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ABSTRACT

This study focuses on acoustic variations in speech introduced by whis-
pering, and proposes several strategies to improve robustness of au-
tomatic speech recognition of whispered speech with neutral-trained
acoustic models. In the analysis part, differences in neutral and whis-
pered speech captured in the UT-Vocal Effort II corpus are studied in
terms of energy, spectral slope, and formant center frequency and band-
width distributions in silence, voiced, and unvoiced speech signal seg-
ments. In the part dedicated to speech recognition, several strategies
involving front-end filter bank redistribution, cepstral dimensionality
reduction, and lexicon expansion for alternative pronunciations are pro-
posed. The proposed neutral-trained system employing redistributed
filter bank and reduced features provides a 7.7 % absolute WER reduc-
tion over the baseline system trained on neutral speech, and a 1.3 %
reduction over a baseline system with whisper-adapted acoustic mod-
els.

Index Terms— Whisper speech recognition, speech analysis,
filter-bank optimization.

1. INTRODUCTION

Whisper represents a frequent and effective mode of communication
in scenarios where the communicator does not want to disturb un-
involved parties, or where a private or discrete information needs to
be exchanged. Clearly, such a mode of communication would be
perfectly suited also for human-machine interaction, especially with
hand-held devices such as smartphones in company meetings or public
places. Unfortunately, the speech production differences in neutral
versus whispered speech are so prominent that most current neutral
speech oriented interfaces are not capable of handling such an acoustic
mismatch. Some of the fundamental differences are the lack of glottal
excitation in whisper, redistribution of energy between phone classes,
changes in spectral tilt, and formant shifts due to different configura-
tions of the vocal tract [1–4]. Automatic speech recognition (ASR)
techniques available in the literature typically attempt to reduce the
neutral–whisper mismatch through acoustic model adaptation [3–6]
or feature transformations [6]. Whispered speech processing has also
been studied in the context of automatic whisper island detection [7]
and speaker identification [8–10].

In this paper, our focus is on the design of affordable strategies
that would increase robustness of a neutral-trained ASR to whisper
speech variations and reduce the need for whispered adaptation data.
While a large vocabulary speech recognition (LVCSR) of whispered
speech with neutral models may seem unrealistic, we show that in mod-
est tasks with a constrained lexicon/language models, neutral-trained
ASR can compete with whisper-adapted systems. For applications such
as voice control of smartphones/sending pre-set texts messages, con-
strained ASR may be quite suitable. The remainder of the paper is
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organized as follows. First, the speech material used in this study is
introduced. Second, analyses of neutral and whispered speech parame-
ters are performed. In the third part, front-end filter bank redistribution
and lexicon expansion strategies are studied.

2. CORPUS OF NEUTRAL/WHISPERED SPEECH

The speech samples utilized in this study are drawn from the UT-Vocal
Effort II (VEII) corpus [11]. The corpus comprises read and sponta-
neous speech from 112 speakers, 37 males and 75 females. The spon-
taneous speech was acquired in a simulated cyber cafe scenario and
involved three subjects – two of them engaged in a neutral/whispered
communication and the third subject who tried to pick up as much key
information as possible (to motivate the primary subject to lower their
voice and whisper). In the reading part of VEII, each subject read 41
TIMIT sentences [12] and two newspaper paragraphs while alternat-
ing between neutral and whispered mode. The recording sessions took
place in an ASHA-certified single-walled sound booth. The speech was
captured by a head-worn close talking microphone Shure Beta 53 and
recorded using a Fostex 8 D824 digital recorder at 44.1 kHz/16 bits
per sample. In this study, a portion of VEII that captures neutral and
whispered TIMIT sentences from 39 female and 19 male speakers is
utilized. The recordings were downsampled to 16 kHz. In the ASR
experiments, TIMIT [12] database is used for acoustic model training
and baseline evaluations. The content of the VEII and TIMIT data sets
used in this study is detailed in Table 1.

3. NEUTRAL/WHISPERED SPEECH ANALYSIS

To better understand the sources of acoustic mismatch between neutral
and whispered speech, and hence, the likely causes of ASR errors due to
whisper, this section studies several parameters related to the linguistic
content of a speech signal in the two speech modalities.

Past studies have observed changes in energy distribution across
phone classes, flattening of the spectral slope, upward shifts of formant
center frequencies, and changes in formant bandwidths when compar-
ing whispered speech to neutral [1–4, 8, 11], effects in many ways sim-
ilar to those in stressed and Lombard effect speech [13–19]. To verify
the energy and slope effects in the VEII database, we analyze distri-
butions of the first two cepstral coefficients c0 and c1 in the MFCC
front-end [20]. # SessionsCorpus Set Style M F # Sents Dur (min)Train Ne 326 136 4158 213TIMIT Test Ne 112 56 1512 78Ne 577 23Adapt Wh 580 34Ne 348 14VEII Test Wh 19 39 348 21
Table 1: Speech corpora statistics; M/F – males/females; Train – training set;
Adapt – model adaptation set; Ne/Wh – neutral/whispered speech; #Sents – num-
ber of sentences; Dur – total duration in minutes.
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For neutral speech, locations of the word boundaries in the acoustic
signal were estimated by means of forced alignment using the available
orthographic transcriptions and an ASR system described in Sec. 4.1.
The neutral set contains pooled samples from the VEII neutral adapta-
tion and test sets (see Table 1). For the case of whispered speech, the
accuracy of a forced alignment using neutral-trained models is expected
to be very limited. For this reason, word boundaries in 116 whispered
utterances were manually labeled by an expert annotator. The obtained
time labels were combined with the output of a RAPT pitch tracker
from WaveSurfer [21] to identify silence and voiced/unvoiced speech
segments.

The ratio of unvoiced to voiced speech in the VEII neutral record-
ings is 37.6/62.4 %, respectively, and 99.4/0.6 % in the whispered
recordings. This confirms that the whispered speech samples contain
only a negligible portion of speech with glottal excitation. The anal-
ysis results are shown in Fig. 1. The left part of the figure presents
c0 distributions which reflect the energy levels in silence, unvoiced,
and voiced sound classes. Following the intuition, the neutral voiced
segments tend to reach higher energy (higher c0) than the unvoiced
and silence segments. Whispered speech is dominated by unvoiced
and silence segments and the overall distribution is shifted to lower
energies compared to neutral. It can be seen that the silence segments
are more prominent here compared to neutral, which is due to the fact
the analyzed neutral recordings contain only 4.4 % of silence segments
while the whispered ones 38.7 %. This is caused by a more conserva-
tive sentence segmentation performed on the whispered speech in order
to prevent unintended cutting off of the utterance onsets and offsets.

The right part of Fig. 1 presents distributions of c1 which reflect the
spectral slope [22]. In neutral speech, voiced distribution occupies the
highest c1 values, i.e., the steepest slopes. As expected, unvoiced and
silence segments are centered together at lower c1’s (flatter slopes). In
whisper, the silence and speech segments exhibit similar distributions
and the overall spectral slope is flatter compared to neutral.

WaveSurfer was used to extract the first four formant center fre-
quencies and bandwidths. The formant tracks were combined with the
word boundary time labels for the analysis (see Fig. 2). In the plot,
the edges of each box represent 25th and 75th percentiles, the cen-
tral mark is the median, and the whiskers extend to the most extreme
points that are not considered outliers. It can be seen that the percentile
intervals are much broader for whispered-voiced segments (Wh V) as
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Fig. 1: Normalized cepstral distributions of broad acoustic classes in neutral
and whispered speech.
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Fig. 2: Formant center frequency (left) and bandwidth (right) distributions;
Ne/Wh – neutral/whisper; V/UV – voiced/unvoiced.

their occurrence in the samples is very limited. The figure suggests that
F1–F4 center frequencies tend to be consistently higher for unvoiced
segments than in voiced, and that the whispered unvoiced F1–F2 are
in general higher than those in neutral unvoiced segments. The authors
hypothesize that this may be due to the effects of coarticulation where
in neutral speech the unvoiced formant tracks are somewhat ‘dragged’
down by the surrounding voiced segments. In addition, it seems that
voiced formants in whisper tend to be located higher in frequency than
neutral ones – which could also be a result of coarticulation with the
predominant unvoiced whispered segments. However, the sample size
of the whispered voiced segments is too limited to draw definitive con-
clusions. The first three formants F1–F3 exhibit broader bandwidths in
unvoiced segments of neutral and whispered speech compared to voiced
segments.

4. EXPERIMENTS IN NEUTRAL/WHISPERED ASR

4.1. Experimental Setup

The gender-independent speech recognizer used in the following ex-
periments was trained on 3.5 hours of TIMIT recordings (see Table 1).
39 phone categories (including silence) are modeled by 3-state left-to-
right triphone HMMs with 8 Gaussian mixtures per state. 39 static,
delta, and acceleration coefficients are extracted using a 25 ms/10 ms
windowing of a 16 kHz/16 bit audio signal. The recognizer is built
with CMU Sphinx 3 [23] and the front-ends are implemented with
LabRosa Matlab tools [24] and all employ cepstral mean normalization.
In the VEII neutral/whisper experiments, the TIMIT acoustic models
are MLLR-adapted in a supervised fashion towards the VEII acous-
tic/channel characteristics using the adaptation sets detailed in Table 1.
The adaptation and test sets contain the same pool of 58 VEII speak-
ers, with different TIMIT sentences being uttered by the same speaker
in either of the sets. The adaptation is performed in a global manner
– towards the target group of speakers – as opposed to speaker-level
adaptation, in order to yield speaker-independent models.

4.2. Baseline Experiment

The validity of the recognition system was tested on the TIMIT test set
(see Table 1). The recognizer utilizes a trigram language model (∼6 K
words) trained on TIMIT transcriptions. As shown in the first result row
of Table 2, the baseline performance using MFCC [20] and PLP [25]
front-ends is 6.0 and 6.6 %, respectively.

In the next experiment, the neutral TIMIT acoustic models were
adapted to the neutral VEII adapt set (duration of 23 minutes – see
Table 1) and tested on whispered speech. The performance for the
MFCC front-end and TIMIT LM dropped to 67.7 % WER. This is
not very surprising, considering the considerable mismatch between
the acoustic classes in neutral and whispered speech, especially when
all voiced phones become unvoiced (see Fig. 1). In this sense, the
acoustic mismatch is too prominent to perform a reasonable medium
sized vocabulary recognition of whispered speech using simply neutral
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Train A dapt Test M F C C PLPÆ TIM IT 6.0 6.6N e 5.2 5.4N e W h 27.0 24.6TIM IT W h W h 18.2 22.0
Table 2: Performance of traditional front-ends; WER (%).

acoustic models. However, as discussed in the introduction, there are
applications where recognition with a constrained grammar/language
model may be meaningful, especially for whispered speech (e.g.,
voice-control of smartphones, sending pre-set messages during meet-
ings, etc.). To mimic such tasks, we restrict the lexicon/language model
to approximately 160 words that cover the complete vocabulary of the
VEII neutral and whispered test set. Results for the TIMIT models
adapted with the VEII neutral adapt set and tested with neutral and
whispered speech using the constrained lexicon are shown in the sec-
ond and third row of Table 2 respectively. While the whisper set WER
is still high, the task starts to be more realistic in its applicability in real
world applications. The last row presents results with TIMIT models
adapted to VEII whispered adapt set (34 minutes) and the constrained
lexicon. As expected, the adaptation towards whisper provides the best
performance among the baseline systems, confirming the observations
made in the past studies [3–5]. The remainder of the paper utilizes the
constrained lexicon for all experiments.

4.3. Modified Front-Ends

Previous studies on robust ASR for stressed speech and Lombard ef-
fect speech have reported performance gains when altering configura-
tions of the front-end feature extraction filter banks [26–28]. Inspired
by [28], our first step is to replace the Mel and Bark filter banks (FB)
in MFCC and PLP by a bank of triangular and rectangular filters uni-
formly distributed over a linear frequency axis. In the case of the tri-
angular bank, the band cutoffs are located at the center frequencies of
the adjacent filters while the rectangular filters are stacked next to each
other without overlap as in [27]. The FB low and high cutoff frequen-
cies are set to ∼133 Hz and ∼6855 Hz in all cases. The results for
selected FB configurations are shown in the first three columns of Ta-
ble 3, where 20Uni denotes a FB of 20 uniformly distributed filters.
The modified PLP configurations are with bypassed equal loudness and
power-intensity processing. It can be seen that for MFCC, the uni-
form triangular FB causes a slight WER degradation for the neutral set
(0.4 %) while providing a dramatic WER reduction for whisper (from
27.0 to 19.5 % WER). For PLP, both the triangular and rectangular FBs
reduce WER on both neutral and whispered speech. The PLP-20Uni∆
with neutral acoustic models provide comparable performance on whis-
per as the original MFCC system adapted to 34 minutes of transcribed
whispered speech, which is quite encouraging. In addition, when ap-
plied in the original TIMIT train/test task, PLP-20Uni∆ reduces neutral
WER to 5.5 % (compare with 1st row in Table 2).

To get better insight into the confusability of phone classes dur-
ing acoustic decoding, the word-based language model is replaced by
a phone-based model. The orthographic transcriptions of utterances
are expanded into phonetic transcriptions using the pronunciation lex-
icon and subsequently, a trigram language model is trained on these
phonetic transcriptions. The errors in the whispered phone recognition
with phone language model are summarized in Fig. 3. Within-class and
out-of-class substitutions refer to the broad phonetic classes as listed in
Fig. 4. A within-class substitution refers to a substitution for a phone
model falling into the same phonetic class. It is noted that the pho-
netic transcriptions for the whispered speech are generated using the
neutral speech lexicon and hence, represent transcriptions as expectedM FC C PLP PLP R edist.FB PLP M ergedB andsPLP D rop c12Stat/ /Exp.Lex.PLPAdaptTest20Uni20Uni20Unif20RB 18MB 18MB 20UniNe3.84.03.7 4.1 4.9 4.1 4.1NeW h 19.5 18.2 23.417.317.316.9 17.3

Table 3: Performance of proposed strategies; WER (%).

Correct DeletionsOut�of�ClassSubstitutionsWithi n $C l ass S ub s . Insertions
Fig. 3: Phone recognition errors on whispered speech.

for neutral speech. The confusion matrix in Fig. 4 demonstrates where
whispered phones are mapped in reality (i.e., which neutral classes are
closer in the acoustic space to the whispered phones).

4.4. Changing Sub-Band Resolution

The previous section demonstrated a substantial whisper WER reduc-
tion due to replacement of the front-end FB. In this section, we explore
two approaches to reconfigure the filter bank resolution to further ac-
commodate whispered speech. In [26], the authors analyzed the rele-
vance of spectral subbands to speech recognition by training acoustic
models on individual band energies of the filter bank. Subsequently,
based on the band-specific WER, the filter bank was redistributed to
increase its resolution in the most relevant parts of the spectrum.

In this section, we utilize a similar approach, with the difference
that rather than training the models on an output of a single filter at a
time, we preserve the whole filter bank and only omit one filter in each
iteration. In this way, we preserve the collaborative nature of the cep-
stral features used in modern ASR (i.e., features describing the spec-
tral contours rather than amplitudes of individual bands). Our baseline
front-end in this experiment is PLP-20Uni∆. Fig. 5 presents the WER
contours for neutral and whispered speech (for a system adapted to neu-
tral VEII set). The ith point on the WER curve represents recognition
performance of a front-end with the ith FB filter being dropped. The
baseline plot shows performance with the complete FB. A WER point
above the baseline means that dropping the current band hurts perfor-
mance, while a point below the baseline suggests the opposite. The
neutral and whisper WER contours suggest that the importance of the
spectral components falling into the bands 3–8 is shared among neutral
and whispered speech.

To change the FB resolution according to the whispered WER con-
tour in a way that the resolution will be increased in the areas of high
importance and decreased in the regions that seem to hurt recognition,
we propose the following approach. First, our requirement is that the
overall FB bandwidth will be preserved:

N−1
∑

i=1

d (fc,i, fc,i+1) = const. (1)VowelDipht ho ngSemivowelW his per* / h/Nas alFricat iv eAff ricat eSto pIns ert io n
1310
30

V ow el Di ph th ong S emi vow elWhi sp er* /h / N asal F ri cati v e Affri cat e Stop D el eti onWhi sperL ab el sT ran
scrib edb yN e ut ral
L e xi con

Recognized Neut ra l Phone Classes

(%)

Fig. 4: Confusion matrix for broad phone classes.
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Fig. 5: WER vs. omitted filter bank bands.

where d denotes the distance between two adjacent filter center fre-
quencies. In our case, this requirement is implemented by keeping the
lowest and highest filter in the FB intact. To redistribute the ‘inner’
bands of the FB, we use the following formula:

d
new
i = di

[

1−
(

WERi −WER
)

α
]

(2)

where WER is the average of the WER contour and α is the adjust-
ment rate. The best performance was observed for α = 0.07, which
alters the FB filter bandwidth by a maximum of ∼27 % at the peak of
the whispered WER envelope. The results are shown in Table 3 in the
column Redist. FB PLP. It can be seen that the redistribution benefits
both neutral and whispered speech recognition.

In a second approach for FB redistribution, rather than increasing
or decreasing resolution based on the importance of the frequency re-
gions, our focus is only on decreasing resolution in the regions that
seem to hurt whispered performance. In this case, we arbitrarily merge
adjacent filters into a single band. From several FB configurations, the
FB with merged 1–2 and 18–19 bands (see Figure 6) provides the best
results (see the column Merged Bands PLP in Table 3). It can be seen
that WER for whisper is the same as for the redistributed FB from the
previous paragraph and neutral WER is slightly reduced here.

Next, we examine the relevance of the higher cepstral dimensions
for whispered speech recognition. While low cepstral coefficients de-
scribe slow changes in the spectral contour and are typically related to
vocal tract characteristics, higher cepstral coefficients reflect fine con-
tour details related to excitation. Since the presumably biggest source
of mismatch between neutral and whispered speech is in excitation,
reducing the cepstral dimensions in the feature vector for the highest
cepstral coefficients may be beneficial. In the experiment involving the
PLP-based front-ends, excluding up to the top three cepstral dimen-
sions benefited whisper recognition and at times provided also slight
WER reduction on neutral speech. The best performance for Merged

Bands PLP was observed when dropping only c12 and its first and sec-
ond order time derivatives (see the penultimate column in Table 3). In
the case of MFCC, omitting the high cepstral dimensions always dete-
riorated whisper recognition. This suggests that the benefits from re-
ducing cepstral dimensions may be rather due to difference in the spec-
tral processing – linear prediction (LP) versus discrete cosine transform
(DCT). LP models smoothed spectral envelopes and hence, the cepstral
dimensions representing the fine contour details may be less informa-
tive than those in the DCT cepstra.

In the final experiment, we focus on expanding the neutral pronun-
ciation lexicon for alternative pronunciations that would better reflect

0 1000 2000 3000 4000 5000 6000 7000 800002
4 x 10� 3 Merged�Band T riangular Filter Bank

Frequency (Hz)M agnit ud e
Fig. 6: Filter bank with merged bands 1–2 and 18–19.

Phonemes Detected Phonemes/ih/ DEL /ae/ /hh/ /ah//ih/ /ih/ DEL /ah/ /hh/ /iy//d/ DEL /t/ / l/ /m//d/ /d/ DEL /m/ / l/ /n// l/ /r/ /w/ /y/ /hh// l/ /r/ /w/ /y/ /hh//th/
Table 4: Examples of most frequent phone substitutions for selected phones
and MFCC and PLP-20Uni∆ front-ends (phone rows in respective order). DEL
denotes deletions. The column order follows the frequency of substitutions
(left/right – most/less frequent).

the mapping of whisper to neutral phone models. In a closed-set exper-
iment, the whispered utterances are decoded using a phone recognizer
with a phone-based language model. Subsequently, a forced alignment
on the recognized phone streams using the ground truth phone tran-
scriptions is performed using the Sphinx function word align. Based
on the alignment, the most frequent alternative pronunciations gener-
ated from the phone recognition are included in the pronunciation lex-
icon. The recognition results for the PLP-20Uni∆ with the expanded
lexicon are shown in the last column of Table. 3. It can be seen that
the closed-set lexicon expansion reduces whisper WER from 18.2 to
17.3 % without affecting neutral performance.

The choice of front-end features will affect the distribution of whis-
pered and neutral phones in the acoustic space and hence, the mapping
of whispered phones to neutral phone models. An example of the most
frequent phone substitutions for selected phones in phone recognizers
using two different front-ends is shown in Table 4. We have also ex-
perimented with combining the automatic generation of alternative pro-
nunciations with the redistributed FB front-ends, but the performance
did not display further improvements. This is probably due to the fact
that while some alternative pronunciations benefit recognition, others
may introduce greater confusion with other vocabulary entries. Further
research on pruning the alternative pronunciations is needed.

5. RELATION TO PRIOR WORK

The focus of this study is on the analysis and recognition of whispered
speech. Past studies on whispered ASR mostly utilize model adaptation
and pre-determined feature transformations [1, 3, 4, 6]. The novelty of
the present study is in the effort to increase robustness of neutral-trained
ASR engine to whisper without the need for whispered adaptation data.
The filter bank redistribution strategies proposed here are loosely in-
spired by [26, 27]. Our construction of alternative pronunciations for
whispered words using neutral acoustic models is based on a forced
phone stream alignment. Other approaches to lexicon generation have
been studied for example in [29].

6. CONCLUSIONS

The first part of this study analyzed acoustic variations between neu-
tral and whispered speech as captured in the UT-Vocal Effort II corpus.
We observed variation of low cepstral coefficient contours related to
the redistribution of energy and changes in spectral tilt in the speech
segments. Upward shifts in low formant center frequencies were ob-
served for unvoiced whisper compared to neutral unvoiced speech. The
analyses suggest a possibility that occasional voiced segments in whis-
pered speech may exhibit higher formant frequencies compared to neu-
tral voiced segments. Broadening of the first three formants’ band-
widths in unvoiced versus voiced speech was also observed. The sec-
ond part was dedicated to automatic recognition of whispered speech,
where several techniques for neutral-trained models that reduce word
error rates on whispered speech were proposed. The best setup trained
on neutral speech and incorporating redistributed front-end filter banks
outperformed the neutral-adapted baseline by 7.7 % and the whisper-
adapted baseline by 1.3 % absolute WER.
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