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Abstract 

It is well known that the introduction of acoustic background distortion and the variability resulting from environmentally 
induced stress causes speech recognition algorithms to fail. In this paper, several causes for recognition performance 
degradation are explored. It is suggested that recent studies based on a Source Generator Framework can provide a viable 
foundation in which to establish robust speech recognition techniques. This research encompasses three inter-related issues: 
(i) analysis and modeling of speech characteristics brought on by workload task stress, speaker emotion/stress or speech 
produced in noise (Lombard effect), (ii) adaptive signal processing methods tailored to speech enhancement and stress 
equalization, and (iii) formulation of new recognition algorithms which are robust in adverse environments. An overview of 
a statistical analysis of a Speech Under Simulated and Actual Stress (SUSAS) database is presented. This study was 
conducted on over 200 parameters in the domains of pitch, duration, intensity, glottal source and vocal tract spectral 
variations. These studies motivate the development of a speech modeling approach entitled Source Generator Framework in 
which to represent the dynamics of speech under stress. This framework provides an attractive means for performing feature 
equalization of speech under stress. In the second half of this paper, three novel approaches for signal enhancement and 
stress equalization are considered to address the issue of recognition under noisy stressful conditions. The first method 
employs (Auto:I,LSP:T) constrained iterative speech enhancement to address background noise and maximum likelihood 
stress equalization across formant location and bandwidth. The second method uses a feature enhancing artificial neural 
network which transforms the input stressed speech feature set during parameterization for keyword recognition. The final 
method employs morphological constrained feature enhancement to address noise and an adaptive Mel-cepstral compensa- 
tion algorithm to equalize the impact of stress. Recognition performance is demonstrated for speech under a range of stress 
conditions, signal-to-noise ratios and background noise types. 

Zusammenfassung 

Es ist wohlbekannt, dass die Einftihrung von Hintergrundger’riuschen und von VariabilitPt der Umgebung dazu ftihren, 
dass Spracherkennungsalgorithmen versagen. In diesem Paper werden verschiedene l%lle untersucht, die zu einer Minderung 
des Erkennungsgrades ftihren. Es wird vorgeschlagen, dass gegenw’%tige Untersuchungen, basierend auf Source Generafor 

Framework, eine variable Grundlage bilden, in der robuste Spracherkennungstechniken aufgebaut werden kannen. Diese 
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Untersuchung schliesst drei Punkte mit ein, die damit in Beziehung stehen: (i) Analyse und Modellierung von Sprachcharak- 
teristika, die durch Stress, Emotionen oder Sprache in einer lauten Umgebung (Lombard Effekt), herinftihren, (ii> adaptive 
Signalverarbeitungsmethoden, angepasst an den Ausgleich von Betonungen und (iii) Formulierung neuer und robuster 
Spracherkennungsalgorithmen. Ein Uberblick iiber eine statistische Analyse von Sprache unter simulierten und aktuellen 
Stressdatenbanken (SUSAS) wird gegeben. Diese Untersuchung wurde an mehr als 200 Parametern ausgefuhrt in den 
Bereichen Lange, Intensitlt und vokal spektrale Variationen. Diese Untersuchungen motivieren die Entwicklung eines 
Sprachmodellierungsansatzes, genannt Source Generator Framework, bei dem die Dynamik der Sprache unter Stress 
dargestellt wird. In der zweiten Halfte des Papers werden drei Ansatze zum Stressausgleich vorgestellt, urn such den Punkt 
der Spracherkennung in einer verrauschten Umgebung anzusprechen. Die erste Methode beinhalten (Auto:I,LSP:T) 
beschrankte iterative Sprachzusatze, urn Hintergrundgedusche zu erfassen sowie mit hiichster Wahrscheinlichkeit einen 
Stressausgleich liber Bandbreiten und Ort hinweg zu erreichen. Die zweite Methode benutzt die Eigenschaft, kinstliche 
neuronale Netze durch Eigenschaften zu erweitern, welche verrauschte Eingaben (die wlhrend der Parametrierung fur 
Schliisselworterkennungen entstehen) transformiert. Die letzte Methode beinhaltet morphologisch beschiankten Zusatz von 
Eigenschaften, urn Rauschen zu betrachten sowie einen adaptiven Mel-cepstral Kompensationsalgorithmus, urn den Einfluss 
von Stress auszugleichen. Der Grad der Erkennung wird demonstriert fur Sprache unter einem grossen Bereich von 
Stressbedingungen, Signal-Rauschen Verhaltnis sowie HintergrundgeAuschen. 

RCsumC 

11 est connu que la distorsion acoustique introduite par l’environnement ambiant ainsi que la variabilite resultant du stress 
induit deteriorent CnormCment les performances des algorithmes de reconnaissance. Dans cet article, on explore les diverses 
causes de degradation de ces performances. On suggere que les etudes recentes effect&es sur l’approche appelee Source 
Generator Framework produisent un fondement viable pour developper des techniques robustes de reconnaissance de la 
parole. L’Ctude d&rite s’articule autour de trois axes corrClCs: (i) l’analyse et la modelisation de la parole produite soit sous 
I’effet de stress du ‘a la charge de travail et/au B l’emotion, soit dans le bruit, (ii) les methodes de traitement adaptatif du 
signal pour le debruitage de la parole et la reduction de I’effet du stress, et (iii) la formulation de nouveaux algorithmes 
robustes de reconnaissance. Une analyse statistique d’une base de don&es (SUSAS) de parole sous stress simule et reel est 
presentee. Cette analyse a CtC menee sur plus de 200 parametres relatifs au pitch, a la duree, a I’intensite, a la source 
glottique et aux variations des spectres du conduit vocal. Ces etudes ont motive le developpement de l’approche appelee 
Source Generator Framework qui permet de modeliser la dynamique de la parole sous stress. Ce cadre offre des moyens 
interessants pour effectuer l’egalisation des parametres de la parole sous stress. Dans la seconde moitie de l’article, trois 
nouvelles approches pour le debruitage de la parole et la reduction de l’effet du stress sont considerees. La premiere methode 
utilise la technique iterative contrainte (Auto:I,LSP:T) de debruitage et une Cgalisation par maximum de vraisemblance de la 
parole a travers la localisation des formants et leurs bandes passantes. Pour la reconnaissance de mots cl&, la seconde 
methode utilise un reseau de neurones qui transforme les vecteurs de parametres de la parole sous stress pendant la phase de 
parametrisation. La demiere methode applique une technique de rehaussement des parambtres basee sur des contraintes 
morphologiques pour effectuer le debruitage et utilise un algorithme adaptatif sur les cepstres-Mel pour Cgaliser les effets du 
stress. Les performances de reconnaissance sont donnees pour la parole produite dans plusieurs conditions de stress, avec 
plusieurs rapports signal/bruit, et pour differents types de bruit ambiant. 

&words; Speech under stress; Lombard effect; Robust speech recognition; Noise suppression 

1. Introduction: why recognizers break 

The issue of robustness in speech recognition can 
take on a broad range of problems. A speech recog- 
nizer may be robust in one environment and inappro- 
priate for another. The main reason for this is that 
performance of existing recognition systems which 
assume a noise-free tranquil environment, degrade 

rapidly in the presence of noise, distortion and stress. 

In Fig. 1, a general speech recognition scenario is 
presented which considers a variety of speech signal 
distortions. Here, the index y1 represents time. For 
this scenario, we assume that a speaker is exposed to 
some adverse environment, where ambient noise is 
present and a stress induced task is required (or the 
speaker is experiencing emotional stress). The ad- 
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Fig. 1, Types of distortion which can be addressed for robust speech recognition. 

verse environment could be a noisy automobile where 
cellular communication is used, high-stress noisy 
helicopter or aircraft cockpits, factory environments, 
and others. Since the user task could be demanding, 
the speaker is required to divert a measured level of 
cognitive processing, leaving formulation of speech 
for recognition as a secondary task. 

Workload task stress has been shown to signifi- 
cantly impact recognition performance (Chen, 1988; 
Hansen, 1988, 1989; Paul, 1987; Rajasekaran et al., 
1986). Since background noise is present, the speaker 
will experience the Lombard effect (Lombard, 19 1 l), 
a condition where speech production is altered in an 
effort to communicate more effectively across a noisy 
environment. The level of Lombard effect may de- 
pend on the type and level of ambient noise d,(n) 
(though no studies have considered this), and has 
been shown to vary between male and female speak- 
ers (Junqua, 1993). In addition, a speaker may also 
experience situational stress (i.e., anger, fear, other 
emotional effects) or workload task stress (i.e., fly- 
ing an aircraft) which will alter the manner in which 
speech is produced. If we assume s(n) to represent a 
Neutral, noise-free speech signal, then the acoustic 
signal at the microphone will include distortion due 
to stress, workload task, Lombard effect and addi- 
tive noise. The acoustic background noise d,(n) will 
also degrade the speech signal as illustrated in Fig. 1. 
Next, if the speech recognition system is trained with 
one microphone and another is used for testing, then 
distortion due to microphone mismatch can be mod- 
eled with a frequency distortion impulse response 
h MIKE(n). If the speech signal is transmitted over a 
telephone or cellular channel, further distortion is 
introduced (modeled as either additive noise d,(n), 

or a frequency distortion with impulse response 
h GHAN(n)). Furthermore, noise could also be present 
at the receiver d,(n). Therefore, the Neutral noise- 
free distortionless speech signal s(n), having been 
produced and transmitted under adverse conditions, 
is transformed into the degraded signal y(n). 

y(n) = Ili[ s(n) 
Workload task 
Stress 

Lombard effect{ d,} 

+4(n). (1) 
We should emphasize that all forms of distortion 

identified in Eq. (1) and Fig. 1 may not exist simul- 
taneously. In this study, the primary focus will be on 
speech under stress (including Lombard effect), with 
secondary emphasis on speech under stress with 
additive background noise distortion. 

2. Recent methods and studies 

Approaches for robust recognition can be summa- 
rized under three areas: (i) better training methods, 
(ii) improved front-end processing, and (iii) im- 
proved back-end processing or robust recognition 
measures. These approaches have been used to ad- 
dress improved recognition of speech in (a) noisy 
environments, (b) Lombard effect, (c) workload task 
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stress or speaker stress, and (d) microphone or chan- 
nel mismatch. 

To formulate automatic speech recognition algo- 
rithms which are more effective in changing environ- 
mental conditions, it is important to understand the 
effects of noise on the acoustic speech waveform, the 
acoustic-phonetic differences between normal speech 
and speech produced in noise, and the acoustic- 
phonetic differences between normal speech and 
speech produced under stressed conditions. Several 
studies have shown distinctive differences in pho- 
netic features between normal and Lombard speech 
(Hanley and Harvey, 1965; Hansen, 1988; Junqua, 
1993; Stanton et al., 1988), and speech spoken in 
noise (Gardner, 1966; Pisoni et al., 1985; Summers 
et al., 1988). Further studies have focused on varia- 
tion in speech production brought on by task stress 
or emotion (Bou-Ghazale and Hansen, 1995; Hansen, 
1988, 1989, 1993, 1995; Murray, 1993). The primary 
purpose of these studies has been to improve the 
performance of recognition algorithms in noise 
(Hansen and Clements, 1991; Juang, 1991; Alexan- 
dre and Lockwood, 19931, Lombard effect (Junqua, 
1993; Hanson and Applebaum, 1990, 1993; Stanton 
et al., 1989), stressed speaking styles (Lippmann et 
al., 1987; Paul, 1987; Chen, 1988; Lockwood and 
Boudy, 1992; Lockwood et al., 1992), noisy Lom- 

bard effect (Hansen, 1988, 1994; Hansen and Bria, 
1990) and noisy stressful speaking conditions (Raja- 
sekaran et al., 1986; Hansen, 1988, 1989, 1993; 
Hansen and Clements, 1989). Other studies have also 
considered feature analysis methods for classification 
of speech under stress (Cairns and Hansen, 1994; 
Hansen and Womack, 1996). 

Approaches based on improved training methods 
include multi-style training (Lippmann et al., 1987; 
Paul, 19871, simulated stress token generation (Bou- 
Ghazale and Hansen, 1994, 19951, training/testing 
in noise (Dautrich et al., 1983), and others (Juang, 
1991). Improved training methods can increase 
recognition performance; however, results degrade as 
test conditions drift from the original training data. A 
solution which has been suggested is fast update 
methods for recognition models under varying noise 
environments. While it may be possible to show that 
training a recognizer on noise-corrupted speech 
databases leads to higher performance than attempt- 
ing to improve input SNR of test utterances (Mokbel 

and Chollet, 1995), this result ignores the devastating 
impact of Lombard effect for high noise environ- 
ments. In fact, even if background noise could be 
addressed in this manner, poor recognition perfor- 
mance will persist due to changing speech character- 
istics caused by stress and Lombard effect. 

Another area which has received much attention 
is front-end processing/speech feature-estimation for 
robust recognition. Here, many studies have at- 
tempted to uncover a speech representation which is 
less sensitive to various levels and types of additive, 
linear filtering or convolutional distortion. For exam- 
ple, some studies focus on identifying better speech 
recognition features (Hanson and Applebaum, 1990, 
1993), or estimation of speech features in noise 
(Hansen and Clements, 1991; Lockwood and Boudy, 
1992), or processing to obtain better speech represen- 
tations (Hermansky and Morgan, 1994; Hunt and 
Lefebvre, 1989). If the primary distortion is additive 
noise, then a number of speech enhancement algo- 
rithms exist (Ephraim, 1992; Hansen and Clements, 
199 I; Lockwood et al., 1992; Nandkumar and 
Hansen, 1995; Hansen and Nandkumar, 1995), while 
other front-end processing methods incorporate fea- 
ture processing for noise reduction and stress equal- 
ization 2 (Hansen, 1993; Hansen and Clements, 1989; 
Hansen and Cairns, 1995), or additive/convolutional 
noise (Hermansky et al., 1993; Gales and Young, 
1995). 

The last area is improved back-end processing or 
robust recognition measures. Such processing meth- 
ods refer to changes in the recognizer formulation 
such as hidden Markov model structure, or develop- 
ing better models of noise within the recognizer 
(Wang and Young, 1992). Robust recognition mea- 
sures seek to project either the test data space closer 
to the trained recognition space, or trained space 
towards test space (Mansour and Juang, 1988; Carl- 
son and Clements, 1992). Studies relating to robust 
metrics include linear filtering or microphone mis- 
match distortion processing (Liu et al., 1992). 

* The concept of stress equalization is based on a processing 
scheme which operates on a parameter sequence which is ex- 

tracted from input speech under stress. The stress equalization 

algorithm attempts to normalize the variation of the parameter 

sequence due to the presence of stress on the input speech signal. 
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3. Analysis and modeling of speech under stress 

Stress is a psychological state that is a response to 
a perceived threat or task demand and is normally 
accompanied by specific emotions. Psychiatrists 
agree that verbal markers of stress range from highly 
visible to invisible markers (Goldberger and Breznitz, 
1982; Darby, 1981). Researchers have also consid- 
ered the effects of aircraft pilot stress (Flack, 1918; 
Williams and Stevens, 1969) and its impact on speech 
data for recognition (Russell and Moore, 1983). Still 
others have considered speech and emotion (Lieber- 
man and Michaels, 1962; Williams and Stevens, 
19721, workload (Lively et al., 1993) and Lombard 
effect (Lombard, I91 1; Bond and Moore, 1990; Jun- 
qua, 1993). 

In this section, we present results from an investi- 
gation of how stress affects speech characteristics 
with specific application to improving automatic 
speech recognition. Past stress studies have been 
limited in scope, often using only one or two sub- 
jects and analyzing only one or two parameters 
(typically pitch). A comprehensive speech under 
stress database has been established for the purposes 
of stress research. Analysis was first performed on 
(i) speech with simulated stress, workload tasks, or 
speech in noise. Statistically significant parameters 
were established, and an equivalent analysis per- 
formed with (ii) speech produced under actual stress 
or emotion. This scheme was chosen since simulated 
conditions allowed for careful control of vocabulary, 
task requirements and background noise character- 
istics. Evaluation over actual stress conditions was 
used to verify results established under simulated 
conditions (see Hansen, 1988, 1989, 1994, 1995; 
Hansen and Bria, 1990; Hansen and Clements, 1987 
for further details). 

3.1. SUSAS: speech under stress database 

The studies conducted in this research were based 
on data previously collected for analysis and algo- 
rithm formulation of speech recognition in noise and 
stress. This database, called SUSAS, refers to Speech 
Under Simulated and Actual Stress, and has been 
employed extensively in the study of how speech 
production and recognition varies when speaking 
during stressed conditions (Hansen, 1988, 1989, 

1994, 1995; Hansen and Bria, 1992). SUSAS con- 
sists of five domains, encompassing a wide variety 
of stresses and emotions. A total of 44 speakers were 
employed to generate in excess of 16,000 isolated- 
word utterances. The five stress domains include (i) 
psychiatric analysis data (speech under depression, 
fear, anxiety), (ii) talking styles ’ (slow, fast, soft, 
loud, angry, clear, question), (iii) single tracking 
computer response task or speech produced in noise 
(Lombard effect), (iv) dual tracking computer re- 
sponse task, (v> subject motion-fear tasks (G-force, 
Lombard effect, noise, fear). A common highly con- 
fusable vocabulary set of 3.5 aircraft communication 
words make up the database (e.g., /go-oh-no/, 
/wide-white/, etc.). A more complete discussion of 
SUSAS can be found in the literature (Hansen, 1995, 
1994, 1988; Hansen and Bria, 1990; Hansen and 
Cairns, 1995) ‘. The subset of data for this study 
consists of neutral training and test data, and speech 
from ten stressed styles (talking styles, single track- 
ing task and Lombard effect domains). For talking 
styles, speakers were asked to speak as if they were 
producing speech under that style. Speech data under 
Lombard effect was produced by having speakers 
listen to 85 dB SPL pink noise binaurally while 
uttering test tokens (i.e., all tokens are noise-free). 
Speech under task condition required talkers to pro- 
duce speech while performing a single workload 
tracking task on a computer screen. All speech to- 
kens were sampled using a 16-bit A/D converter at 
a sample rate of 8 kHz. 

To illustrate the problem of speech recognition in 
stress and noise, a baseline speech recognizer (VQ- 
HMM) ’ was employed on noise-free and noisy 

’ Approximately half of the SUSAS database consists of style 
data donated by Lincoln Laboratories (Lippmann et al., 1987; 

Paul, 1987; Chen, 1988; Hansen, 1988; Hansen and Clements, 

1989). 

4 An audio demonstration of speech data from SUSAS is 

available at http://www.elsevier.nl/locate/specom. A brief 

summary of the demonstration is included in Appendix A. 

’ This baseline speech recognizer VQ-HMM is a speaker de- 

pendent, isolated word system, which uses discrete observations 

from a 64.entry vector quantizer observation codebook and 5.state 
left-to-right hidden Markov models which are fully connected 

(i.e., all state transitions from left-to-right are possible). Further 

details regarding this baseline recognizer can be found in previous 
studies (Hansen, 1994, 1993, 1988; Hansen and Arslan. 1995a). 
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Table I 
Recognition performance of neutral and stressed type speech in noise-free and noisy conditions 

Condition Stressful speech recognition results 

N Sl F So L A C Q cso C70 Lom Avg 10 StDev 10 

Stressful, noise-free 88.3% 60% 65% 48% 50% 20% 68% 75% 63% 63% 43% 57.5% 15.35 

Stressful, noisy a 49% 45% 28% 33% 18% 15% 40% 28% 35% 33% 28% 30.3% 9.12 

a Additive white Gaussian noise, SNR = +30 dl3. 

Stressed speech style key: N: neutral; Sl: slow; F: fast; So: soft; L: loud; A: angry; C: clearly spoken; Q: question; C50: moderate computer 

workload task condition; C70: high computer workload task condition; Lom: Lombard effect noise condition. 

stressed speech from SUSAS. Table 1 shows that 
when stress and noise are introduced, recognition 
rates decrease significantly. When white Gaussian 

noise is introduced, noisy stressed speech rates var- 
ied, with an average rate of AvglO = 30.3% (i.e., a 
58% decrease from the 88.3% noise-free neutral 
rate). Recognition performance also varies consider- 
ably across stressed speaking conditions as reflected 
in the large standard deviation in rate of recognition. 
(StDevlO = 15.35, 9.12 for noise-free and noisy 
stressed conditions). 

3.2. Source generator framework 

Since noise, stress and Lombard effect have been 
shown to disrupt speech recognition, we consider the 
following Source Generator Framework as a means 
of representing the variation of speech production in 

a1 

SPEECH PRODUCTION SPACE 

noise and stress. Source generator theory was first 
presented in (Hansen, 1994), and later employed in 
other robust recognition algorithms (Hansen, 1993; 
Bou-Ghazale and Hansen, 1994; Hansen and Cairns, 
1995; Hansen and Clements, 1995). 

Let s’be a sample vector of clean Neutral speech 
s(n) in a sample space ?“. Also, let the sample space 
r, consist of J independent and mutually exclusive 
random speech type sources 

S;‘E r,: {ri; j = 1,2,.. .,J}. (2) 

Here, the collection of generators 7 span the 
entire source generator space, and each generator y, 
could represent an isolated phoneme, a transition 
between pairs of phonemes, or some other temporal 
partition of how the speech signal is produced. It is 
known that the presence of stress will effect how the 

“H.E.L_P” 

0 NEUTRAL 

0 STRESSED f I 

SPEECH FEATURE SPACE 

Fig. 2. Proposed source generator framework for modeling speech under stress. (a) Speech production space; (b) speech feature space. 
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speech production system produces the observation 
vector 2 In Fig. 2, production variation of the utter- 
ance ‘ ‘help’ ’ is illustrated for neutral and stressed 
speech. For the production of this word, we assume 
that a sequence of coordinated movements of the 
vocal system articulators and excitation controls are 
needed (represented in the multi-dimensional speech 
production space as (Y, , . . , ay ). The coordinated 
sequence of excitation and articulatory controls are 
modeled as a smooth path in this speech production 
space. It is hypothesized that vocal system controls 
Z (i.e., articulators, etc.) will be perturbed under 
stressed speaking conditions resulting in deviations 
from this “neutral” production space path. From 
previous studies, it is known that the presence of 
stress will cause changes in phoneme production 
with respect to glottal source factors, pitch, intensity, 
duration and spectral shape (Hansen, 1988). It is 
proposed that the perturbation of these vocal system 
controls can be modeled by a change in the speech 
source generator -yj in some F-dimensional feature 
space. As Fig. 2(b) illustrates, each source generator 
yi will occupy some volume in the multi-dimen- 
sional feature space, and that deviations in speech 
production under stress will result in a feature se- 
quence which deviates from the mean “neutral” 
path. Let each change be represented by a mapping 
of the neutral speech samples srUTRAL for source 
generator rj to stressed (c = STRESSED CLASS) 
speech samples as follows: 

?4&),&[ y,] : SyNiE”TRAL + SyS,TRESSED, (3) 

D E (PITCH, DURATION, INTENSITY, 

GLOTTAL SOURCE, 

VOCAL TRACT SPECTRUM), 

c E (NEUTRAL, SLOW, FAST, SOFT, LOUD, 

ANGRY, CLEAR, QUESTION, C50 TASK, 

C70 TASK, LOMBARD), 

where the particular speech production domain is 
represented as D, corresponding to the five speech 
feature domains. Here, the speech feature domain 12 
represented as D(k), which corresponds to a set of k 
features per domain which could be mapped due to 
stress (i.e., if D is the SPECTRAL domain, then 
D(z) could be the four mean formant locations for 
generator -yj). In addition, it is assumed that the 

mapping for each generator for an input word or 
phrase is performed over the same stress class c in 
1E D(k),c[y;l (i.e.1 for the input word “help”, we 
assume that the particular stress class c is the same 
for each generator for the entire word). We therefore 
do not allow individual generators to be under differ- 
ent stress conditions. Here, the stress generator class 
c corresponds to one of the eleven speaking styles 
c E (SLOW,. . . ,LOMBARD) (also summarized in 
Table 1). Given that the feature domain D consists 
of a multi-dimensional production space D(& the 
general Neutral speech vector SUE ?‘, is modeled 
under stressed conditions as follows: 

p PITCH(;).c [ DURA(k’).c [ 

[qSPEC(_:r,l,]],: 

?? INTEN( ;),,c [ %LOT(,_),c 

syN/EUTRAL + s~MBARD~ 

(4) 

where for this case we let the stress class c be 
LOMBARD, z spans the number of features needed 
for each speech production domain, and j spans the 
number of possible source generators. The model 
suggests that production of the sample speech vector 
S’in the sample space r, is achieved by transforming 
the speech source generator y for the jth speech 
type across each of the five production feature do- 
mains. 

Next, let y’ be a sample vector from some Neutral 
source generator y,_which is corrupted by an addi- 
tive noise vector d. The resulting noisy, stressed 
induced speech vector from source generator 7, is 
written as 

y7faW.<[Y,l = %dv,l + z (5) 

where the vector of feature domain transformations 
is written as 

‘D(,j,,[ rj 1 = *PITCH(z),),r [ wDURA(c),c [ qINTEN(z),).c 

[ pGLOT(z),c[ WSPEC(c),c[Yjl]]]] 3 c6) 

which implies application of the speech production 
feature transformations to the input source generator 
y, in a serial manner. This equation represents a 
general source generator framework in which to 
investigate speech recognition under stressful condi- 
tions. Next, we consider analysis of the five speech 
feature domains in order to establish useful features 
z in each domain for stress normalization. 
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3.3. Speech production feature analysis 

Due to difficulty in experimental design and lim- 
ited research efforts, changes in the characteristics of 
speech produced under workload stress remain un- 
clear. Thusfar, research has been limited in scope, 
often using only one or two subjects and analyzing a 
single parameter (often fJ. It is not unusual for 
researchers to report conflicting results, due to differ- 
ences in experimental design, level of actual or 
simulated stress, or interpretation of results. For 
example, some studies concentrate on analysis of 
recordings from actual stressful situations (Kuroda et 
al., 1976; Simonov and Frolov, 1977; Streeter et al., 
1983; Williams and Stevens, 1969, 19721, while 
others use simulated stress or emotions (Hecker et 
al., 1968; Hicks and Hollien, 1981; Williams and 
Stevens, 1972). This offers the advantage of a con- 
trolled environment, where a single emotion can be 
examined with little background noise. This allows 
results to be based on general speaker characteristics 
instead of possibly particular characteristics of an 
individual speaker in conveying emotion. The major 
disadvantage in these studies has been the reduction 
in task stress levels. In addition, studies using actors 
may produce exaggerated caricatures of emotions in 
speech. 

Here, we discuss several results from a compre- 
hensive investigation of acoustic correlates of speech 
under stress (Hansen, 1988, 1995). In these studies, 
well over 200 parameters and 10,000 statistical tests 
were considered in evaluating the following parame- 
ter areas of speech production: (i) pitch, (ii) duration, 
(iii) intensity, (iv) glottal source, and (v) vocal tract 
spectrum. 

3.3. I. Pitch 

The most widely considered area of stress evalua- 
tion are characteristics of pitch. In our studies, we 
have considered subjective assessment of pitch con- 
tours, statistical analysis of pitch mean, variance and 
distribution (see Fig. 3). A partial list of conclusive 
points are: 
- Mean pitch values may be used as significant 

indicators for speech in soft, fast, clear, Lombard, 
question, angry or loud styles when compared to 
neutral conditions. 

PfTCH 
,oo FUNDAMENTAL FREQUENCY DISTRIBUTION 

I 

80 - +%,, LOMBARD 

ir 100 260 300 4do 
FREQUENCY (Hz) 

WJTRAI LOMBARD ANGRY 
MEAN (Hz) 145 160 253 
STAND. DEV. 15 24 95 

Fig. 3. Sample pitch (fundamental frequency) variation for speech 

under neutral, Lombard and angry stress conditions. 

Loud, angry, question and Lombard mean pitch 
are all significantly different from all other styles 
considered. 
Speech produced under Lombard effect gave mean 
pitch values most closely associated with pitch 
from fast and clear conditions. 
Soft and loud pitch variance are significantly 
different from all styles considered. 
Pitch variance for clear and Lombard conditions 
are similar, but different from all other styles 
considered. 

3.3.2. Duration 

Previous studies of speech under stress have not 
considered statistical evaluations of individual 
phoneme class duration. Duration analysis was con- 
ducted across (i) whole words, and (ii) individual 
phoneme-classes (vowel, consonant, semivowel and 
diphthong). An analysis was also conducted on inter- 
class duration movement to determine if speakers 
increased duration of certain phoneme classes at the 
expense of others (see Fig. 4). A partial list of 
duration conclusions are: 

Mean word duration may be used as significant 
indicators for speech in slow, clear, angry, loud, 
Lombard or fast styles when compared to neutral. 
Slow and fast mean word duration are all signifi- 
cantly different from all other styles considered. 
Clear mean consonant duration was significantly 
different from all styles except slow. 
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DURAT’oN VOWEL SEMIVOWEL CONSONANT 

’ 
dV’ErYv(i),kI dsv’E[vsv(i),kl dc’E[yc(i),k] 

dv%dw - d,,,%d, - ’ dc%d,,, y 

I WORD )I 

Fig. 4. Sample duration variation for speech under neutral, Lom- 

bard and angry stress conditions. Statistically significant duration 

shifts between vowel, semivowel and consonant classes are indi- 

cated by arrows. 

Duration variance increased for all domains (word, 
vowel, consonant, semivowel, diphthong) under 
slow stress. 
Duration variance decreased for most domains 
under fast stress condition. 
Duration variance significantly increased for an- 

gry speech. 
Clear consonant duration variance was signifi- 
cantly different from all styles. 

3.3.3. Intensity 
An analysis was conducted on (i) whole word 

intensity, and (ii) speech phoneme-class intensity 
(vowel, semivowel, diphthong, consonant). Statisti- 
cal tests were performed on mean, variance and 
distribution across the database. The shift in avail- 
able energy between speech classes was also consid- 
ered to determine if speakers reduce intensity in 
some classes in order to increase others (Fig. 5). A 
partial list of conclusions are: 

Average RMS word intensity values may be used 
as significant indicators for speech in angry, loud 
and high workload task styles when compared to 
neutral conditions. 
Loud & angry RMS word intensity are signifi- 
cantly different from all other styles considered. 
Loud & angry RMS vowel and diphthong intensi- 
ties were significantly different from all other 
styles considered. 
RMS consonant & semivowel intensity are not 
significant stress indicators for any of the styles 
considered. 

INTFNSITV 

WORD (CiB) q * 

VOWEL 
SEMIVOWEL 

CONSONANT 

STATlSTlCALLY v 

SIGNWICANT e i: ,g r’-c 
MOVEMENT sv S” EV 

NEUTRAL LOMSARD ANGRV 

Fig, 5. Sample RMS intensity (dB) variation for speech under 

neutral, Lombard and angry stress conditions. Statistically signifi- 

cant energy shifts between vowel, semivowel and consonant 

classes are indicated by arrows. 

Variance of average RMS word intensity values 
may be used as significant indicators for speech 
in angry and loud styles when compared to neu- 

tral. 
Variance of loud and angry average RMS word 
intensity is significantly different from most other 
styles considered. 

3.3.4. Glottal source 
Aspects such as duration of each laryngeal pulse 

(open/closed periods), instant of glottal closure, 
spectral structure of each glottal pulse, or pulse 
shape play important roles in conveyance of stress 
state (Hansen, 1988; Cummings and Clements, 1990). 
Due to limitations of glottal inverse filtering tech- 
niques in stress evaluation, this portion focused on 
direct estimation of the glottal flow spectrum. Exam- 
ples of spectral structure, average spectral value and 

GLOITAL SOURCE SPECTRUM 

z , I 

3 J I 
’ 100 400 1000 4000 

Loo FREOUENCY (Hz) 

NFIJTRAI LOMBARD ANGRY 
AVG. SPEC. (d6) 15.2 20.8 23.0 
SLOPE (dB/ocT.) -12.1 -9.2 -9.4 

Fig. 6. Sample glottal source spectra for speech under neutral, 

Lombard and angry stress conditions. 
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VOCAL TRACT SPECTRUM 3.4. Robust feature enhancement in noise 

FREQ. (kHz) 
0 1 2 3 4 

Fl (Bw) F2 (Bw) F3(Bw) F4(Bw) 
NEUTRAL 411(52) 1970 (222) 2607 (496) 3366 (366) 
LOMBARD 412 (73) 2006 (139) 2644 (250) 3376 (165) 
ANGRV 566 (102) 2076 (166) 2661(464) 3357 (392) 

Fig. 7. Sample vocal tract spectra variation for speech under 

neutral, Lombard and angry stress conditions. 

spectral slope (in decibles/octave) are shown in Fig. 
6. The present analysis of glottal source spectrum 
revealed that parameters such as spectral slope and 
the distribution of energy are important for relaying 
stress. 

3.3.5. Vocal tract spectrum 

Analysis of vocal-tract spectrum focused on for- 
mant location and bandwidth for selected phonemes 
across the SUSAS database. Mean and variance esti- 
mates for specific phonemes were analyzed for the 
11 stress conditions. Statistical evaluations showed 
that of the 400 Student t-tests, 166 were statistically 
different from neutral. Most of these involved loud, 
angry or Lombard effect formant information. A 
majority of the significant comparisons involved 
mean and variance of formant location and band- 
width for Fl and F2. Of the ten stress conditions, 
average formant information for loud and angry were 
the most consistent across the phonemes tested (Fig. 

7). 
In this section, we have considered a brief discus- 

sion of an analysis of speech under stress. The focus 
was on speech from simulated stressed conditions. A 
similar evaluation was also conducted on speech 
from actual stress conditions to confirm direction 
and degrees of speech parameter variation. A com- 
plete discussion of these results cannot be fully 
addressed here, and therefore the interested reader 
may consider the following references (Hansen, 1988, 
1989, 1995). However, these results serve to moti- 
vate the type of speech processing needed to address 
recognition of speech under stress. 

Though a number of speech enhancement algo- 
rithms have been proposed in the past, the majority 
are actually noise cancelers as opposed to speech 
enhancers. As a result, these systems have limited 
success in suppressing noise or improving intelligi- 
bility in low-energy and transitional regions of 
speech. Recently, a new class of constrained iterative 
algorithms have been formulated which focus on 
developing a better physical characterization of 
speech production for improved “speech enhance- 
ment” by adapting the enhancement process to vary- 
ing types of input speech. This represents an innova- 
tive departure from classical noise filtering schemes, 
since spectral characteristics caused by changes dur- 
ing speech production are used during single or 
dual-channel enhancement. This has resulted in sub- 
stantial and consistent quality improvement for hu- 
man listeners in both white and colored noise envi- 
ronments. The following techniques are suggested in 
order to address recognition of noisy speech under 
stress. 

3.4.1. (Auto:I,LSP:T) enhancement 

In an earlier study (Hansen and Clements, 1991), 
a new form of iterative speech enhancement was 
developed for single channel inputs. The basis of the 
procedure is sequential maximum a posteriori (MAP) 
estimation of the speech waveform and its all-pole 
parameters, followed by imposition of constraints 
upon the sequence of speech spectra. The new ap- 
proach imposes intra- and inter-frame constraints on 
the input speech signal to ensure more speech-like 
formant trajectories, reduce frame-to-frame pole jit- 
ter and effectively introduce a relaxation parameter 
to the iterative scheme. Intra-frame constraints are 
applied to the Autocorrelation coefficients, and in- 
ter-frame constraints are applied to the Line-Spec- 
tral-Pair parameters (Auto-LSP). The algorithms 
have also been generalized and successfully tested 
for non-white and slowly varying noise. The current 
systems result in substantially improved speech qual- 
ity and parameter estimation in this context with 
only a minor increase in computational requirements. 
The Auto-LSP method has also been employed for 
robust speech parameter estimation with application 
to speech coding and recognition in actual noisy 
environments (Hansen and Arslan, 1995a,b). 
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3.4.2. ACE enhancement 

Building on the success of single-channel Auto- 
LSP, two additional iterative frequency-domain algo- 
rithms have recently been formulated, employing 
auditory constraints for dual-channel speech en- 
hancement (Auditory Constrained speech Enhance- 
ment techniques: ACE-I, ACE-II) (Nandkumar and 
Hansen, 1995; Hansen and Nandkumar, 1995). The 
dual-channel enhancement schemes are shown to 
follow the iterative Expectation-Maximization (EM) 
algorithm, resulting in a two-step dual-channel 
Wiener filtering scheme. New techniques for apply- 
ing constraints during the EM iterations were devel- 
oped which take advantage of auditory and percep- 
tual properties of speech. The algorithms have been 
shown to produce improved global objective speech 
quality measures for continuous speech (TIMIT 
speech database) degraded by additive white Gauss- 
ian noise, aircraft cockpit noise and computer cool- 
ing-fan noise. These processors have also been shown 
to improve speech quality as a tandem processor for 
a 4.8 KBPS CELP vocoder operating in noisy envi- 
ronments (Nandkumar et al., 1992). 

3.4.3. MCE: morphological constrained enhance- 
ment 

Finally, a new speech enhancement algorithm has 
also been formulated which employs noise adaptive 
boundary detection and morphological based spectral 
constraints (Hansen, 1994). The technique is devel- 
oped in the frequency domain, and uses a speech 
specific weighted subtraction factor and power expo- 
nent, followed by the application of morphological 
based smoothing constraints. Source generator 
boundary information allow the enhancement proce- 
dure to adapt and thereby track changing speech 
characteristics. The new method provides superior 
speech quality for all speech sound classes, compara- 
ble to intra and inter-frame constrained methods 
(Hansen and Clements, 1991), without the require- 
ment of iterative processing. 

4. Robust speech recognition 

A number of studies have shown that front-end 
signal processing methods can improve speech 
recognition robustness (Lockwood et al., 1992; 

Lockwood and Boudy, 1992; Hansen and Bria, 1990, 
1992; Hansen and Clements, 1991; Junqua, 1993). 
Next, we discuss three front-end processing ap- 
proaches to speech recognition under stress (and/or 
noise). The formulated methods are based on innova- 
tive speech parameter estimation schemes which are 
less sensitive to varying levels and types of back- 
ground noise, as well as accurate modeling of the 
human speech production under stress to improve 
recognition in adverse environments. These methods 
employ robust speech feature estimation algorithms, 
as well as stress equalization techniques based on 
source generator theory. A comparison of how the 
stress equalization methods are applied to the ex- 
tracted speech feature sequence is shown in Fig. 8. 

4. I. Stress equalization and noise suppression 

The first front-end approach employs feature en- 
hancement and production equalization algorithms 
under the framework of source generator theory (see 
Fig. 9). The intent here is to demonstrate that a 
source generator based approach can reduce the ef- 
fects of stress for robust recognition in diverse envi- 
ronmental conditions. Therefore, though the choice 
of source generator type is arbitrary, hand labeled 
phoneme partitions were employed here (see Fig. 
8(a)). The feature enhancement algorithm is formu- 
lated based on a class of constrained iterative tech- 
niques previously derived for automatic enhance- 
ment of speech in varying background noise environ- 
ments. The present technique (see Section 3.4.1) 
employs speech specific inter and intra-frame spec- 
tral constraints applied to line-spectral-pair parame- 
ters and autocorrelation estimates. Next, a multi-di- 
mensional stress equalization approach is formulated 
which produces recognition features which are sug- 
gested to be less sensitive to varying factors caused 
by stress and noise. The stressed based equalization 
domain is restricted to be the SPECTRAL domain in 
an eight-dimensional feature space (i = d, , . . ,d8). 

!PspEcTR*L(&[ 3;] : sF”TRAL + syS;-D, (7) 

c E (NEUTRAL, SLOW, FAST, SOFT, LOUD, 

ANGRY, CLEAR, QUESTION, C.50 TASK, 

C70 TASK, LOMBARD). 
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(a.) [FN 81 BN) STREss & (Awo:I,LSP:T) 

PHONEME LABEL SEQUENCE 

# /Ml /At IT1 IS/ /Al /RI SOURCE GENERATOR SEQUENCE 

I I I I I I I ) TIME 

F&B F&B F&B F&B F&B F&B 
/Ml IAJ ITI IS/ /Al /RI ML (F&B) STRESS EQUALIZATION 
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(c.) DFPENDENT FEANN (VOICEDITRANSITIONAL/UNVOICED) ML STRESS EQUALIZATION 
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(d.) SEQUENCE ADAPTIVE (VOICED/TRANSITIONAL/UNVOICED) ML STRESS EQUALIZATION 

VITIUV LABEL SEQUENCE 

#UVT V T UV # T SOURCE GENERATOR SEQUENCE 

I I I I I I I 1 l TIM? 

II II 0 0 II 0 0 II II 0 II II 0 II [I 0 0 II 0 0 0 II [I II II 0 MEL-CEPSTRAL 
-Iu\ 1-11 -I PARAMETER SEQUENCE 

MFcc . . . “,Oz,c . . . 
WORDi I 

FOE,” 
I 

Yl y3 5 
STRESS EQUALIZATION TERMS 

Fig. 8. A comparison of how stress equalization is applied to extracted speech features. (a) Stress equalization of formant location and 

bandwidth across a source generator phoneme sequence. (b) Stress equalization of Mel-cepstral features using fixed compensation terms 
across a V/T/UV source generator sequence. (c) Stress equalization of Mel-cepstral features using a word dependent feature enhancing 

artificial neural network (FEANN) across a V/T/UV source generator sequence. (d) Stress equalization of Mel-cepstral features using 

word dependent Maximum-Likelihood compensation across a V/T/UV source generator sequence. 
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Here, IIJspEcraAL(~J r,] is an eight-dimensional 
spectral transformation which is unique for ea%h 
generator rj. The spectral dimensions SPECTRAL(k) 
are defined as the first four formant locations and 
bandwidths (?,,I. Stress equalization of the speech 
feature set is achieved using a unique maximum 
likelihood transform ation term 

~_~s~~c~~*~(ly.[A,d,rYJI)’ which is estimated for each 
feature dimension d;, stressed condition c = A, and 
source generator r, as 

Here, if d, is the first formant location F,, then 
the stress equalization term for the first formant 
location ~spEcTRAL( q[ h,d, ,rj]> is found by finding 
the sample mean formant location under neutral con- 
ditions (1 /iV,)C~,_,$,,j(t,), and dividing it by the 
sample mean under stress condition A, as 

(1 /N,.,)E:P,>,,,, $I(,‘))( t,). This is repeated for each 
stress condition c. This establishes the set of stress 
equalization terms for the sequence of source genera- 

tors for each input word in the recognition dictio- 
nary. 

Next, using an HMM recognition framework, 
baseline scores are obtained in Table 2 for speech 
under neutral, stressful, noisy neutral and ten noisy 
stressful speaking conditions (e.g., loud, angry, com- 
puter task conditions, Lombard effect, etc). Com- 
bined stress equalization with constrained feature 
enhancement is shown to reduce the average word 
error rate for recognition of noisy stressful speech by 
- 38.7% (mean recognition for noisy stressful speech 
increased from 30.3% to 57.3%). Significant im- 
provement occurred for noisy speech under loud, 
angry and Lombard effect stress conditions. The 
tandem recognition algorithm is also shown to be 
more consistent across noisy stressful conditions as 
measured by a decrease in the standard deviation of 
recognition rate (from 9.1 to 5.7). Further details can 
be found in previous studies (Hansen, 1988: Hansen 
and Clements, 1989, 1995). The results suggest that 
the combination of a flexible source generator frame- 
work to address stressed speaking conditions, and a 
feature enhancement algorithm which adapts based 
on speech specific constraints, can be effective in 
reducing the consequences of stress and noise for 
robust automatic recognition. 

SOURCE GENERATOR 
FEATURE ENHANCEMENT 

SOURCE GENERATOR 
STRESS EQUALIZATION __---__---_----_--------------- 

I 3 &CV.,d,.Yj I) - 

d, 
-r&B= 

0 r- NE”TIu ,% + 

RECOGNITION SYSTEM t I 

d, DomnlN 2 t l$ 
“,Yj 

I 

6 
1,3 HMM p GENERATOR 

I 
SEOUENCE I 

HMM WoRo MODEL I 
“Nosa TEST 

I 
L______--__----____------- ___-___I 

Fig. 9. Flow diagram of (i) (Auto:I,LSP:T) constrained iterative feature enhancement, (ii) stress equalization and HMM recognition 

algorithm. 
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Table 2 
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Recognition performance of noisy stressful speech with combined generator enhancement and stress equalization 

Noisy stressful speech recognition results a 

Condition N Sl F so L A C Q c50 c70 Lom AvglO StDevlO 

Stressful, 49% 45% 28% 33% 18% 15% 40% 28% 35% 33% 28% 30.3% 9.12 

noisy 

with 83% 57% 53% 43% 35% 28% 58% 55% 58% 53% 38% 47.8% 10.92 
(Auto:I,LSP:T) 

plus Gl, (2). 
_ - 

( F & B) equalization 

61% 53% 53% 61% 50% 58% 56% 55% 55% 70% 57.3% 5.69 

a Additive white Gaussian noise, + 30 dB SNR. 

Stressed speech style key: N: neutral; SI: slow; F: fast; So: soft; L: loud; A: angry; C: clearly spoken; Q: question; C50: moderate computer 

workload task condition; C70: high computer workload task condition; Lom: Lombard effect noise condition. 

4.2. Fixed ML and FEANN stress normalization 

We have seen that front-end equalization of speech 
under stress can improve the performance of neutral 
trained speech recognition algorithms. While this has 
been useful, the requirement of a phoneme level 
sequence partition prevents recognition usage in ac- 
tual speech under stress environments. In order to 
remove this requirement, a maximum likelihood 
stress equalization method was formulated which 
normalizes input speech feature sequences using a 
set of fixed equalization terms (see Fig. 8(b)) (Han- 
sen and Bria, 1990). This method assumes that input 
speech is parsed into a sequence of voiced/transi- 
tional/unvoiced (V/T/UV) labeled sections (Han- 
sen, 1991), and that one of three maximum likeli- 
hood stress equalization terms are used to compen- 
sate for the effects of stress. Results show that stress 
compensation using three fixed V/T/UV stress 
equalization terms improves Lombard speech recog- 
nition performance by + 10%. This method was later 
adapted for real-time implementation and evaluated 
for ten noisy stressful conditions with a + 17% 
improvement in recognition (Hansen and Cairns, 
1995). 

While performing stress compensation using fixed 
V/T/UV equalization terms was successful, it had 
been observed that the impact of stress will depend 
on the lexical stress placed on syllables in the 
phoneme sequence (Hansen, 1988; Hansen and 
Cairns, 1995). For example, in a multi-syllable iso- 
lated word such as degree, the stress variations due 
to Lombard effect will be less for the vowel portion 

of the first syllable than for the second syllable. 
Therefore, it is desirable to perform stress equaliza- 
tion across the source generator sequence on a word 
dependent basis. 

In the next approach, a feature enhancing artificial 
neural network (FEANN) is developed which re- 
duces stress effects during parameterization (Clary 
and Hansen, 1992). Fig. 8(c) illustrates the basic 
approach. Here, a unique FEANN is formed for each 

SPEECH SAMPLES 

TRAINING TOKENS (V/WV) PAR~TIONING TRUNING TOKENS 
------ 

MFCC PARAMETER EXTRACTION 

i 

t 
ACCEPT/ REJECT 

Fig. 10. A flow diagram of a stress equalization method using a 

feature enhancing artificial neural network (FEANN) with applica- 
tion to keyword recognition. 
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Fig. Il. A snapshot of the C” subnetwork applied to an instance of “six”. Four out of five unique subnetwork weights are pictured, W,;, 
k=O ,.__, M,-I. 

keyword model and evaluated using a semi-continu- 
ous HMM recognizer followed by a likelihood ratio 
test for keyword detection. The following subsec- 
tions present details of each of the score-producing 
steps and the rationale for the likelihood ratio test 
(see Fig. 10). 

4.2.1. Parameterization 
During parameterization, the input speech is parti- 

tioned into a source generator sequence across 
time using a previously formulated 
voiced/transitional/unvoiced (v/t/uv> detector 
(Hansen, 1991). Endpoints are identified and v/t/uv 
classifications made using characteristics of frame 
energy curvature and noise adaptive thresholds. Nine 
Mel-cepstral coefficients C”, n = I,. . . ,9, are ex- 
tracted using Hamming window analysis on a 16 
msec frame-by-frame basis for speech sampled at 8 
kHz. 

4.2.2. Feature enhancing artificial neural network 
The design criteria of the linear feature enhancing 

artificial neural network is that it should have class- 
dependent weights, preserve information and take 
advantage of application-specific knowledge of the 
input signal. To provide class-dependent weights, the 
weights are determined using training tokens of the 
modeled class. In addition, the Karhunen-Loeve 
transform is used to insure that the neural network is 
information-preserving based on a minimum mean 
square error between the actual network input and 
the input reconstructed from the network output and 
weights. Finally, the width of the input layer of the 
neural network adapts as characteristics of the speech 
signal vary and new segment types are encountered. 
Segment types are classified in the parameterization 
step as v/t/uv. 

A time sequence of vectors, each consisting of 
nine mel-cepstral coefficients, provides the input to 
the neural network and is linearly transformed by 
sets of weights. Each NT-MFCC ’ time series is 
transformed by a subnetwork, which “slides” across 
the input frames (Fig. 8(c)). The size of a subnet- 
work’s input layer depends on segment type. At a 
particular instant in time, all subnetworks have the 
same input layer width, but different weights. As 
long as the segment type remains the same, the input 
layer width remains the same. The input layer widths 
are chosen based on how fast the Mel-cepstral coef- 
ficients change in a given segment type and how 
often the type occurs. Parameters change more slowly 
in a voiced section; thus, the largest input layer 
width is chosen for voiced segments. Fig. 11 shows 
how the input layer width of the neural network 
changes as new segments are encountered for a 
single MFCC. Note that all 9 MFCCs undergo a 
transformation, but only coefficient n, C,! are pic- 
tured here, where i is the frame number. The result- 
ing transform coefficient at time t is denoted by Y,“. 
The network output is (assuming a mapping from i 
onto t) 

‘44-l 

K" = c w;; * Cl;k' 

k=O 
(9) 

where the segment at time t is of type j and A4, is 
the corresponding input layer width. 

To determine the sets of weights for the neural 

’ The notation NT-MFCC refers to non-transformed vectors of 

Mel-cepstral coefficients. The notation T-MFCC is used to repre- 
sent Mel-cepstral coefficients which have been transformed by a 
FEANN. 
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network, sample correlation matrices are formed from 
training data for each coefficient n and segment type 
j, and the principal eigenvector is found for each 
matrix. Sample correlation matrices are formed as 
follows: 

e; = ; lq{c: ‘..., c:+.,_,}‘{c; t..., c;+q,}), 
J IEJ 

(‘0) 
where Nj is the number of training samples for the 
jth segment type. For the subnetwork in Fig. 11, the 
following error quantity is therefore minimized: 

Ej’ = c E;, = c (( K$(i,,j * Y,“) - C;)*. (11) 
i,t=; i,tEj 

where G(i,t) maps frame i and time t onto the 
weight index corresponding to i and t. Although this 
work was motivated in part by iterative algorithms 
which implement the Karhunen-Loeve transform, 
the Jacobi method is used here to find the principal 
eigenvector. 

4.2.3. Semi-continuous HMM recognition 
As shown in Fig. 10, five state semi-continuous 

hidden Markov models (SCHMM) are used to model 
each keyword (Huang et al., 1990). The mixture 
weighting coefficients Z? are unique for each state 
and each mixture density. The probability density 
function for state i is 

hi(x) = 5 .f,tx>qj, (‘2) 

j= I 

where f,(x) = N((x,p,, zi) is a multivariate Gauss- 
ian density with mean vector pj and covariance 
matrix Z,, from a codebook of J = 64 Gaussian 
densities. Model parameter re-estimation for training 
the SCHMM is accomplished via the Baum-Welch 
forward-backward algorithm. Finally, the word score 
is calculated for an observation sequence by finding 
the mean natural log of the forward variable over all 
frames and all states: 

score = k ,$, ln( C a,(i)). (13) 
i 

4.2.4. Likelihood ratio test 
For a recognizer to “detect” a keyword, the score 

produced must be greater than a pre-determined 
threshold. Therefore, performance which depends on 

the threshold is measured in terms 
detection pd and probability of 
(Whalen, 197 11. 

of probability of 
false alarm pf 

One goal is to determine the impact of stress 

equalization using a FEANN for keyword recogni- 
tion. Initial recognizers are evaluated by setting their 
thresholds to the minimum score produced by key- 
words for training data. Although this is not an 
automatic method for selecting thresholds, it serves 
to demonstrate the rejection benefits of the feature 
enhancing neural network. In the discussion below, 
this threshold is used to determine “theoretically 
best” results. 

The optimal detection scheme is based on a likeli- 
hood ratio test. Hypothesis one (Hl) is that the 
submitted word is the desired keyword. Hypothesis 
zero (HO) is that the word submitted is not the 
keyword represented by the recognizer. A decision 
rule can be determined by minimizing the Bayes 
average cost. For this purpose, the a priori probabili- 
ties are assumed to be equal. The decision rule is, if 

PI(Y) Cl, ->- 
PO(Y) - co, (14) 

choose Hl, where C,, is the cost of choosing Hl 

when the correct decision is HO, C,, is the cost of 
choosing HO when the correct decision is Hl, and 
p,( y)/p,( y) is the likelihood ratio. 

To find p,(y) and pO(y), Maxwell probability 
density functions (pdfs) are fit to sample pdfs ob- 
tained from scores under each hypothesis. The 
Maxwell pdf is formed as follows: 

d?x’ 
f(x) = Xe-*2’za’ withmean p = 2cu 

(15) 
which yields the following probability density func- 
tion: 

4.2.5. FEANN evaluations 
A series of keyword recognition evaluations were 

performed using speaker dependent and multi-speaker 
FEANNs for neutral and Lombard effect speech 
recognition. 

“Theoretically Best” evaluations are used to show 
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Fig. 12. (a) Theoretically best receiver operating characteristics for NT-MFCC and T-MFCC (FEANN) “break” keyword recognizers. (b) 

Receiver operating characteristic for the speaker dependent (S.D.) and multiple speaker (MS.) Lombard effect T-MFCC (FEANN) “break” 

keyword recognizers. 

that FEANN reduces the number of incorrectly ac- 
cepted tokens for a recognizer for “help” for Lom- 
bard effect speech. Results show that FEANN re- 
duced the number of incorrectly accepted tokens for 
“break” for the neutral case by f for training data 
and nearly t for test data. Fig. 12(a) shows receiver 
operating characteristics (ROCs) formed using Lom- 
bard test data for the keyword “break” for NT- 
MFCC (dotted line) and T-MFCC (solid line) recog- 
nizers. Detection and false alarm probabilities are 
also summarized in Table 3 for neutral trained key- 
word recognizers for both non-transform (NT-MFCC) 
and FEANN transformed (T-MFCC) input parame- 
ters. The results show that the recognizer which used 
FEANN stress equalization made no false accep- 
tances. 

Multiple speaker Lombard effect results for 
“break” are presented in Table 4. Both recognizers 
were trained using data from 9 speakers. The results 
show improved rejection versus the speaker depen- 
dent case, but that T-MFCC performance was lower 
than NT-MFCC. These results suggest two observa- 

Table 3 

Detection and false alarm probabilities for two “break” keyword 
recognizers with thresholds obtained for theoretically best perfor- 

mance 

Noise-free keyword detection evaluation results for “break” 

Neutral data Lombard data 

Recognizer type pd 
,“r,S, 

Pd Pf 
NT-MFCC 1.0 1.0 0.0149 

T-MFCC 1.0 0.0294 1.0 0.0 

tions: first that additional training data does improve 
performance, and second that the intra-speaker vari- 
ability under Lombard effect is significant and must 
either require speaker dependent stress equalization, 
or an adaptive FEANN across speakers. 

In the last evaluation, a likelihood ratio test was 
added to both the speaker dependent T-MFCC 
“break” recognizer and the multiple speaker Lom- 
bard effect T-MFCC “break” recognizer. Sample 
Maxwell probability density functions (PDFs) were 
estimated by finding sample means and values of cr 
corresponding to the optimal (in the least mean 
square sense) PDFs using a simulated annealing 
algorithm. Two sets of “best fit” PDFs are shown in 
Fig. 13 for neutral “break” recognizers. The FEANN 
has the effect of increasing the variance of scores 
under HO, causing the PDFs under each hypothesis 
to “separate” more for the T-MFCC recognizer. The 
increased separation yields improved performance. 

A “semi-open” ROC for each T-MFCC recog- 
nizer was obtained by varying the threshold of the 

Table 4 

Detection and false alarm probabilities for two Lombard effect 

“break” keyword recognizers with thresholds set to show theoret- 

ically best possible performance 

Multiple speaker Lombard effect evaluation results for “break” 

Training data Testing data 

Recognizer type Pd Pi Pd Pf 

NT-MFCC 1 .o 0.0 1 .o 0.0133 
T-MFCC 1.0 0.0 1 .o 0.0167 
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NT-MFCC “BREAK” KEYWORD RECOGNIZER T-MFCC “BREAK” KEYWORD RECOGNIZER 

Fig. 13. (a) Probability density functions for the speaker dependent neutral NT-MCC “break” recognizer for 

Probability density functions for the speaker dependent neutral T-MCC “break” recognizer for both hypotheses. 

both hypotheses. (b) 

likelihood ratio test (see Fig. 12(b)). The speaker 
dependent ROC follows closely the ROC pictured in 
Fig. 12(a) for the T-MFCC recognizer. The fact that 
the ROC obtained by applying a likelihood ratio test 
closely matches the “theoretically best” ROC veri- 
fies that reliable PDFs can be formed from training 
data. For the multiple speaker recognizer, perfor- 
mance is near the theoretically best possible, as is 
shown by the multiple speaker ROC. 

In this section, we have shown that a keyword-de- 
pendent neural network is able to enhance MFCC 
speech parameters under stress and reduce the proba- 
bility of false acceptances of non-keywords by adapt- 
ing its weights and input layer width based on 
extracted speech characteristics. Keyword recogni- 
tion evaluations show that FEANN reduces the num- 
ber of false acceptances for neutral and Lombard 
stress by more than $. 

4.3. MCE-ACC robust recognition 

The two previous methods demonstrate that im- 
proved speech recognition can be achieved using a 
source generator framework with stress equalization 
on formant or MFCC spectral parameters. In this 
section, robust speech recognition is accomplished 
via morphological constrained feature enhancement 
(MCE) and stress compensation which is unique for 
each source generator across a stressed speaking 
class (see Fig. 8(d)) (Hansen, 1994). The algorithm 
uses a noise adaptive (v/t/uv) boundary detector 
(Hansen, 1991) to obtain a sequence of source gener- 
ator classes, which is used to direct MCE parameter 
enhancement (Section 3.4.3) and stress compensa- 
tion. This allows the parameter enhancement and 
stress compensation schemes to adapt to changing 

speech generator types. Fig. 14 illustrates a block 
diagram of the algorithm, entitled Morphological 
Constrained feature Enhancement with Adaptive 
mel-Cepstral Compensation based HMM recognition 
(MCE-ACC-HMM). The source gener_ator sequence 
of MCE estimated spectral responses Syb ,a,p,a co,), 
are then submitted for stress equalization. Stiessed 
speaking conditions are addressed by the choice of a 
modified source generator for each phoneme-like 
section. Let the estimated speech vector under noisy 
9eutral and Lombard stress condition be written as 

Sjh(tn) and $tu I (t,), respectively, where Ili[ .I, rep- 
resents a stressed based change in the source genera- 
tor. The sequence of Mel-cepstral (MFCC) vectors 
for generator -yb, under Lombard effect stress is 
modeled as 

where eqch ) represents an additive stress compo- 
nent which depends on the particular stress class qi 
and source generator b,. Given an estimate of the 
MFCCs over time t,, and stress component C,,,,,,(k), 
the log-likelihood estimate of CqtYh ,(t,) can be 
found. The unknown model parameter ’ G,,,,(k) is 
estimated by maximizing the log-likelihood function, 
resulting in the ML estimate 

A compensation model vector ep,(h,j is estimated 
for each detected source generator section during 
HMM training, and applied during recognition evalu- 
ation. An HMM system which includes a phonetic 
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Fig. 14. A general speech framework for noise and Lombard effect, and the resulting processing employed by the MCE-ACC-HMM speech 

recognition algorithm. 

consistency rule is used for recognition. This rule is 
obtained from input (v/t/uv) generator duration 
models for each word, and partitions utterances into 
single and multi-syllabic classes prior to HMM 
recognition. 

The algorithm was evaluated for noise free and 
nine noisy Lombard speech conditions which include 
additive white Gaussian, slowly varying computer 
fan, and aircraft cockpit noise (Hansen, 1994). Sys- 
tem performance was compared to a traditional VQ- 
HMM recognizer with no embellishments (Table 5). 
Employing individual recognition scores for all 27 
noisy Lombard effect stress conditions, the final 
mean recognition rate increased from 36.7% for 
VQ-HMM to 74.7% for MCE-ACC (+ 38% im- 
provement). The MCE-ACC is also shown to be 

more consistent, as demonstrated by a decrease in 
standard deviation of recognition from 21.1 to 11.9, 
and a reduction in confusable word-pairs. 

5. Summary and conclusions 

In this paper, we have discussed the problem of 
analysis, modeling and recognition of speech under 
stress, noise and Lombard effect. A source generator 
framework was proposed in order to characterize 
speech production under stressed speaking condi- 
tions. Furthermore, we briefly discussed results from 
previous analysis of speech under simulated and 
actual stress (SUSAS). This study consisted of speech 
production parameters from five domains: pitch, du- 

Table 5 

Overall recognition results for the VQ-HMM recognizer and the new robust recognizer MCE-ACC-HMM for three types of noise. 

Noise-free, averages over all noisy conditions (10, 20, 30 dB SNR), and the standard deviation of noisy recognition rates are also shown 

Overall noise-free and noisy Lombard effect recognition performance 

Noise-free Noisy Lombard conditions Overall 

Speech & X o WGN Aircraft PS-2 Fan Noisy 
recognizer Lombard 

Neutral & 96.0% 6.1 x cr x cr x o XRECOG vRECOG 

VQ-HMM 

Lombard & 65.7% 19.9 25.7% 19.0 46.2% 20.1 38.4% 20.9 36.7% 21.1 

VQ-HMM 
Lombard & 86.7% 8.7 70.1% 11.6 76.3% 12.8 77.8% 11.1 74.7% 11.9 
MCE-ACC- 

HMM 
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ration, intensity, glottal source and vocal tract spec- 
trum. Stressed speaking styles included soft, loud, 
slow, fast, angry, clear, question, computer workload 
tasks, Lombard effect and actual motion-fear tasks. 
Next, several recently formulated enhancement algo- 
rithms were briefly reviewed for robust feature esti- 
mation. Three robust speech recognition techniques 
were then discussed which are based on source 
generator theory. These methods include 6) con- 
strained feature enhancement with formant based 
stress equalization, (ii) feature enhancing artificial 
neural network based stress equalization for keyword 
recognition, and (iii) morphological constrained fea- 
ture enhancement with adaptive cepstral compensa- 
tion for recognition in noise and stress. Improvement 
was demonstrated over traditional HMM based 
methods. These results show that the use of a flexi- 
ble source generator framework for robust front-end 
feature enhancement and stress equalization can con- 
tribute significantly to improved recognition perfor- 
mance in a variety of adverse conditions. 
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Appendix A 

A brief audio demonstration of speech data 
from SUSAS is available at 
http://www.elsevier.nl/locate/specom. The 
demonstration consists of two parts. 

Part I. Simulated Speech Under Stress. Male speaker 
speaking the word “nav” (short for “navigation”) 

and “help” under the following stressed speech 
styles: Neutral, Fast, Slow, Loud, Soft, Angry, Ques- 
tion, Clear, Moderate Computer Response Workload 
Task, Heavy Computer Response Workload Task, 
and Lombard Effect (85 dB SPL Pink Noise). 

(1 a) Word: “Nav” 
File: nav-NFSLWAQC57LM.au 

(lb) Word: “Help” 
File: help-NFSLWAQC57LM.au 

Part 2. Actual Speech Under Stress. Male and fe- 
male speakers producing speech under a G-force 
Motion/Fear Task (i.e., speakers on amusement park 
roller-coaster ride). 

(2a) Female Speaker. In Vocabulary examples 
(from 35 word vocabulary) 

Words: “degree eighty” 
Neutral, Stressed 
File: degree_eighty_F_NeuAct.au 

(2b) Male Speaker. In Vocabulary examples (from 
35 word vocabulary) 

Words: “degree histogram” 
Neutral, Stressed 
File: degree_histogram_M_NeuAct.au 

(2~) Out of Vocabulary examples (words speakers 
produced outside 35 word vocabulary) 

Words: “pilot helpme” 
Neutral, Stressed (male speaker) 
File: pilot_helpme_M_NeuAct.au 
Words: “mayday” 
Neutral, Stressed (male and female speakers) 
File: mayday_MF_NeuAct.au 
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