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Abstract
State-of-the-art session variability compensation for speaker recog-
nition are generally based on various linear statistical models of the
Gaussian Mixture Model (GMM) mean super-vectors, while front-
end features are only processed by standard normalization tech-
niques. In this study, we propose a front-end channel compensation
frame-work using mixture-localized linear transforms that operate
before super-vector domain modeling begins. In this approach, lo-
cal linear transforms are trained for each Gaussian component of
a Universal Background Model (UBM), and are applied to acous-
tic features according to their mixture-wise probabilistic alignment,
yielding an operation that is globally non-linear. We examine Prin-
cipal Component Analysis (PCA), whitening, Linear Discriminant
Analysis (LDA) and Nuisance Attribute Projection (NAP) as front-
end feature transformations. We also propose a method, Nuisance
Attribute Elimination (NAE), which is similar to NAP but performs
dimensionality reduction in addition to channel compensation. We
show that the proposed frame-work can be readily integrated with a
standard i-Vector system by simply applying the transformations on
the first order Baum-Welch statistics and transforming the UBM.
Experiments performed on the telephone trials of the NIST SRE
2010 demonstrate significant performance gain from the proposed
frame-work, especially using LDA as the front-end transformation.

1. Introduction
Recent advancements in session variability compensation for
speaker verification is mostly due to effective application of lin-
ear statistical methods on speaker/utterance dependent GMM mean
super-vectors. Methods such as, Eigenvoice [1], Eigenchannel and
Joint Factor Analysis (JFA) [2], are based on the lower dimensional
speaker and channel dependent subspace assumption and their vari-
ants; NAP [3] performs a linear transformation on the super-vectors
aiming at projecting out nuisance directions; Total Variability (TV)
modeling [4] reduces the super-vector dimension using factor anal-
ysis [1] to obtain i-Vectors, which are again processed by linear
statistical techniques such as LDA, Within Class Covariance Nor-
malization (WCCN) and Probabilistic LDA (PLDA).

Despite the success of the linear statistical models in speaker
recognition and in other pattern classification tasks in general [5],
acoustic features are not generally compensated using these tech-
niques. Popular front-end channel compensation methods such as
Mean and Variance Normalization (MVN) and Gaussianization [6]
rely on normalizing the coefficients based on their temporal statis-
tics alone. Linear statistical methods such as LDA and PCA have
also been applied on acoustic features [7–9] in speech and speaker
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recognition. However, when advanced super-vector domain com-
pensation techniques are considered, the impact many feature do-
main normalization techniques become insignificant [10, 11].

In this study, we propose an effective frame-work for utilizing
linear statistical methods on acoustic features as a pre-processing
stage, before the super-vector domain modeling begins. We first
train a UBM on the development dataset and derive PCA, LDA,
NAP and whitening transformation matrices for each GMM mix-
ture. We also propose a new dimensionality reduction transforma-
tion similar to NAP, termed as nuisance attribute elimination. Con-
ventionally, when GMMs are used for feature clustering and trans-
formation, the most likely mixture component is obtained given the
input feature vector and the corresponding transform is used [10].
This approach assumes that one feature vector aligns with a sin-
gle Gaussian mixture only and new models need to be trained from
the transformed feature set. In the proposed frame-work, instead
to returning to the feature space and retraining the UBM, the trans-
formations are applied to the first order Baum-Welch statistics and
the UBM itself. In this way, the front-end processing can be effec-
tively integrated into a standard i-Vector PLDA based system. Ex-
perimental evaluations show promising results using the proposed
channel compensation scheme.

2. Proposed method

2.1. Mixture-wise feature transformation

Let X = {xn|n = 1 · · ·N} be the collection of all d dimensional
feature vectors from the development dataset. Let us define a trans-
formation matrix A, and transformed feature vectors zn, so that,

zn = A(xn − µ). (1)

Here, xn represents the d × 1 dimensional feature vector obtained
from X , A is a d × q transformation matrix where q ≤ d, and µ
is the d × 1 mean vector of xn. The matrix A could be obtained
from any linear statistical method, such as PCA, LDA, NAP, etc.
If q < d, this transformation performs dimensionality reduction.
Considering the variability of acoustic features in various environ-
mental conditions and phonetic context, we presume that different
regions of the feature space should have a unique transform. Thus,
we utilize a UBM Λ0 for clustering the acoustic features, given by,

p(xn|Λ0) =

M∑
g=1

wg

exp
[
− 1

2
(xn − µg)TΣ−1

g (xn − µg)
]

(2π)d/2|Σg|1/2

where wg is the mixture weight, µg and Σg represent the mixture
mean vector and covariance matrix, and M is the number of mix-
tures. The transformed feature vector in the g-th mixture is:

zn,g = Ag(xn − µg) (2)



where Ag is now a mixture dependent transformation. It can be
shown that zn,g has a zero mean and a covariance matrix given by:

Σzg = AgΣgA
T
g . (3)

Thus, after this mixture dependent transformation is applied, the
UBM Λ0 is replaced by a transformed UBM model Λ̂0, given by,

p(z|Λ̂0) =

M∑
g=1

wgN (0,Σzg ). (4)

2.2. Integration within the i-Vector system

After feature extraction and UBM training, the first step of training
a total variability matrix/i-Vector extraction is estimating the zero
and first order Baum-Welch statistics. These statistics are computed
from acoustic features with respect to the UBM model. For an ut-
terance h, the zero order statistics, also known as the probabilistic
count for each mixture, is extracted as,

Nh(g) =
∑
n∈h

γn(g), where γn(g) = p(g|xn,Λ0). (5)

In the proposed frame-work, the first order statistics Fh(g) is ex-
tracted using the transformed feature vectors in the corresponding
mixtures, instead of the original acoustic features xn.

Fh(g) =
∑
n∈h

γn(g)zg,n = Ag

∑
n∈h

γn(g)(xn − µg) (6)

As expected, this is simply a transformed version of the central-
ized first order statistics [2]. Each feature vector is thus trans-
formed according to its alignment with different mixtures that are
locally effective in performing channel compensation. This process
is similar to a mixture of experts model [12] for front-end chan-
nel compensation. The rest of the i-Vector system procedure fol-
low the conventional approach, with acoustic feature dimension q
and UBM model Λ̂0. Also the super-vector dimension reduces to
K = Mq from Md, and TV matrix size becomes K × R. We
define a parameter super-vector compression ratio α = K/Md,
measuring overall dimension reduction in the system.

2.3. Mixture-wise PCA (m-PCA)

Here, we describe how a mixture-wise PCA [13] is implemented
in the proposed frame-work. First, a full covariance UBM Λ0 is
trained on the development data. Next, for each mixture covariance
matrix Σg , the eigenvalue decomposition is performed as:

Σg = UT
g ΛgUg (7)

where the columns of Ug contain the eigenvectors of Σg , and Λg

contains the corresponding eigenvalues in its main diagonal. Re-
taining the first q principal directions in the feature space within
this mixture, the g-th transformation matrix is defined as:

APCA-q[g] = UT
[q]g (8)

where U[q]g contains the first q columns of Ug corresponding to
the largest eigenvalues. The transformed covariance matrix is:

Σzg = U[q]gΣgU
T
[q]g = Λ[q]g (9)

where Λ[q]g is a q× q diagonal matrix containing the first q largest
eigenvalues of Σg . In this case, the modified UBM is given by,

p(z|Λ̂PCA) =

M∑
g=1

wgN (0,Λqg). (10)

Thus, using this transformation, the acoustic features are de-
correlated, and when q < d is set, the least important directions
in the acoustic space is also suppressed.

2.4. Mixture-wise Whitening (m-WHT)

This is very similar to PCA, except that the transformation whitens
the features in each mixture in addition to de-correlating them.
Least important directions can be removed using this transform in
the same way as PCA. The whitening transformation for the g-th
mixture retaining q ≤ d components is given by:

AWHT-q[g] = Λ
− 1

2
[q]g

UT
[q]g . (11)

In this case, the new UBM Λ̂WHT has an identity covariance matrix.

p(z|Λ̂WHT) =

M∑
g=1

wgN (0, I). (12)

2.5. Mixture-wise LDA (m-LDA)

To implement a mixture wise LDA transformation, we need the
mixture dependent within class and between class scatter matri-
ces, Swg and Sbg , respectively. We also need development data
speaker labels. We proceed as follows. For each speaker s ∈ S, we
compute the speaker dependent mean vector for the g-th mixture
as:

x̄gs =
1

ns

∑
n∈s

γn(g)xn (13)

Here, ns is the total number of feature frames belonging to the
speaker s. From total S speakers’ data, the between class and
within class scatter matrices for each mixture is then computed as:

Sbg =
1

S

S∑
s=1

Ns(g)(x̄gs − µg)(x̄gs − µg)T (14)

Swg =
1

S

S∑
s=1

∑
n∈s

γn(g)(xn − x̄gs)(xn − x̄gs)T (15)

where Ns(g) =
∑

n∈s γn(g) is the probabilistic count of mixture
g for speaker s. Next, the g-th LDA transformation matrix is com-
puted through the following eigenvalue decomposition:

Sw
−1
g Sbg = VT

g Dg.Vg (16)

Here, Vg contains the eigenvectors as its columns and Dg contains
the corresponding eigenvalues as its main diagonal. If V[q]g de-
notes the matrix containing q ≤ d columns of Vg corresponding to
the q largest eigenvalues, the LDA transform matrix is given by:

ALDA-qg = VT
[q]g . (17)

Using this transformation, the transformed UBM covariance matri-
ces can be computed using (3).

One common problem in implementing multi-class LDA oc-
curs when feature dimension becomes larger than the number of
classes, leading to singular between/within-class covariance matri-
ces [5]. For this reason, LDA is generally applied to the lower
dimensional i-Vectors [4] instead of the GMM mean super-vectors.
When applying LDA on acoustic features in the proposed frame-
work, we observe that if the number of speakers S is larger than
the acoustic feature dimension d (a condition which can be easily
met) the between class covariance matrices in (14) should always
be full rank. However, if in a given mixture, Ns(g) is zero for a
large number of speakers, Sbg can be low rank. Such cases are
very rare, since the same corpus will be used to train the UBM and



10−10 10−8 10−6 10−4 10−2 100 102 104 106 108

0

0.05

0.1

Mixture-wise probabilistic count

P
ro
b
ab
il
it
y

 

 

p(NX (g))

p(Ns(g))

Figure 1: Distribution of mixture-wise probabilistic feature count. The dis-
tributions p(NX (g)) and p(Ns(g)) are obtained from 1024 mixture counts
for all data, and computing the same for each 984 speakers, respectively.

estimate these matrices. Similarly, to ensure that Sbg matrices in
(15) are non-singular, most of the posterior probabilities for each
speaker and mixture should be greater than zero.

In order to verify if these conditions are met in our system,
we train a 1024 mixture UBM using 60-dimensional MFCC fea-
tures extracted from our development data set. The full dataset X
contains a total of 162, 093, 376 frames obtained from 984 speak-
ers. The probabilistic counts NX (g) =

∑
n∈X p(g|xn,Λ0) are

calculated for each mixture across the entire dataset, and Ns(g)
values for each speaker s ∈ S and mixture g is computed. The
probability distributions of NX (g) and Ns(g) are then estimated
using normalized histograms and are shown in Fig. 1. We obtain
the distributions p(NX (g)) and p(Ns(g)) from M = 1024 and
MS = 1024 × 984 data points, respectively. Here, we observe
that for most cases Ns(g) > 10−2 and NX (g) > 102. Since we
have S = 984 speakers, Ns(g) ∼ 0 for some mixtures for a few
speakers cannot make Sbg low-rank. However, if NX (g) is close
to zero for a mixture, it can lead to a singular Swg matrix. If this
occurs, we do not perform the LDA transformation in that mixture
and use an identity matrix instead.

2.6. Mixture-wise NAP (m-NAP)

The NAP algorithm was originally proposed in [3]. In this method,
the feature space is transformed using an orthogonal projection in
the channel’s complementary space, which depends only on the
speaker. The projection is calculated using the within-class covari-
ance matrix. To apply NAP on acoustic features, we define a d× d
projection matrix [3] of co-rank k < d for the g-th mixture as:

Pg = I−W[k]gWT
[k]g , ANAP-kg (18)

where W[k]g is a rectangular matrix of low rank whose columns
are the k principal eigenvectors of the matrix Swg in (15). The
transformed UBM covariance matrices are found using (3):

Σzg = PgΣgP
T
g . (19)

Since NAP removes some nuisance directions from the feature
space in each mixture, the operation in (19) on the mixture covari-
ance matrices Σg , results in rank-deficient, and thus non-invertible
transformed matrices Σzg . To avoid inverting Σzg , we use its
pseudo-inverse in our system, which is calculated using the Sin-
gular Value Decomposition (SVD) method presented in [14]. We
note that, NAP does not reduce the feature dimension. Thus, the
super-vector compression ratio α = 1 in this case.

2.7. Mixture-wise Nuisance Attribute Elimination (m-NAE)

We propose a dimensionality reduction transformation that uses the
same principles as NAP, but eliminates the nuisance directions from

the feature space instead of projecting them out. In this way, the
transformed UBM covariance matrices are smaller in size, but still
full rank and invertible. For the proposed method, we transform
the features by the first q = (d− k) eigenvectors corresponding to
the largest eigenvalues of Swg denoted by W[q]g . Here, k is the
number of dimensions eliminated. The NAE transform is given by:

ANAE-qg = WT
[q]g . (20)

Here, the acoustic features are dimensionality reduced from d to q.

3. Experiments
We perform our experiments on the male trials of NIST SRE 2010
telephone train/test condition (condition 5, normal vocal effort). A
standard i-Vector system with a Gaussian Probabilistic Linear Dis-
criminant Analysis (PLDA) [15] back-end is used for the evalua-
tion. Different blocks of the system is described below.

3.1. Feature Extraction

For voice activity detection (VAD), a phoneme recognizer [16] and
energy based scheme is used. A 60-dimensional feature vector (19
MFCC +Energy + ∆ + ∆∆) is extracted, using a 25 ms analysis
window with 10 ms shift and filtered by feature warping using a 3-s
sliding window [6].

3.2. UBM Training

A gender dependent full-covariance UBM with 1024 mixtures is
trained on utterances selected from Switchboard II Phase 2 and 3,
Switchboard Cellular Part 1 and 2, and the NIST 2004, 2005, 2006
SRE enrollment data. For training, we used the HTK toolkit using
15 iterations per mixture split.

3.3. Total variability modeling

For the total variability matrix training, the UBM training dataset is
utilized. i-Vector dimension was set to 400. All i-Vectors are first
whitened and then length normalized [15].

3.4. Back-end channel compensation and scoring

A Gaussian PLDA with full-covariance noise model is used for both
session variability compensation and scoring [15] . In this model,
the only free parameter is the number of Eigenvoices NEV , which
was set to 150.

4. Results
The results of our experiments are summarized in Table 1. The
“Baseline” system refers to the i-Vector PLDA system. For the pro-
posed front-end channel compensation methods m-PCA, m-WHT,
m-LDA, m-NAP and m-NAE, various parameter values shown in
Table 1 are used. The performance metrics used are: Equal Er-
ror Rate (%EER), and minimum Detection Cost Functions of NIST
SRE 2008 (DCFold) and 2010 (DCFnew). From the results, we ob-
serve that m-PCA and m-WHT can generally improve the system
performance upto ∼ 10% relative to the baseline. Improvements
are observed for both with and without dimensionality reduction.
The m-LDA method provides the best performance of all the trans-
forms. An EER of 1.718% is attained yielding 19.4% relative im-
provement compared to the baseline system when q = 40 is used.
The techniques m-NAP and m-NAE performed worse compared
to m-PCA, m-WHT and m-LDA, with the proposed m-NAE tech-
nique generally outperforming m-NAP. Given the simplicity of the
transforms used, the performance gains clearly demonstrate the ef-
fectiveness of the proposed channel compensation scheme.



Table 1: Comparison between baseline i-Vector and proposed systems with
respect to %EER, DCFold and DCFnew for NEV = 150. Percent relative
improvement (%r) and super-vector compression ratio (α) are also shown.

System α %EER/%r DCFold/%r DCFnew/%r
Baseline 1.00 2.13284 0.11308 0.39845

Method Parameter

m-PCA
q = 42 0.70 1.827/14.35 0.106/6.45 0.397/0.32
q = 48 0.80 2.030/4.82 0.108/4.56 0.363/8.92
q = 60 1.00 1.899/10.98 0.105/7.40 0.387/2.90

m-WHT
q = 42 0.70 1.887/11.55 0.105/7.29 0.379/4.79
q = 48 0.80 1.908/10.54 0.109/3.56 0.372/6.60
q = 60 0.80 1.920/9.96 0.108/4.79 0.381/4.38

m-LDA
q = 36 0.60 2.065/3.20 0.105/6.86 0.384/3.71
q = 40 0.66 1.718/19.43 0.096/15.05 0.40/-0.47
q = 48 0.80 1.857/12.94 0.107/5.70 0.389/2.49

m-NAP
k = 5 1.00 2.011/5.71 0.113/0.22 0.411/-3.2
k = 10 1.00 2.130/0.11 0.115/-1.3 0.413/-3.7
k = 20 1.00 2.108/1.16 0.117/-3.7 0.44/-10.3

m-NAE
k = 5 0.92 1.982/7.05 0.112/0.79 0.416/-4.4
k = 10 0.83 2.079/2.54 0.106/6.55 0.418/-4.8
k = 20 0.66 2.120/0.61 0.122/-7.8 0.45/-11.6

Table 2: Linear score fusion of baseline and proposed systems
Individual system performances

System %EER DCFold DCFnew

(i) Baseline 2.13284 0.11308 0.39845
(ii) m-PCA42-i-Vector 1.82672 0.10579 0.39719
(iii) m-WHT42-i-Vector 1.88659 0.10484 0.37935
(iv) m-LDA40-i-Vector 1.71848 0.09606 0.40034

Fusion system performances
1 Fusion of (i) & (ii) 1.81949 0.09845 0.35695
2 Fusion of (i) & (iii) 1.77720 0.09817 0.36436
3 Fusion of (i) - (iv) 1.68627 0.09307 0.35549

In Table 2, fusion performance of the following four systems
are presented: (i) Baseline, (ii) m-PCA42, (iii) m-WHT42, and (iv)
m-LDA40. From these results, it is clear that proposed systems pro-
vide complimentary information compared to the baseline system.
The best performance is attained by fusing all four of these systems
to reach a performance of, EER = 1.686%, DCFold = 0.093 and
DCFnew = 0.355. In Fig. 2, the performance comparison of these
systems are shown using a Detection Error Tradeoff (DET) curve.

5. Conclusions
In this study, we have proposed a front-end channel compensation
frame-work utilizing various linear statistical methods operating in
each mixture of a UBM. Mixture-localized formulations of PCA,
LDA, whitening and NAP were described in the proposed frame-
work. A new transformation termed nuisance attribute elimination
was also presented. Instead of regenerating the acoustic features,
the mixture-localized transforms were applied to the UBM and the
first-order Baum-Welch statistics, and thus, were integrated within
a standard i-Vector PLDA speaker recognition system. Experi-
ments were performed on NIST SRE 2010 telephone trials demon-
strating the effectiveness of the proposed channel compensation
frame-work. Significant performance improvements compared to
the baseline system were obtained when using LDA as a front-end
transformation.
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