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Abstract—The problem of unsupervised audio classification and
segmentation continues to be a challenging research problem
which significantly impacts automatic speech recognition (ASR)
and spoken document retrieval (SDR) performance. This paper
addresses novel advances in 1) audio classification for speech
recognition and 2) audio segmentation for unsupervised mul-
tispeaker change detection. A new algorithm is proposed for
audio classification, which is based on weighted GMM Networks
(WGN). Two new extended-time features: variance of the spec-
trum flux (VSF) and variance of the zero-crossing rate (VZCR)
are used to preclassify the audio and supply weights to the output
probabilities of the GMM networks. The classification is then
implemented using weighted GMM networks. Since historically
there have been no features specifically designed for audio seg-
mentation, we evaluate 16 potential features including three new
proposed features: perceptual minimum variance distortionless
response (PMVDR), smoothed zero-crossing rate (SZCR), and fil-
terbank log energy coefficients (FBLC) in 14 noisy environments
to determine the best robust features on the average across these
conditions. Next, a new distance metric, 72-mean, is proposed
which is intended to improve segmentation for short segment
turns (i.e., 1-5 s). A new false alarm compensation procedure is
implemented, which can compensate the false alarm rate signifi-
cantly with little cost to the miss rate. Evaluations on a standard
data set—Defense Advanced Research Projects Agency (DARPA)
Hub4 Broadcast News 1997 evaluation data—show that the WGN
classification algorithm achieves over a 50% improvement versus
the GMM network baseline algorithm, and the proposed com-
pound segmentation algorithm achieves 23%-10% improvement
in all metrics versus the baseline Mel-frequency cepstral coef-
ficients (MFCC) and traditional Bayesian information criterion
(BIC) algorithm. The new classification and segmentation algo-
rithms also obtain very satisfactory results on the more diverse
and challenging National Gallery of the Spoken Word (NGSW)
corpus.

Index Terms—Audio classification, audio segmentation,
Bayesian information criterion, broadcast news transcription,
feature analysis, feature processing, Gaussian mixture model
(GMM) networks, noisy environments, rich transcription, speaker
segmentation, spoken document retrieval.
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I. INTRODUCTION

HE GOAL of audio segmentation and classification is

to partition and label an input audio stream into speech,
music, commercials, environmental background noise, or
other acoustic conditions. This preliminary stage is necessary
for effective large vocabulary continuous speech recognition
(LVCSR), audio content analysis and understanding, audio
information retrieval, audio transcription, audio clustering, and
other audio recognition and indexing applications.

While much work has been conducted in segmentation and
classification, most studies have considered one homogeneous
style of audio data. Audio streams for content analysis generally
consist of a variety of materials and formats consistent with the
following domains.

Monologues: Single speaker talking spontaneously or
reading prepared or prompted text in clean conditions.
Two-Way Conversations: Telephone conversations be-
tween two subjects that are spontaneous and could con-
tain periods with both talking.

Speeches: Audio data where a person (e.g., politician) is
speaking to an audience, primarily one talker, but back-
ground audience noise could be present, and room echo
or noise is possible.

Interviews/Debates: Audio streams where a person is
being interviewed by a TV or radio person. Debates could
include a moderator and/or various audience participation
(e.g., questions, applause, interruptions, etc.).

Radio/TV News Broadcasts: Would include traditional
news anchor with periods of both prompted read speech,
spontaneous speech, background music, commercials,
other background audio content (e.g., office noise such
as typewriter, etc.). Audio content would come from TV
or radio studio settings.

Field News Broadcasts: Audio content would come from
news reporters in the field (e.g., emergency or war loca-
tions, city streets, etc.), would contain a wide range of
background noise content of unpredictable origin. Com-
munication channels would also impact frequency content
of the audio.

Recording Media/Transmission: Here, the audio prop-
erties can be transformed based on the type of a recording
equipment used (e.g., microphones, Edison cylinder
disks, reel-to-reel tape, cassette tape, DAT, CD, etc.)
or transmission (e.g., AM, FM, voice compression
methods—CELP, MELP, ADPCM, etc.).
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The purpose for identifying the range of audio stream possi-
bilities here is to emphasize the broad range of speaker and en-
vironmental factors that can influence acoustic properties. Most
studies in audio classification and segmentation have considered
more recent audio content such as the Defense Advanced Re-
search Projects Agency (DARPA) Broadcast News (BN) corpus
with materials from the 1990s. However, it is possible that for
applications such as digital voice libraries (e.g., NGSW [25],
[31], [40]) to contain a much wider range of audio format and
content such as that listed above. Our objective for audio classi-
fication and segmentation is to help improve speech recognition
performance using a LVCSR system for a diverse corpus such
as NGSW. Therefore, the audio segmentation should be con-
ducted at the speaker and acoustic condition level and the audio
streams would be classified into speech or nonspeech, broad-
band or narrow band, female or male classes. In this study, we
propose to 1) focus on effective feature processing for classifi-
cation and segmentation and 2) develop integrated classification
and segmentation schemes that can be more successful in spon-
taneous audio streams from a range of acoustic conditions or
environmental noise events.

The remainder of this paper is organized as follows. First,
background material is presented to help motivate the formula-
tion of new classification and segmentation algorithms. Next, the
audio classification algorithm, termed WGN, is proposed in Sec-
tion III. In Section IV, the compound segmentation (CompSeg)
algorithm is introduced. The evaluations are presented in Sec-
tion V. Finally, a summary of this study is presented.

II. ALGORITHM MOTIVATION

In this section, background material is presented to help mo-
tivate the formulation of the audio classification and segmenta-
tion algorithms.

Most audio classification techniques focus on two different
aspects: one is the particular feature employed, the other is
the statistical model used. Speech and nonspeech (music,
songs, environmental sounds, etc.) segments have different
distribution characteristics in both the time and frequency
domains, so feature-based classification is generally an effec-
tive method. A number of studies have focused on alternative
feature selection or development. For example, Zhang and Kuo
[38] considered the energy function, average zero-crossing
rate (ZCR), fundamental frequency and spectral peak tracks as
their features; Lu et al. [22] considered the noise frame ratio,
low short-time energy ratio and four other features; while Li
[21] employed the total spectrum power, subband power and
also four additional features. The success of feature-based
methods depends mainly on the discriminative power of the
features, and the methods are implemented either in a complex
threshold-dependent scheme [22], [38] or with some pattern
classification method (Euclidean distance, nearest neighbor
[35], nearest feature line [21], etc.). Model-based classification
methods have also been popular recently. Hain er al. [12]
trained four Gaussian mixture models (GMMs) to classify the
DARPA BN data into broadband speech, narrowband speech,
speech with music backgrounds, and only music. Ajmera and
McCowan [2] compared the GMM with a multilayer perceptron

(MLP) and reported that they were comparable; Scheirer and
Slaney [28] compared the GMM with maximum a posteriori
(MAP), K nearest neighbor (KNN), and K-dimension spatial
classification (K-d models) and reported that KNN was slightly
better than the other three classifiers. The distinction between
feature-based methods and model-based methods can be ob-
scure, since many researchers consider both aspects to obtain
the best performance improvement. For example, Ajmera and
McCowan [2] applied two posterior probability based features:
entropy and dynamism for GMM and MLP classifiers; while
Scheirer and Slaney [28] compared thirteen features with four
classifiers.

The features used in feature-based methods can be consid-
ered extended-time features, and are represented in the time
domain (ZCR, energy, etc.), or in the frequency domain (sub-
band power, low short-time energy ratio, etc.), and are typically
not suitable for training a statistical model, especially with a
diagonal covariance based GMM. As an alternative, short-time
features such as the spectral-based MFCC and perceptual min-
imum variance distortionless response (PMVDR) [37] features
are decorrelated and highly independent across the feature
vector, and, therefore, suitable for training a statistical model.
However, short-time features such as MFCCs encode phoneme
level information, which can be inappropriate for speech/non-
speech classification. Based on concepts discussed so far,
features used in the feature-based methods and features used
in the model-based methods are quite different. As such, most
researchers treat the feature-based methods and model-based
methods separately and do not consider them in an integrated
manner.

In this paper, a novel classification algorithm is proposed that
combines the feature and model in a compact way that results in
very effective audio classification. First, two new extended-time
features, variance of the spectrum flux (VSF), and variance of
the ZCR (VZCR) are proposed; next, they are applied for pre-
classification of input audio streams. The preclassification will
produce weights which are supplied to the output probabilities
of a GMM network, and then the final classification is imple-
mented using Weighted GMM Networks (WGN). This algorithm
combines the feature-based method and model-based method in
a compact way rather than in a separate way, and achieves very
satisfactory results for audio streams from a range of acoustic
scenarios.

The goals of effective audio/speaker segmentation are dif-
ferent than those for automatic speech recognition (ASR), and,
therefore, features, processing methods, and modeling concepts
successful for ASR may not necessarily be appropriate for
segmentation. Features used for speech recognition attempt to
minimize the differences across speakers and acoustic environ-
ments (i.e., Speaker Variance), and maximize the differences
across the phoneme space (i.e., Phoneme Variance). However,
in speaker segmentation for audio streams, it is preferable to
maximize speaker traits and minimize the phoneme variances
simultaneously to produce segments that contain a single
acoustic event or speaker. The traditional MFCC features used
for ASR may, therefore, not be as effective for speaker seg-
mentation. Other studies have considered alternative features.
For example, Adami et al. [1] considered line spectral pair
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Fig. 1. Process of speech/nonspeech classification with VSF.

(LSP) features, Lu and Zhang [23] used a multifeature set
that consisted of the MFCC, LSP, and pitch features to detect
change points, and then applied the Bayesian fusion model to
combine segmentation results. In the present study, a range of
previously developed speech features along with several new
features [e.g., PMVDR [37], SZCR, filterbank log energy coef-
ficients (FBLC)] are considered. These features are evaluated
in different noise backgrounds in an effort to determine the best
feature for segmentation in adverse noisy environments.

If speaker segments are longer than 5 s, the Bayesian informa-
tion criterion (BIC) [5] and many distance measure-based ap-
proaches can achieve reliable segmentation performance [16].
However, these methods suffer from insufficient model estima-
tion traits when the segment turns are short (i.e., less than 5 s).
We propose here to use a new distance metric, the T2?-mean,
to address this problem. A novel false alarm compensation rou-
tine is also developed in the segmentation scheme which can
compensate the false alarm rate significantly with little cost to
changes in the miss rate. The algorithm is a compound segmen-
tation method, so the scheme is referred to as CompSeg.

III. AUDIO CLASSIFICATION IN A WEIGHTED GMM NETWORK

Previous studies have proposed many extended-time features,
with the majority derived from the time or frequency domains.
Most extended-time features are essentially the same since they
encode broad characteristics within the audio. Here, two ex-
tended-time features are designed. One is in the time domain,
the other is in the frequency domain. Features from different do-
mains might better reflect diverse aspects of the audio structure.

A. VSF

The first feature is the VSF. Fig. 1 shows a flow diagram of
the VSF feature extraction process for speech/nonspeech clas-
sification.

The spectrum flux (SF) [11], [33] is the ordinary Euclidean
norm of the delta spectrum magnitude, which is calculated as

SF =|Si—Si-1]]2 = % (Z_ (Si(k) — Si—l(k’))2> @))
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where S; is the spectrum magnitude vector of frame ¢, which is
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where s(n + (Ni/2)) is the audio data, N is the size of the
window, and w(n) is the window function (i.e., a 20-ms Ham-
ming window is used as shown in Fig. 1).

Actually, the SF itself cannot reflect major differences be-
tween speech and nonspeech. Itis observed that speech alternates
between transient and nonperiodic speech to short-time sta-
tionary and periodic speech due to the phoneme transitions (e.g.,
consonant to vowel, and other phone class transitions). On the
other hand, music and environmental sounds could be periodic
or monotonic and have more constant rates of change versus that
seen in speech. This means the variance of SF of speech should
be larger than that for music or most environmental sounds. To
explore this idea, the following experiment is designed. A set of
eight speech clips and eight music clips are selected, where each
is 5 sin duration. They are concatenated in an alternating fashion
(speech, music, speech, music,. . .). At the end of this 80-s stream,
a 10-s speech clip is concatenated followed by a 19-s environ-
mental sound clip. Therefore, the resulting audio stream is 109
s long in duration. Using this 109-s stream, the SF and VSF are
calculated, then speech/nonspeech classification is performed
using the VSF feature. The SF is calculated on a frame-basis,
where the frame size is 20 ms and the frame boundaries are ad-
vanced by 10 ms per frame (i.e., 100 frames per second). The
VSF is calculated as the variance of the SF over 20 frames.
Therefore, in one second of audio, there will be five subblocks,
each resulting in a speech/nonspeech decision task as follows:

L,
“i=o,

where 1 means speech, 0 means nonspeech, V;; is the VSF value
of jth subblock in zth 1-s audio block and 7" is a threshold. The
final decision on the 1-s audio block is based on the vote

- { L if Y7 e >3

0, else
Fig. 1 shows this decision process. Fig. 2 shows the classifica-
tion results for the 109-s audio stream. The results show that
only 2 s of music was mislabeled as speech from the 109-s pas-
sage.!

itV > T,

olse 1=1,2,...

v J = [175] 3)

i=1,2,... )

B. VZCR

The second feature is based on the zero-crossing rate (ZCR),
which is a commonly used extended-time feature in classifica-
tion. ZCR is the number of zero-crossings (number of times the
sequence changes sign) within a frame in the time domain [18],
[27] which is calculated as [6], [26]

1 Isgn{s(n)}—sgn{s(n—1)}|
N Z 2

n=m—N+1

Zs(m)=

w(m—n)

&)

where N is the length of the frame, mn is the endpoint of the frame,
and w(n) is the window function. Since music and environmental
sounds are more periodic or monotonic than speech, their ZCR
will be more constant with less fluctuations. This should mean

IThe classification processing window in this study is 1 s in duration; how-
ever, the evaluation duration unit is 1 frame (i.e., 0.01 s ) for comparison with
traditional GMM network classification.
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Fig. 2. Speech/nonspeech labeling based on VSF of the 109-s audio file. (a) SF value per frame (0.01 s). (b) VSF value per sub-block (20 frames, 0.2 s). (c) Final

labeling of speech/nonspeech per second. 1: speech; 0: nonspeech.

that the variance of the ZCR of speech should be larger than that
for music and environmental sounds. Therefore, the same deci-
sion process can be applied as that used for VSF by replacing
the steps in the dashed box in Fig. 1 with the ZCR calculation.

C. Classification in a Weighted GMM Network

Next, the new classification algorithm is proposed that
combines the feature-based methods and model-based methods
in an efficient way. Here, the extended-time features VSF and
VZCR proposed in the previous section are used. The GMM
network (GN) is selected, since it is an efficient model-based
classification method that has been considered by others [10],
[12]. For the system formulation, three sets of GMM networks
are trained: speech and nonspeech; female and male; female
broadband, female narrowband, male broadband, male narrow-
band; and nonspeech. The training data is the DARPA Hub4
BN 1996 training set. For the speech model, the training data
is taken from the seven BN focus conditions [30]: FO, F1, F2,
F3, F4, F5, FX. For the nonspeech model, the training data is
selected from the gaps between the BN speech segments. The
training data for narrowband models is from the F2 condition,
and data from the other six focus conditions is used for broad-
band models. A 39-dimensional MFCC feature set is used for
the models. The GMMs have between 96 and 256 mixture com-
ponents depending on training data size and contain diagonal
covariance matrices. There are no restrictions on the transition
between GMMs/states, so all GMMs are connected to each

other, forming a GMM Network. The GMM transition proba-
bilities are tuned on the development data as in Section V-Al.
The Viterbi algorithm is then implemented to obtain the best
classification results. The Viterbi search can be done at the
frame level (e.g., 0.01 s per frame; the MFCCs are computed
at the frame level) or at a bigger block. We test blocks which
are from 0.01 s to 2 s long in duration and find that the 0.75-s
to 1.5-s blocks achieve the best performance. In our algorithm,
therefore, the Viterbi search is based on 1-s processing blocks
in order to match the block size in the classification algorithm
based on extended-time features (i.e., VSF and VZCR).

To train the diagonal covariance GMMs, short-time features
such as MFCCs must be employed. Although extended-time fea-
tures cannot be used in model training directly, it is possible to
integrate them as a weighting process of the output probabili-
ties of the GMMs. Extended-time features can classify audio into
speech versus nonspeech as previously discussed. The weights of
the output probabilities of the GMM:s are set as follows. If the cur-
rent segment is classified as speech, then the output probability
of the speech GMM for that segment is multiplied by a weight
larger than one, and unchanged for the nonspeech model proba-
bility. If the segment is classified as nonspeech, then that output
probability of the nonspeech model is multiplied by a weight
larger than one, and unchanged for the speech model probability.
The weights are also tuned on the development data as in Sec-
tion V-Al. This algorithm can improve classification accuracy
significantly, since it combines the strengths of both extended-
time features and models in an effective way.
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IV. CompSeg ALGORITHM

In this section, a new algorithm for audio segmentation,
CompSeg, is proposed. The block diagram of CompSeg algo-
rithm is shown in Fig. 3. The CompSeg includes the following
three aspects advances:

1) features specifically designed for segmentation;

2) three distance metrics employed in the analysis window
according to its size;

3) specific features and distance metrics for false alarm com-
pensation.

A. Three Features

Here, three new features are considered. They are compared
to traditional MFCCs in subsequent evaluations. All features use
a 20-ms analysis window with a 10-ms skip frame rate between
windows (i.e., 100 frames per second).

1) PMVDR: High-order minimum variance distortionless
response (MVDR) models provide better upper envelope rep-
resentations of the short-term speech spectrum than MFCCs
[7]. Furthermore, it has been shown that the MVDR spectrum
can be simply obtained from a noniterative computation of
the linear prediction (LP) coefficients [7]. A perceptual-based
MVDR (PMVDR) feature formulation was developed in [37]
and shown to outperform MFCCs for ASR applications. The
block diagram of the PMVDR feature extraction process is in
Fig. 4. An important trait of PMVDR is that it does not require
an explicit filterbank analysis of the speech signal. For the
application of speaker segmentation, the order of the LP model
is increased to reflect more speaker dependent information in
the features. A detailed Bark frequency warping is also applied
for better results.

2) SZCR: In Section III-B, the variance of the ZCR was pro-
posed for audio classification. A high ZCR ratio (HZCRR) has

also been proposed for audio classification [22]. In experiments,
a smoothed ZCR (SZCR) was found to be more efficient for
speaker segmentation, which is computed as follows. 1) Com-
pute five sets of ZCR evenly spaced across the analysis window
(i.e., one frame) with no intermediate overlap. 2) Next, use the
mean of the five sets as the feature of this frame, which reduces
the feature variance and thereby increases class separability [7].

3) FBLC: Although in [37], it was suggested that direct
warping of the fast Fourier transform (FFT) power spectrum
without filterbank processing can preserve almost all the
information in the short-term speech spectrum, we find that
filterbank processing is more sensitive than other features in
detecting speaker changes (i.e., the mismatch between the
experimental break points and the actual break points is very
small). As such, the FBLC are simply the 20 Mel frequency
filterbank log energies coefficients.

From the experiments, the best feature set is the combined
feature, i.e., 24-dimensional PMVDR (static, delta, energy),
20-dimensional FBLC, and 1-dimensional SZCR, as shown in
Fig. 3.

B. Model Selection Based on the Size of Analysis Window

If audio segments are more than 5 s long, BIC and other
distance metric-based methods perform segmentation well [5],
[16], [39]. However, in real audio data from BN or two-way
conversations, many segments are very short (i.e., less than 5 s).
Since BIC and most distance metric-based methods need the
second-order statistics (i.e., the covariance), they often suffer in
estimation error due to insufficient data.

The Kullback—Leibler distance (KL2) is a popular distance
metric in speaker segmentation [29]. If two audio segments can
be modeled by multivariate Gaussian distributions N (1, Y1)



912

(a).KL2 Distance Measure
22 T T T

20 30

o 10

a0
Fig. 5.

and N (ug2,X2), then the KL2 distance between the segments
is?

1 _ _
KL2; 5 = 5(/11 —p2)" (BT 4+ 27Y) (1 — p2)
1
+otr (E7'S + 5718 —2I). (6)

Fig. 5(a) shows the KL.2 distance of a 35-s audio stream which
has only one real break point at 19 s. Here, the KL2 distance
measure of the first and final 5 s are not correct. This occurs
because of insufficient data in the estimation of the covariance
when the segment is shorter than 5 s. In contrast, Fig. 5(b) shows
that the 72 distance measure detects the break point accurately
with no initial or trailing edge effects.

The idea of using the Hotelling T2-statistic [3], [4], [34],
[39] for speaker segmentation is that for two audio segments,
if they can be modeled by multivariate Gaussian distributions:
N(p1,%1) and N(p2,X2), we assume their covariances are
equal but unknown, then the only difference between them is
the mean values reflected in the T2 distance as

? = a(fb(m — p2)" S — p2)
where a and b are the number of frames within each of the audio
segments, respectively. Under the equal covariance assumption,
more data can be used to estimate the covariance and reduce
the impact of insufficient data in the estimation. This is the
primary reason why the T2 distance measure can detect the
break point accurately in Fig. 5(b). If the processing audio
window is shorter than 2 s, even a global covariance will suffer
from insufficient estimation. We can, therefore, further assume
the global covariance to be an identity matrix, in which case this
is termed as weighted mean distance. Weighted mean distance
is applied for processing audio windows shorter than 2 s and

)

2The basic assumption for BIC, other distance metric approaches, and our
method is that there is at most one real break point in the processing window.
This assumption is reasonable for speaker segmentation.
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T? distance for those shorter than 5 s and longer than 2 s.
This distance measure is termed as 72-mean. Fig. 6 clearly
shows that if there is a break point in the processing window,
the distance measure has one and only one prominent peak.
Therefore, the T%-mean can be used to detect the break point in
a short processing window (<5 s) effectively. As the window
grows in duration (>35 s), the covariance can be estimated more
accurately and BIC is better than T2 in speaker turn detection.
Therefore, BIC is applied to detect break points directly as in
[51, [39]. The distance metric scheme in the segmentation stage
of CompSeg is as follows:

1) L, < 2s: weighted mean distance;

2) 2s < L, < 5s:T? distance;

3) L, > 5 s: traditional BIC.
where the L,, is the length of the processing audio window,
T?-mean is 1 and 2 together.

C. False Alarm Compensation

1) Audio Clustering Based False Alarm Compensation: Itis
common that speech from the same speaker might appear mul-
tiple times in an audio stream. In general, it would be useful
to pool the homogeneous data from the same speaker for sub-
sequent processing (e.g., speaker adaptation, speaker identifi-
cation, etc.). The application of traditional BIC and distance
measures for a hierarchical clustering is straightforward [5], [9],
[12], [15]. The clustering is implemented in a bottom-up frame-
work, where each segment is a node, and the distance is calcu-
lated between all nodes and apply BIC to examine node pairs
with the nearest distance if they can be merged. If they are ho-
mogeneous, they are merged to a single new node and the dis-
tance matrix is recalculated. If they are not homogeneous, then
consider the next nearest node pair. This procedure continues
until all nodes have been examined.

2) Transformed Combined Feature and New Distance Metric
for False Alarm Compensation: If the two mergable nodes are
adjacent segments in the audio clustering routine, it means that
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T2-mean distance of processing audio windows, x-axis is the window length (in second), y-axis is the distance. (a), (b) is the weighted mean distance;

(¢), (d) is the T distance. (a), (c) have one real break point at 0.9 second, 2.4 second respectively, (b),(d) have no true break points.

the false alarm rate can be compensated. However, a false alarm
compensation method based on existed clustering techniques
is not powerful, because it cannot compensate the false alarm
caused by short segments due to reduced data size. Conceptu-
ally, false alarm compensation is similar to classification. Here,
the distance between two adjacent segments is calculated, and if
the distance is below a threshold, then they belong to the same
class, (i.e., a false alarm break point is found), otherwise they
are from different classes. A weighted mean distance metric is
applied for short segments and regular T2 with covariance ma-
trix estimation for long segments. This scheme can compensate
the false alarm rate significantly with little cost to the miss rate.
The distance metric in the false alarm compensation stage of
CompSeg is as follows:

1) Ls < 2 s: weighted mean distance;
2) Ly > 2s: T? distance.

where L is the total length of the two adjacent segments.

The feature used in false alarm compensation can be different
than that used in segmentation. Here, the first half of the prin-
cipal components analysis (PCA [17]) projections of the com-
bined feature: PMVDR + FBLC + SZCR (PMVDR: 24 dimen-
sions, FBLC: 20 dimensions, SZCR: 1 dimension) is used. The
PCA projection has more discriminative power than the original
feature since it determines and rank orders those dimensions that
occupy a larger percentage of the data variability, making it suit-
able in this classification-like task. Integrating all the advances
proposed in Section IV together, the CompSeg algorithm is im-
plemented as in Fig. 3.

TABLE 1
CLASSIFICATION ACCURACY USING THE CONSTRUCTED 515-s AUDIO FILE

Scheme Frame Accuracy
Speech | Non-speech
VSF 93.3% 86.3%
VZCR 92.0% 90.9%
GN 97.3% 92.1%
VSF-WGN 100% 93.7%
VZCR-WGN | 99.3% 94.8%

V. EXPERIMENTS

For the experiments, the evaluation data is drawn from TIMIT
[32], CU-MOVE [13], DARPA Hub4 BN 1996 training data and
1997 evaluation data [30], and NGSW data [25]. This test data
includes the following:

1) different structures of audio: interviews, reports, debates,
etc.;
2) various recording equipment: microphone, telephone,
Edison cylinder disks, TV/radio;
3) various background noise: music, audience laughing,
clapping, automobile noise (road, wind, turn signals), etc.
The experiments are composed of four parts:

1) classification evaluation;

2) feature evaluation in speaker segmentation;

3) CompSeg evaluation;

4) WGN and CompSeg evaluation with NGSW data.
All the parameters for audio classification and segmentation
(i.e., the threshold for VSF and VZCR, the weights for WGN,
the transition probabilities for GN, the threshold for BIC, etc.)
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TABLE 1II
SPEECH/NONSPEECH CLASSIFICATION IN THE WGN
Scheme Precision Recall Total
Speech | Non-Speech | Speech | Non-Speech || Accuracy
GN 98.08% 28.73% 94.86% 52.81% 93.4%
VSF 98.74% 26.10% 92.21% 70.09% 91.5%
VSF-WGN 98.22% 56.64% 98.36% 54.63% 96.7%
VZCR 98.80% 15.09% 83.63% 74.09% 83.5%
VZCR-WGN 97.90% 35.83% 96.68% 47.26% 94.9%
[ VSF+VZCR-WGN [ 98.22% | 58.42% | 98.48% | 54.44% [ 96.9% |
are tuned on the development set as stated following and left TABLE III

unchanged for the standard data set evaluation.

A. Classification Evaluation

1) Parameter Tuning in the Development Set: In order to set
up the parameters for real data evaluation, an audio file is artifi-
cially generated, which is designed to include as many acoustic
events as possible. A set of five broadband female speech clips,
five female speech clips with background music, and five nar-
rowband (i.e., telephone) female speech clips are selected. The
process is also repeated with male speech clips, where each clip
is 5 s in duration, resulting in mixed speech audio stream of du-
ration 150 s. The speech clips are drawn from DARPA Hub4 96
BN training corpus and across all seven focus conditions (FO,
F1,...,FX[30]). Next, 36 music clips, 36 environmental sound
clips, and one silence clip are selected, where each clip is also 5
s in duration. The music clips include a variety of music types
such as jazz, rock, blues, pop, classical, etc.. The environmental
sounds also include a variety of events such as audience clap-
ping and shouting, coughing, laughing, automobile noise (e.g.,
engine, beeps, noise from car with windows open), electronic
noise, and others. The sequence of music clips and environ-
mental sound clips are concatenated after the mixed speech clip
sequence. The total length of the resulting audio file is 515 s.

Table I shows the classification accuracy of VSEF, VZCR,
basic GN, VSF weighted GN, and VZCR weighted GN in this
development data set. From Table I, it is observed that the
VSF can achieve better performance in the speech part than the
VZCR; however, it is worse than the VZCR in the nonspeech
part. It is also observed that the classification power of ex-
tended-time feature (e.g, VSF, VZCR) and the GN is additive.

2) Evaluation on the Hub4 Data: The DARPA Hub4 BN
1997 corpus evaluation data is used in the classification evalu-
ation. This data set of three hours includes many audio types:
broadband (microphone) speech, narrowband (telephone)
speech, speech on music, various environment sounds, and
multispeaker change, and is, therefore, suitable for classifica-
tion evaluation. The GN algorithm will represent the baseline.
The precision and recall of class C' are defined as

# of frames correctly labeled as C'
# of frames labeled as C
# of frames correctly labeled as C' ©)
# of frames in C
Table II demonstrates that although the classification perfor-
mance of extended-time features (i.e., VSF and VZCR) is less
accurate than that of GN, they can still contribute to improving

®)

Precision =

Recall=

AUDIO CLASSIFICATION WITHOUT/WITH SEGMENTATION

Discrimination Frame Accuracy
Type Without Seg | With Seg
Female/Male 86.7% 92.9%
Female-Broadband/Male-Broadband /Female- 81.0% 82.1%
Narrowband/Male-Narrowband/Non-Speech

GN classification. The VSF weighted GN (“VSF-WGN” in
Table II) can outperform both GN and VSF algorithms; The
VZCR weighted GN (“VZCR-WGN” in Table II) can also out-
perform both GN and VZCR algorithms. Finally, the combined
VSF and VZCR weighted GN (“VSF 4+ VZCR — WGN” in
Table IT) outperforms the baseline GN at ALL levels (precision
and recall in both speech and nonspeech parts) and it improves
the total frame accuracy from 93.4% to 96.9%. The relative
improvement in error reduction is over 50%. Table II also
shows that if the VSF and VZCR are combined together in
the weighted GN, it only achieves slightly better results than
the single VSF weighted GN classifier. This suggests that
the contributions from VSF and VZCR for classification do
overlap. Since major part of the evaluation data is speech and
VSF can achieve better performance versus VZCR, it partially
confirms the argument in Section V-A1 that VZCR has better
classification power versus VSF for nonspeech segments, but is
less successful than VSF in speech classification.

Since speech blocks from segmentation are much longer and
more homogeneous (same speaker in a consistent acoustic en-
vironment) than predefined processing windows (1-s duration
is used for classification without segmentation) for classifica-
tion, it is reasonable to expect the classification result based
on segmentation to be better than classification without seg-
mentation since the presegmentation can provide the processing
windows (i.e., segments from the segmentation) for classifica-
tion. That is to say, with presegmentation, we classify the whole
segments into classes regardless of the length of the segments.
Table III demonstrates such improvement by applying segmen-
tation, where the test set is also Hub4 BN 97 evaluation data and
the classification is implemented using GMM networks.

Since there are nonspeech parts, the VSF or VZCR weighted
GN can still be applied in the five-state classification framework
(female-broadband/ male-broadband/ female-narrowband/
male-narrowband/ nonspeech). From Table IV, the VSF or
VZCR weighted GN algorithm outperforms the classification
based on segmentation algorithm.

It would be reasonable to question why classification with
the WGN should be better than that based on segmentation. It
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TABLE IV
FIVE-STATE CLASSIFICATION IN A WGN

Scheme Frame Accuracy
GMM Network(GN) 81.0%
Based on Segmentation 82.1%
VSF-WGN 83.4%
VZCR-WGN 82.6%
VSF+VZCR-WGN 83.6%

is suggested that in the segmentation phase, missing the actual
break points has a pronounced impact on classification, since
it causes nonhomogeneous audio segments to be combined to-
gether, corrupting the statistical analysis and, therefore, classifi-
cation errors will occur. Furthermore, GMM networks can make
decisions based on short duration audio blocks, so the long ho-
mogeneous segments from segmentation will not provide much
benefit. However, this additional data can still improve classifi-
cation. Restated, if the nonspeech parts in the audio stream need
to be classified, the WGN (i.e., VSF or VZCR weighted) can be
applied; otherwise, classification based on segmentation is an
acceptable method.

B. Feature Evaluation in Audio Segmentation

Next, the selection of speech features for segmentation is
considered. The pure BIC segmentation algorithm is employed
here. The goal is to determine which feature is most suit-
able for speaker segmentation while maintaining successful
performance for a range of background noise conditions.
To determine this, the following experiments are designed.
First a set of simple audio files are constructed where each is
composed of noise, speech, noise, speech,. . ., noise segments
sequentially. For each stream, there is a total of ten speech
sentences and 20 real break points. The speech sentences are
drawn from the same speaker from the TIMIT corpus and each
is roughly 3 s in duration. The noise inserted between each
sentence is 3 s in duration as well. A set of five female and five
male audio files are constructed for each noise type. A total of
14 noise types are considered, which come from the CU-move
in-vehicle database [13] and an earlier speech recognition
study [14]. The evaluation considers 16 features: MFCC family
[FFT-based, LP-based, with/without variable cepstrum mean
normalization (VCMN) [8], 13/26 dimensions, RCC (root
cepstrum coefficients)], TEO-CB-AutoEnv (Teager energy op-
erator, critical band, autocorrelation envelope) [19], [41], LPC,
LSP, pitch-energy, perceptual MVDR cepstrum coefficients
(PMCC) [36] and the three new features from Section IV-A:
PMVDR, SZCR, and FBLC, where SZCR is one-dimensional,
so it is only employed in the feature combination. Table V
shows the top three performing features in the 14 noise types.3
Fig. 7 shows time versus frequency response of four typical
noise types. Table VI shows the average performance of the
features across all the noise conditions. Table V shows that
PMVDR and FBLC normally occupy the top three positions of
the features considered. The average mismatch is computed on
the correctly labeled break points and defined as

_ Zfil Lais(Ci, Ay)
N

3See Appendix A for a description of the noise types.

Lgis (10)

915

where L ;s is the average mismatch, Ly, (C;, A;) is the mis-
match between the correctly labeled break point C; and the ac-
tual break point A;, N is the total number of the correctly la-
beled break points. If Lys;5(C;, A;) < 1, C; is considered to
be the correctly labeled break point.

From Table VI, PMVDR and FBLC are better than other fea-
tures in the sense of noise robustness. It would be useful to ask
why FBLC features are more sensitive to speaker change than
MFCCs. We believe that the FBLC retains the correlation across
the filter outputs, which are useful for speaker segmentation.
However, retaining that feature correlation is harmful for speech
recognition, so the discrete cosine transform (DCT) is applied
to the FBLC feature to decorrelate and obtain the well-known
MFCCs.

Further evaluation is performed using the DARPA Hub4 BN
data. Table VII shows that the PMVDR feature outperforms
MECC:s at all levels, and FBLCs result in a small average mis-
match which implies they are sensitive to changes between
speakers and environments. The experiment demonstrates that
PMVDRs are better than MFCCs in speaker segmentation and
FBLCs are more sensitive than MFCCs in speaker change detec-
tion. Because the PMVDRs do not apply filterbank processing,
combining PMVDRs and FBLCs could improve performance.
Also, the SZCR encodes information directly from the waveform
which is incorporated into the combination as well. Finally, the
combined feature set consists of the 24 features from PMVDR
(the last two delta PMVDR coefficients have no impact on
the segmentation performance in the experiments, so they are
dropped in the feature combination), all 20 features from FBLC,
and one SZCR (i.e., a 45-dimensional set). The features are
normalized to zero mean and unit variance for improved discrim-
ination ability [7]. Table VII shows the advantages of employing
feature combination. Other prosodic features such as pitch were
also considered, but the results showed little improvement. The
reason may be because pitch only encodes information from
voiced speech, and contains no information from unvoiced
speech and noise making it less effective for segmentation.

C. CompSeg Evaluation

Next, the proposed segmentation algorithm, CompSeg, is
evaluated for each processing step on the DARPA Hub4 BN
96/97 evaluation data in order to identify performance both
individually and for the overall system. The parameters for the
CompSeg are tuned from 2-h data drawn from the Hub4 BN 96
training data set.

1) T?>-Mean and False Alarm Compensation Evalua-
tion: The evaluation data used in this section is drawn from the
DARPA Hub4 BN 1996 evaluation data. The performance of
the new segmentation scheme T2-mean is shown in Table VIII,
where a 24-dimensional PMVDR feature set is used in both
baseline and T?-mean segmentation. The baseline system in
this experiment uses BIC only. With this advance, the false
alarm rate is significantly reduced, and there is a 2.2% absolute
improvement in the miss rate, with 2.0% coming from the short
segments. This suggests that the contribution of 7%-mean is
mainly derived from short duration turn detection.

In order to apply the proposed false alarm compensation
routine, an initial segmentation is applied to find all possible
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TABLE V
ToP THREE PERFORMING FEATURES IN NOISE ENVIRONMENTS. FA: FALSE ALARM RATE; MiIss: MISS RATE; MMATCH: AVERAGE MISMATCH (ms)
Noise Top 1 Top 2 Top 3
FA | Miss | MMatch FA | Miss | MMatch FA | Miss | MMatch
AIR RCC FBLC PMVDR
1.0% [ 0.0% [ 126.78 [ 0.0% [ 0.0% [ 128.81 [ 0.0% [ 0.0% [ 130.68
AWG RCC FBLC PMVDR
0.0% [ 0.0% | 120.58 | 0.0% [ 0.0% [ 121.59 [ 0.0% [ 0.0% | 123.95
CRA RCC FBLC PMVDR
0.0% [ 00% | 11244 [ 0.0% [ 0.0% | 11254 | 0.0% | 0.0% | 119.78
FLN RCC FBLC PMVDR
0.0% [ 0.0% | 108.75 | 0.0% [ 0.0% [ 123.77 [ 0.0% [ 0.0% | 125.56
HEL FBLC MFCC26 PMVDR
0.0% [ 0.0% [ 122.72 [ 0.0% [ 0.0% [ 130.31 [ 0.0% [ 0.0% [ 131.27
HWY FBLC PMVDR PMCC
0.0% [ 0.0% | 120.65 | 0.0% [ 0.0% [ 123.98 [ 0.0% [ 0.0% | 129.00
LCI PMVDR RCC FBLC
0.0% [ 0.0% | 122.62 | 0.0% [ 0.0% [ 123.51 [ 0.0% [ 0.0% | 124.56
LCR FBLC PMVDR PMCC
0.0% [ 0.0% | 111.16 | 0.0% [ 0.0% [ 113.14 [ 0.0% [ 1.0% | 113.62
PS2 FBLC MFCC26-VCMN RCC
0.5% [ 0.0% | 13157 | 0.5% [ 0.0% [ 140.16 [ 0.0% [ 0.0% | 142.38
SUN MFCC26-VCMN FBLC PMVDR
0.0% [ 0.0% | 125.74 [ 0.0% [ 0.0% [ 131.44 [ 0.0% [ 0.0% | 131.85
Blazer FBLC PMVDR RCC
AC [0.0% [0.0% ] 130.14 | 0.0% [ 0.0% | 132.60 | 0.0% [ 0.0% [ 137.74
Blazer FBLC PMVDR MFCC26
Truck | 0.0% [ 0.0% [ 113.77 [ 0.0% [ 0.0% | 116.94 | 0.0% [ 0.0% | 118.58
Blazer PMVDR FBLC PMCC
Turn | 0.0% [ 0.0% [ 120.16 | 0.0% [ 0.0% [ 120.13 [ 0.0% [ 0.0% | 127.93
Blazer RCC PMVDR FBLC
Wind | 1.0% [ 0.0% | 110.04 [ 0.0% | 0.0% [ 11346 [ 0.0% [ 0.0% [ 117.11
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Fig. 7. Time versus frequency contours of four typical noise types.

break points regardless of the false alarm rate. Table IX shows
that the false alarm compensation scheme is very effective. In
the segmentation stage, the feature is a 24-dimensional MFCC
set [24]. In the false alarm compensation stage, the feature is
the first half of the PCA projections of the combined feature:
PMVDR + FBLC + SZCR (i.e., a 22-dimensional feature set,
Section IV-C2). The baseline system uses a 24-dimensional
MFCC set with traditional BIC.

2) DARPA Hub4 Standard Evaluation: The DARPA Hub4
BN 1997 evaluation data was used for performance assessment.
The set contains 3 h of broadcast news data, with 584 break
points that includes 178 short segments (<5 s). The proposed
CompSeg algorithm uses the PMVDR, SZCR, FBLC combined
features (i.e., a 45-dimensional set as in Table VII), applies
T?-mean distance measure for segments of duration shorter
than 5 s, BIC model selection for longer duration segments,
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TABLE VI
AVERAGE PERFORMANCE OF ALL THE FEATURES. [(*) MEANS DIMENSIONS OF THE FEATURE]

Feature | MFCC(13) MFCC- LPMFC(13) LPMFC- MFCC(26) MFCC- LPMFC(26) LPMFC-
VCMN(13) VCMN(13) VCMN(26) VCMN(26)
FA 26.6% 9.5% 39.3% 24.9% 0.1% 0.5% 5.1% 3.0%
Miss 0.0% 0.0% 0.0% 0.1% 0.0% 1.6% 0.0% 0.1%
MDMatch 357.96 229.95 411.36 324.59 134.24 135.48 194.24 177.25
Feature LPC(10) LSP(10) Pitch- TEO-CB- PMCC(26) | RCC(26) | PMVDR(26) | FBLC(20)
Energy(2) | AutoEnv(17)
FA 27.0% 7.0% 36.5% 11.8% 0.0% 0.3% 0.0% 0.0%
Miss 0.0% 0.4% 0.0% 1.0% 0.1% 0.0% 0.0% 0.0%
MMatch 122.15 334.46 210.04 438.06 240.42 133.40 127.02 124.93
TABLE VII TABLE XI

FEATURE EVALUATION. “()” IS THE RELATIVE IMPROVEMENT, FA: FALSE
ALARM RATE (%); MIS: MisS DETECTION RATE (%); MMATCH: AVERAGE
MISMATCH (ms). (NOTE: KEY IS THE SAME AS THE FOLLOWING TABLES)

Feature FA MIS MDMatch
MFCC(26-D) 29.6% 25.0% 298.47
FBLC(20-D) 29.8% 25.3% 266.80

(-0.7%) | (-1.2%) | (10.6%)

PMVDR(26-D) 25.9% 24.9% 284.29

(12.5%) | (0.4%) (4.8%)

Combine 23.8% 24.3% 265.06

45-D (19.6%) | (2.8%) (11.2%)
TABLE VIII

EVALUATION OF T2-MEAN SEGMENTATION

Scheme FA MIS MDMatch
Baseline 27.6% 27.4% 277.50
T%-Mean 23.5% 25.2% 281.21
(14.9%) | (8.0%) | (-1.3%)
TABLE IX

EVALUATION OF FALSE ALARM COMPENSATION SCHEME

Scheme FA MIS MDMatch
Baseline 44.2% 18.7% 307.83
FA-COMP 23.8% 21.3% 292.28
(23.5%) | (-13.9%) (5.1%)
TABLE X

EVALUATION OF CompSeg WITH Hub4 BN 1997 EVALUATION DATA

Algorithm FA MIS MMatch
Baseline 26.7% 26.9% 293.02
CompSeg 21.1% 20.6% 262.99
(21.0%) | (23.4%) | (10.2%)

and finally applies the false alarm compensation postprocessing
routine. The block diagram of CompSeg algorithm is shown
in Fig. 3. The improvement using these advances is shown in
Table X. For ALL metrics, performance improves significantly
on the Hub4 data. The baseline system uses 24-MFCCs and
traditional BIC only.

D. NGSW Data Evaluation

Our final goal of audio stream parsing is to determine
automatic and effective audio classification and speaker
segmentation for a spoken document retrieval system (i.e.,
the SpeechFind system [31] for NGSW), which focuses on

NGSW DATA CLASSIFICATION IN WGN

Scheme Frame Accuracy
7-decades 1960s

GMM Network(GN) 73.3% 96.0%
VZCR only 79.6% 82.2%
VZCR-WGN 86.5% 97.8%

web-based access to the largest collection of historical audio
materials in the U.S. (e.g., as much as 60 000 hours of materials
from the past 100 years). Therefore, the final evaluation of the
WGN and CompSeg employs NGSW data.

Two sets of audio materials from the NGSW corpus are se-
lected. The first consists of audio samples from seven decades
(1940s, 1950s, 1960s, 1970s, 1980s, 1990s, 2000s), where each
clip is a typical audio representation of topic, recording media/
equipment and speaker content for that period.# The second set
is an audio stream from the 1960s which is more topic specific.

Here, VZCR is used as the extended-time feature for GMM
network weighting. Table XI clearly shows the effectiveness
of the WGN algorithm. Most clips in the seven-decades data
were recorded outdoors, thus containing diverse and varying
levels of noise. Some speech was misclassified as noise, and
some audience noise was misclassified as speech, though overall
frame accuracy was 86.5%. The 1960s data consists of indoor
broadcast news, which is less noisy than the seven-decades data.
Since the GMMs were trained with the DARPA Hub4 BN 1996
training data, the 1960s test data should match the models well.
However, the seven-decades data does not match the system
models at all in terms of topic, speaker, and recording envi-
ronment/equipment. Such differences can be reflected from the
frame accuracy of GN classification of 96.0% versus 73.3%.
However, the extended-time feature shows the consistency in
classification with an 82.2% versus 79.6% performance rate for
clean or noisy conditions. From this observation, we conclude
that GN classification performance is more sensitive to the data.
If the test data is quite different from the training data, some
form of model adaptation [e.g., maximum likelihood linear re-
gression (MLLR) [20]] should be applied to the GMM:s. Second,

4The content consists of: 1940s: Chicago Roundtable on West European re-
construcion after World War II; 1950s: President Hoover’s speech on the re-
lationship between the U.S. and Russia; 1960s: Report of the Cuban Missile
Crisis; 1970s: President Nixon’s speech on the Watergate Tapes; 1980s: Pres-
ident Reagan’s speech on his landslide reelection in 1984; 1990s: President
George Bush’s speech on the International Drug Control Cartel in Columbia;
2000s: News conferences regarding the hand counting of votes for the U.S. Pres-
ident election in Florida.
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TABLE XII
NGSW DATA SEGMENTATION IN CompSeg
Rate 7-decades 1960s
Baseline | CompSeg || Baseline | CompSeg
FA 18.2% 0.0% 27.8% 5.6%
Miss 0.0% 0.0% 11.1% 0.0%
MMatch(ms) 149 132 166 117

the extended-time features are robust to the acoustic environ-
ments; however, their classification power is limited, and that
by combining their effects with GN (i.e., WGN) results in an
effective overall classification method.

Table XII compares the segmentation evaluation between
the seven-decades and 1960s NGSW data. The baseline uses
24-MFCCs plus traditional BIC segmentation. Since the acoustic
changes in the seven-decades and 1960s data are large, it is not
hard to detect the break points in the audio streams. However, the
abrupt acoustic changes in the audio will also cause false alarms,
which is the reason for reduced miss rates and much higher
false alarm rates. Table XII shows that the CompSeg solution
outperforms the baseline system at all three levels.

VI. CONCLUSION

This study has considered advances in unsupervised audio
classification for LVCSR and speaker segmentation for multi-
speaker change detection. Two new extended-time features, VSF
and VZCR were proposed for audio classification and a novel
classification algorithm: WGN, was presented (Section III). VSF
and VZCR were shown to be robust and effective for speech/non-
speech classification (Section V-A1). The WGN classification
algorithm combines a feature-based method and model-based
method in a compact and reliable way. The WGN improves the
frame accuracy from 93.4% to 96.9% over traditional GMM
networks and outperforms the baseline system at ALL levels
(Section V-A2). We note that other extended-time features could
be considered in the future. Feature selection was shown to
be very important for speaker segmentation. A broad range of
features (e.g., 16 features) were evaluated in 14 types of adverse
noise environments, resulting in a set of noise robust features:
PMVDR, FBLC, SZCR, along with their combinations (Sec-
tion V-B). It was also shown that a systematic set of advances
integrated into the new segmentation algorithm, CompSeg,
can achieve effective unsupervised speaker segmentation, es-
pecially for short duration segments. Significant improvement
was achieved in ALL metrics over a traditional BIC with
MFCC-based segmentation algorithm (Section V-C2).

APPENDIX A

Here, a brief summary of the noise types considered in Sec-
tion V-B are presented:>

AIR aircraft cockpit noise from a Lockheed C130
cargo plane flying at 25 000 ft;

AWG white Gaussian noise;

CRA noise from a large city with rain falling;

FLN flat voice communication channel noise from a

U.S. telephone channel;

5A number of these noise types were used in [14].

HEL noise recorded from the ground with a helicopter
fly-by taking place;

HWY noise from a car with windows closed traveling
on highway at 65 mi/h;

LCI large city noise recorded at street level;

LCR large crowd noise in an auditorium;

PS2 cooling fan noise from an IBM PS2 model 80
computer;

SUN cooling fan noise from a Sun Sparcstation 330
computer;

Blazer SUV (Blazer) driving at less than 45 mi/h with

AC air conditioning on and windows closed;

Blazer SUV (Blazer) driving 45 mi/h with windows

Truck open 2 in and truck passing outside;

Blazer SUV (Blazer) driving with turn signal on and

Tarn windows closed;

Blazer SUV (Blazer) driving with windows open 2 in at

Wind 65 mi/h on highway;

APPENDIX B

Major acronyms in this paper.

BIC Bayesian information criterion.

BN Broadcast news.

CompSeg  Compound segmentation.

FBLC Filterbank log energy coefficients.

(W)GN (Weighted) GMM network.

LP Linear prediction.

LSP Line spectral pair.

(P)MVVDR  (Perceptual) minimum variance distortionless
response.

NGSW The National Gallery of the Spoken Word.

PMCC Perceptual mvdr-based cepstral coefficients.

RCC Root cepstrum coefficients.

(V)SF (Variance) of the spectrum flux.

SZCR Smoothed zero-crossing rate.

VCMN Variable cepstrum mean normalization.

(V)ZCR (Variance) of the zero-crossing rate.
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