACE-II algorithm, in Fig. 
8(a)-(d). Time versus frequency spectra in this case illustrate 
the improvement in spectral degradation across frequency, 
and for the different sounds in the given word. The ACE-II 

TABLE III. Weighted spectral slol• (Klatt) measures for ACE-II over five iterations, for AWGN, SNR =5.0 dB. 
Optimum perceived objective quality is indicated by a O. 

Weighted spectral slope measure (across iterations) 
Sound 

type Degraded No. 1 No. 2 No. 3 No. 4 No. 5 No. frames 

Silence 3.91 4.33 2.86 02.72 2.76 2.92 51 

Vowel 2.33 2.30 1.66 1.48 0 1.45 2.77 158 

Nasal 2.51 2.12 1.86 1.74 0 1.66 1.83 13 

Stop 2.75 2.63 O 2.56 2.60 2.75 2.94 72 
Fricative 3.01 2.50 2.97 0 2.39 2.53 2.82 39 

Liquids and glides 3.47 2.56 1.95 1.88 O 1.54 4.55 21 
Voiced + unvoiced 2.60 2.41 2.07 O ! .88 1.91 2.90 303 

Total 2.79 2.69 2.18 O 1.99 2.03 2.90 354 
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FIG. 7. Time waveforms and frame-to-frame [S measures between original noise-free ut[erance and processed utterances: (a) degraded with AWGN, 
SNR=5.0 dB, (b) iteration No. 2 of unconstrained enhancement, (c) iteration No. 3 of the ACE-If technique. 

technique is seen to improve some of the highly distorted- 
spectral characteristics, while the unconstrained technique 
shows further distortion at the same iteration. ACE-II is also 

seen to improve high-frequency charac-teristics, especially 

for the trailing fricative, without introducing further distor- 
tion in other spectral regions. Further evaluations on a large 
set of speakers, sentences, signal-to-noise ratios, and noise 
cases will be discussed in the following section. 
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FIG. 8. Time versus frequency vocal-tract responses for the word pla_vers for (a) original noise-free, (b) degraded, SNR=5.0 dB (AWEIN), (c) iteration No. 
4 using dual-channel unconstrained Wiener filtering, and (d) iteration No. 4, using the ACE-It algorithm. 

B. Evaluation over the TIMIT database with different 
noise conditions 

In this section, a more detailed evaluation of the ACE-II 

system is presented based on a large set of utterances for a 
wide range of signal-to-noise ratios, and for different noise 
cases such as slowly varying colored noise. The purpose is to 
show that improvement for a single noisy speech condition 
can be extended to larger noise and speaker populations. The 
primary means of demonstrating quality of the proposed en- 
hancement technique are objective quality measures. Visual- 
ization of speech waveforms and spectra over time and in- 
formal listening tests have also been used to support 
observed speech quality measures. Objective quality mea- 
sures have been shown to possess fair to good correlation 
with subjective perceived quality (Quackenbush etaL, 
1988), and have been used extensively in the evaluation of 
speech coding (Hansen and Nandkumar, 1992; Quackenbush 
et el., 1988) and speech enhancement systems (Hansen and 
Clements, 1985, 1989; Hansen, 1991). In this study, objec- 

tive measures have not only been used as a global measure 
over utterances, but also visualized over time frames and 

over classified phoneroes and speech classes, in order to 
demonstrate a more in-depth understanding of enhanced 
quality. 

1. White, Gaussian noise 

Performance evaluation for an additive white Gaussian 

noise (AWGN) distortion will be discussed in this section. 
First, performance based on global Itakura-Saito (IS) mea- 
sures for a sentence from the TIMIT database (NIST, 1988) 
degraded with AWGN at different SNR levels was deter- 
mined. All processing was done on the following sentence 
spoken by a male speaker: "Only the best players enjoy 
popularly." Figure 9(a) illustrates global IS measures versus 
SNR which range from -5 to 10 dB for the following five 
cases: (a) the degraded original speech, (b) dual-channel un- 
constrained Wiener filtering, (c) the ACE-I algorithm, (d) the 
ACE-II algorithm, and (e) the theoretical limit. The theoreti- 
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TABLE IV. A comparison of objective speech quality measures for de- 
graded, unconstrained dual-channel Wiener filtering, and the propose,] 
ACE-1 and ACE-If systems, for white Gaus4an noise, SNR=5.0 dB. I•[ is 
the average correlation coefficient between objective and subjective speech 
qualit• as measured by composite acceptability of the diagnostic acceptabil- 
ity measure (Quackenbush et al., 1988). 

Objective speech quality measures 

Itakura-Saito log area ratio weighted spectral slope 

I•l 0.59 0.62 0.74 

Degraded original 4. I I 8.48 2.79 
Unconstrained 2.89 7.41 2.54 

ACE-! 1.08 5.78 2. ! 0 

ACE-II 1.04 3.66 1.95 

are seen to perform better and are more consistent as SNR 
decreases when compared to dual-channel unconstrained 
Wiener filtering. However, the measured spectral distortion 
of the enhanced speech is still seen to increase as SNR de- 
creases. Overall quality of ACE-II vs SNR is seen to be 
comparable with that of ACE-I, with a slight improvement 
for ACE-II at lower SNR levels. The overall weighted spec- 
tral slope (Klatt) measures are also illustrated for ACE-II in 
Fig. 9(b). ACE-II is seen to improve overall quality as com- 
pared to unconstrained dual-channel Wiener filtering and the 
ACE-I algorithm for all tested SNR levels. One advantage of 
the general class of Wiener filtering approaches is that no 
"musical tone" artifacts are present after processing as can 
be observed in spectral subtraction techniques (Lira and Op- 
penhelm, 1978; Hansen, 1988). Informal listening tests using 
a collection of TIMIT sentences have confirmed improve- 
ment in speech quality, with no additional artifacts being 
introduced after enhancement processing using ACE-I and 
ACE-II, for both male and female speakers. 

Similar improvement in overall quality is seen for the 
log-area-ratio measures for both ACE-I and ACE-II. A com- 
parison of the three objective speech quality measures for 
unconstrained dual-channel Wiener filtering, and the ACE-I 
and ACE-II systems, is shown in Table IV. The correlation 
between each objective quality measure and subjective qual- 
ity as measured by composite acceptability of the diagnostic 
acceptability measure (Quackenbush etal., 1988) is also 
shown. 

a) Original Degraded. 
b) Dual-Channel Unconstrained Wiener Filter. 
c) Proposed ACE-I Dual-Channel Algorithm. 
d) Proposed ACE-II Dual-Channel Algorithm. 
e) Theoretical Limit (using undegraded spectrum). 

FIG. 9. White Gaussian noise performance: global (a) Itekurn-Saltß and (b) 
Klatt measures for a single utterance versus SNR. 

cal limit represents best possible enhancement (IS measure 
closest to 0) that could be obtained using exact noise-free 
speech parameters, generally not available in practice, during 
dual-channel enhancement. The ACE-I technique with con- 
straints on mel-cepstral parameters (Nandkumar and Hansen, 
1992; Nandkumar, 1993) and the proposed ACE-If algorithm 

2. Nonstationary colored noise 

Next, performance for slowly varying colored aircraft 
cockpit noise • and noise from the cooling fan of a worksta- 
tion (computer fan noise) is obtained for the enhancement 
systems under consideration. Samples of these colored noise 
cases were obtained from actual noise recordings. 

Enhancement performance is illustrated by means of 
global quality measures over a single utterance versus SNR, 
for aircraft noise distortion in Fig. 10(a) and for computer 
fan noise distortion in Fig. 10(b). Best overall objective 
speech quality was obtained for both colored noise cases at 
the third iteration. It can be seen from Fig. 10(a) that overall 
quality improvement for the proposed ACE-II algorithm for 
aircraft cockpit noise is comparable to that obtained for 
white noise, especially at higher SNR values. It is noted that 
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c) Proposed ACE-I Dual-Channel Algorithm. 
d) Proposed ACE-II Dual-Channel Algorithm. 
e) Theoretical Limit (using undegraded spectrum). 

FIG. 10. Colored noise performance: global Itakura-Saito measures for a 
single utterance versus SNR for (a) aircraft cockpit noise and (b) computer 
fan noise. 

TABLE V. IS measures over speech classes for speech degraded by aircraft 
cockpit noise at SNR= 10 dB, and enhanced using unconstmined Wiener 
filtering, ACE-I, and ACE-II. 

Aircraft cockpit noise 
ltakura-Saito likelihood measure 

Sound 

type Degraded Unconstrained ACE-I ACE-ll No. frames 

Silence 2.42 6.24 4.10 1.06 51 

Vowel 0.18 0.09 0.16 0.08 158 

Nasal 0.58 0.68 0.69 0.39 13 

Stop 3.77 2.17 1.66 0.94 72 
Fricative 27.05 8.34 6.49 3.52 39 

Liquids and glides 0.34 0.12 0.87 0.20 21 
Voiced+unvoiced 4.52 1.67 1.40 0.75 303 

Total 4.22 2.33 1.79 0.80 354 

the ACE-I algorithm performs better than unconstrained 
Wiener filtering, and the proposed ACE-I1 algorithm signifi- 
candy outperforms both ACE-I and unconstmined Wiener 
filtering for all SNR levels shown. Overall IS quality mea- 
sures in Fig. 10(b) indicate very high distortion for the tested 
speech utterance degraded with computer fan noise. The 
measures also indicate poor enhancement quality for uncon- 
strained Wiener filtering and the ACE-I algorithm. However, 
ACE-II again shows constant improvement over uncon- 
strained Wiener filtering and ACE-I, achieving quality levels 
comparable to the white Gaussian noise and aircraft noise 
cases. Informal listening tests confirm the quality improve- 
ment demonstrated by global objective measures. In sum- 
mary, it is seen that ACE-II with auditory process based con- 
straints provides excellent enhancement quality for colored 
noise cases when compared to unconstrained dual-channel 
Wiener filtering and the ACE-I algorithm. One of the reasons 
ACE-II performs better than ACE-I in colored noise cases 
could be that the auditory constraints for ACE-II were de- 
rived independent of noise type, whereas the auditory con- 
straints for ACE-I were derived based on the behavior of 

mel-cepstral parameters during iterative enhancement for a 
white Gaussian noise distortion. 

Objective measures of speech quality can be grouped 
into broad speech classes in order to illustrate improvement 
for each class. Frame-to-frame Itakura-Saito measures are 

classified over speech classes and shown for a degraded ut- 
terance (SNR= l0 dB), unconstrained dual-channel Wiener 

TABLE VI. IS measures over speech classes for speech degraded by com- 
puter fan noise at SNR = 10 dB, and enhanced using unconstrained Wiener 
filtering, ACE-I, and ACE-II. 

Computer fan noise 
Itakura-Saito likelihood measure 

Sound 

type Degraded Unconstrained ACE-I ACE-II No. frames 

Silence 15.12 15.69 16.64 2.47 51 

Vowel 0.09 0.04 0.30 0.06 158 

Nasal 1.02 0.21 1.03 0.20 13 

Stop 12.77 I 1.57 6.27 1.95 72 
Fricative 14.88 3.11 1.06 1.82 39 

Liquids and glides 0.06 0.02 0.53 0.05 21 
Voiced +unvoiced 5.04 3.18 1.86 0.74 303 

Total 6.50 4.98 3.99 0.99 354 
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TABLE VII. lmkura-Saito quality mea•,ures across phonemes lbr a set of 100 speech utterances for ACE-II 
compared to degraded (AWGN, SNR=5 dB). 

OBJECTIVE SPEECH QUALITY ACROSS A/ffE•C• PHONFaMES 
hline PA. DEC ACE-If • Fr Ph. DEC ACE-H • Fr 
CONSONANTS - nasals 

[m/ •me 7.986 :1.970 683 
in/ _no 9.710 a.as2 usa 
/ag] sin__• 9.6:11 3.618 159 
/nx/ many 7.475 1.•86 77 
/era/ p•ble• 6.197 3.514 33 
/en/ t•tio• 10.376 3.118 135 
/eng/ •e•in 9 4.261 1.2• 18 
CONSONANTS - unvoiced ]ricatives 
Is/ •p 0.818 1.184 1433 
/th/ /__fling 1.110 1.201 203 
/f! ? 1.032 1.173 ?• 
/sh/ sh•w 1.471 1.535 673 
CONSONANTS - •oiced •c•fi•es 
/,/ •r •.02s •.352 •os4 
/•h/ g• 1.277 •.314 • 
/dr/ t•t 3.852 •.• 2•o 

CON•ONANT•- a•cates 

CONSONANTS - unvieed stops 
Iv/ _p• 2.733 1.242 sos 
/t[ • 1 .TTO 1.068 542 
/k/ by 2.•9 1.191 ss9 
CON, qONANTS - voiced stops 
/b/ _be 2.877 0.982 135 
/d/ _d•wn 1.453 0.844 186 
/g/ •ve 2.788 1.175 142 
CONSONANTS - closure s•ops 
/tel/ i• pays 1.983 L428 999 
/•l/ points 2.166 1.647 655 
/be V •y 4air •.•0 
/dcl/ sa•w• 3.6• •.•19 636 
/gcl/ •u 3.•40 1.774 241 
/p•[ •com•h 1.628 1.271 779 
CONSONANTS - gloltal stop, flap 
]• _•ow 5.1• 1.•1 

CONSONANTS - un•oice8 wMsper 
/]h/ •i• x.826 2.128 
/ch/ c__hop 1.791 2.628 

VOWELS - front 
/lb/ h_/d 2.403 0.720 947 
/eh/ he__• 2.998 o.e• 856 
/•/ h_•d 2.4O7 0.4• 977 
/ux/ to buy 2.9•2 0.350 626 
VOWELS - mid 

/•/ _odd 4.s03 o.q86 1339 
/er/ ea___•h 9.798 2.174 562 
/•k/ •p 3.518 O.693 625 
/•o/ _an 6.682 1.826 780 
VOWELS - back 

/uw/ bo___• 5.068 1.280 197 
/uh/ fo___• 3.401 0.531 116 
VOWELS - front schwa 
/Lx/ he.._• 3.974 1.426 1043 
VOWELS - back schwa 

/a•x/ _• ton 4.872 1.190 628 
VOWELS - retrotiered schwa 
/•r/ •fter 12.011 2.839 s• 
VOWELS - voiceless schwa 

/ax-h/ s_ub 3.201 2322 

/•/ A•i 4.34s 2.os2 143 
CONSONANTS - voiced whisper 
/hv/ you _have 8.101 1.459 103 
DIPHTHONGS 

/oy/ c o_.['m 5.595 1.102 x7x 
/ey/ p a.._['m 1.73.3 0.670 725 
/ow/ c_ode 3.453 0.976 660 
/aw/ po•t 3.093 0.629 288 
/iy/ n e___• 2.278 1.311 1220 
SEMIVOWELS - liquids 
/r/ _ran 12.2s? 2.590 747 
It/ _/a, vm, 5.326 1.496 1079 
/el/ chemica._• 6.261 2.008 356 
SEMIVOW•œS - 9lides 
/w/ •wet 7.290 2.507 289 
/y/ you 2.417 1.107 318 
Silcncc 

/• / extended 1.736 0.871 5087 
/pau/ pa•e 3.017 1.825 175 
/epi/ epenthetic 4.656 3.437 98 

35 Overal] -/•/ I 3.677 1.394 36006 3.996 1.480 30919 

filtering, ACE-I, and ACE-H, for aircraft cockpit noise dis- 
tortion in Table V and computer cooling fan noise in Table 
VI. 

Unlike the case of white Gaussian noise, both colored 
noise cases do not show significant distortion for the vowels, 
nasals, liquids, and glides. This is as expected since energy 
distribution over frequency for colored noise cases is similar 
to that of the above sonorant classes (that is, the lower fre- 
quencies have high energies while the higher frequencies 
have decreasing energies). However, spectral distortion for 
low-energy stops, fricatives, and silence regions is seen to be 
very high. Unconstraincd dual-channel Wiener filtering is 
seen to retain SOhorant quality while the highly distorted 
stops and fricafives show little improvement. ACE-I is seen 
to do a better job with stops and fricatives, while slightly 

distorting sonorants. ACE-II not only gives good overall 
quality, but also improves quality over all speech classes, 
which is especially significant over stops and fricafives as 
compared to unconstrained Wiener filtering and ACE-I. 

3. Performance classification over individual 

phonemes 

In the previous sections, performance improvement has 
been demonstrated in the form of global objective quality 
measures and frame-to-frame quality measures classified 
over broad speech classes. Phonetic labeling of the TIMIT 
sentences enables further classification of quality measures 
over individual American English phonemes. Such classifi- 
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cation would provide important information about the effects 
of noise and enhancement processing on individual 
acoustic-phonetic units of speech. This information could be 
useful not only for possible further improvement of enhance- 
ment quality but also in the development of postenhance- 
ment speech processing systems. One hundred sentences (72 
male speakers and 28 female speakers) from the TIMIT da- 
tabase were chosen, degraded with AWGN at a SNR of 5 dB 
and a cross-talk level of -oo dB, and enhanced using ACE-I[ 
Performance evaluation over individual phonemes was auto- 
mated using acoustic-phonetic boundary information avail- 
able for each sentence in the TIMIT database. 

The set of phonemes with degraded and enhanced IS 
measures are shown for ACE-II in Table VII for AWGN 

degradation (SNR= 5 riB). Good quality improvement is ob- 
served over virtually all classified phonemes for the pro- 
posed ACE-II algorithm. This is encouraging for phonemes 
which were particularly sensitive to noise such as glottal 
stops, voiced stops, nasals, liquids, and glides. Voiced frica- 
tives on the average showed some improvement, whereas 
unvoiced fricatives and affricates which form only 9% of all 
processed phoneme frames show little improvement. The 
proposed ACE-II technique is seen to maintain or slightly 
degrade quality for all unvoiced fricatives and affricates. In 
an earlier study, it was seen that ACE-I (Nandkumar and 
Hansen, 1992, 1995; Nandkumar, 1993) further distorts un- 
voiced fricatives and affricates. This tendency has been cor- 
rected by ACE-II due to constraints over time and iteration 
being applied over all sections classified as unvoiced and 
transitional, and due to the enhanced ACE-LP spectrum as a 
starting point for the iterative algorithm. All nasals are seen 
to be severely degraded, and ACE-II is seen to do a good job 
in improving quality. ACE-II performs well for severely de- 
graded phonemes belonging to vowels, diphthongs, stops, 
and whispers. Significant quality improvement was noted for 
highly distorted phonemes such as/oy/,/I/,/axr/,/dx/. Over- 
all, with quality improvement for 52 of the 58 classified pho- 
nemes, and maintaining the distortion in the remaining 6 
phonemes, speech quality over the entire 100 sentence set is 
consistently improved. 

It is known that auditory fatigue arising from temporary 
modifications in hearing is caused by exposure to noise 
(Sorin and Thouin-Daniel, 1983). Moreover, large distortions 
during low-energy sounds of speech can be perceptually an- 
noying or detrimental to postprocessing system performance 
(such as speech recognition or coding). The consistency of 
noise suppression (determined via informal listening tests) 
and consistent improvement in speech quality over pho- 
hemes and over a large set of speech suggest a possible re- 
duction in listener fatigue and improved perceptual quality 
for the proposed ACE-II algorithm. 

Vl. CONCLUSIONS 

This study extends the idea of augmenting mathematical 
criteria based speech enhancement with perceptual proper- 
ties, by incorporating aspects of the peripheral auditory pro- 
cess into constrained iterative enhancement. The framework 

was chosen to be a frequency-domain dual-channel scenario, 
but similar performance has been noted for single-channel 

scenarios where noise characteristics are updated during non- 
speech frames (noise is assumed to be stationary or slowly 
varying). The dual-channel enhancement framework is a pre- 
viously developed two-step iterative Wiener filtering scheme. 
Peripheral auditory processing and lateral inhibition are 
simulated resulting in a unique spectral representation of 
speech. Constraints based on broad speech classes are devel- 
oped on the auditory representation, which in turn are incor- 
porated into the iterative enhancement scheme. The system 
was termed ACE-II, in order to differentiate between an ear- 

lier algorithm developed by us (ACE-I), where for the first 
time, auditory properties in the form of mel-cepstral param- 
eters were integrated into an iterative enhancement frame- 
work. The ACE-II algorithm is seen to achieve superior lev- 
els of quality and noise suppression in four iterations. An 
advantage of ACE-II is that at each iteration a set of en- 
hanced speech parameters are available for use along with 
the enhanced speech. In the case of ACE-II, the auditory 
representation can be transformed into the cepstral domain or 
spectral parametric domain for speech coding or speech rec- 
ognition in noise. 

The speech quality improvement due to ACE-II has been 
demonstrated using several novel techniques. Objective 
speech quality measures such as the spectral distortion based 
Itakura-Saito measure and the perceptually based Klatt mea- 
sure have been used in different ways to illustrate quality. 
Objective measures over individual frames of speech along 
with time waveforms show the consistency of ACE-II over 
all sections of speech. Global quality measures show signifi- 
cant improvement for ACE-II over a -5- to 10-dB range of 
SNR for white Gaussian and colored noise cases. Time ver- 

sus frequency vocal-tract spectra are also shown to demon- 
strate restoration of spectral features over the two domains. 
Finally, performance is shown to be consistent for a large set 
of TIMIT sentences (male and female speakers), and over 
classified American English phonemes. Speech quality im- 
provement is also confirmed by informal listening tests. Sew 
eral comments may be in order concerning enhanced speech 
quality. For white Gaussian noise, at very low SNR levels, 
residual noise is perceivable, though signal distortion is 
minimal, and speech quality is maintained. However, at SNR 
levels greater than or equal to 5 dB, residual noise is barely 
perceivable and speech quality is maintained or improved in 
some sections. The enhanced speech sounds very clear with 
ACE-II achieving consistent levels of enhancement by re- 
storing low-energy high-frequency spectral features. ACE-II 
results in efficient quality improvement especially during un- 
voiced sounds, resulting in improved overall quality both for 
white and colored noise cases. While quality improvement is 
observed for white Gaussian, aircraft cockpit, and computer 
cooling fan noise sources, ACE-II produces more significant 
levels of improvement versus ACE-I for colored noise 
sources [see quality measures in Fig. 9(b) vs Fig. 10(a) and 
(b)], than for white Gaussian. The reasons for this are that (i) 
for white Gaussian noise, quality loss is not as severe as for 
aircraft cockpit and computer fan noise for the same SNR 
level. Therefore this is not as much "room" from an objec- 
tive quality measure point of view for enhancement of 
speech in AWGN. (ii) Since ACE-H constraints are auditory 
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based, their impact is greater for lower frequency distortions 
where critical band filters are more closely spaced. In con- 
clusion, the speech enhancement objective of achieving ef- 
fective noise suppression, while maintaining or improving 
perceived quality, is brought closer to reality with the pro- 
posed auditory constrained iterative enhancement scheme. 
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