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ABSTRACT

Sustaining automatic speaker verification(ASV) systems from
spoofing attacks remains an essential challenge, even if significant
progress in ASV has been achieved in recent years. In this study, an
automatic spoofing detection approach using an i-vector framework
is proposed. Two approaches are used for frame-level feature extrac-
tion: cepstral-based Perceptual Minimum Variance Distortionless
Response (PMVDR), and non-linear speech-production-motivated
Teager Energy Operator (TEO) Critical Band (CB) Autocorrela-
tion Envelope (Auto-Env). An utterance-level i-vector for each
recording is formed by concatenating PMVDR and TEO-CB-Auto-
Env i-vectors, followed by linear discriminative analysis (LDA) for
maximizing the ratio of between-class to within-class scatterings.
A Gaussian classifier and DNN are also investigated for back-end
scoring. Experiments using the ASVspoof 2015 corpus show that
our proposed method successfully detects spoofing attacks. By
combining the TEO-CB-Auto-Env and PMVDR features, a relative
76.7% improvement in terms of EER is obtained compared with the
best single-feature system.

Index Terms— Spoofing detection, i-vector, TEO-CB-Auto-
Env, PMVDR, DNN

1. INTRODUCTION

A spoofing attack on an automatic speaker verification (ASV) sys-
tem is a situation where an imposter attempts to masquerade as an
enrolled person by falsifying speech data traits [1]. ASV systems
were initially designed to distinguish between enrolled speakers and
zero-effort impostors. Although advancements achieved in channel
variability modeling and noise compensation have greatly improved
the reliability of ASV systems, studies have shown that ASV sys-
tems remain vulnerable to intentional spoofing attacks [2-5]. Spoof-
ing attacks are emerging as a problem due to the maturing process
of speech technologies such as speech synthesis (SS), voice conver-
sion (VC), which lower the cost of non-expert spoofing attacks and
increase vulnerabilities of ASV systems.

In this study, we focus on developing new approaches to spoof-
ing detection, i.e., given input speech, we identify it either as gen-
uine or spoofed speech. Spoofing detection can be incorporated into
an ASV system to reduce false acceptance rates. This study effort
was based around ASVspoof 2015 Challenge, the First Automatic
Speaker Verification Spoofing and Countermeasures Challenge [5].
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One challenge in building a robust spoofing detection system
is choosing suitable features. An obvious first step is to adopt the
same features used in ASV systems, for example MFCCs, in gen-
eral, MFCCs perform well in discriminating genuine and spoofed
speech [4,6]. However, performance degrades significantly for at-
tacks that only some coefficients at the feature level are modified.
For example, in the ASVspoof 2015 corpus, the spoofed speech cat-
egory ‘S2’ is generated only by modifying the first coefficient of
Mel-Cepstral coefficients. MFCCs derived from converted speech
are very similar to the genuine speech (1/13 in difference if MFCCs
are 13 dimensional), the EER for spoofing detection is almost 50% in
our experiments, which suggests that detection is at a random deci-
sion level. Other studies indicated that modified group delay (MGD)
or phase features could be used to detect spoofed speech [4,7]. An
explanation for this is that for natural speech, phase information
is lost during the analysis-synthesis step in some speech-synthesis
techniques, which makes genuine speech different from that which
has been synthesized.

In this paper, we employ Perceptual Minimum Variance Dis-
tortionless Response (PMVDR) and TEO-CB-Auto-Env as our fea-
tures [8,9]. The intuition behind our work is: (a) according to [7,10],
spoofing detection by human listeners outperforms automatic spoof-
ing detection because of the better perceptual ability of humans.
PMVDR can accurately model the upper spectral envelope at percep-
tually important harmonics. By incorporating this perceptual consid-
eration, PMVDR is expected to be suitable for spoofing detection;
(b) TEO-CB-Auto-Env models the nonlinear variabilities of speech
production introduced by stress/emotion, which makes this feature
suitable for irregularity detection [11]. Here, we can treat spoofing
attacks as variabilities introduced to genuine speech, thus we employ
TEO-CB-Auto-Env in this task.

For system development, spoofing detection is still a relatively
new field of research, and spoofing types are not guaranteed exhaus-
tively or known; no single system has been established as the best
to adopt. Given this, we employ an i-vector framework along with a
system based on a Deep Neural Network (DNN) in this paper [3,12].
The i-vector PLDA system from speaker identification domain does
not perform well for spoofing attacks under mismatched conditions
[13,14], which is situation in the challenge. Instead, a Gaussian clas-
sifier, and a DNN are employed as back-end classifiers [15-18]. Part
of results in this paper(i-vector-Gaussian Classifier system) could
also be found in [5]. Here, i-vector/DNN results are added to make
our research a more complete work on spoofed speech detection for
ASV.

Section 2 describes the experimental corpus. Section 3 is the
system description which includes details of feature extraction, the
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Fig. 1. TEO-CB-Auto-Env feature extraction.

i-vector framework and back-end classifier development. We report
results and present further discussions in Section 4. Section 5 con-
cludes our work.

2. CORPUS

The ASVspoof 2015 database contains 3 datasets: training, develop-
ment and evaluation [5]. The training set has genuine and spoofed
speech from 25 speakers (15 female, 10 male), and the spoofed
speech utterances were generated from genuine speech using 3 VC
and 2 SS based algorithms. The development set has genuine and
spoofed speech from 35 speakers (20 female, 15 female), with the
same 5 spoofing algorithms used as in the training set. The evalu-
ation set has 193404 test utterances of genuine and spoofed speech
from 46 speakers (26 female, 20 male). The evaluation data also
contains 5 kinds of spoofed speech created using unknown spoof-
ing algorithms (not seen in the training/development set) to gauge
system performance with unknown spoofed utterances.

3. I-VECTOR SYSTEM FOR SPOOFING DETECTION

The i-vector system for this task exploits the concept of total
variability modeling and i-vector extraction, which is extensively
adopted in speaker identification tasks. By constraining the total
variability into a lower dimensional total variability space, the i-
vector is capable of effectively representing the variability factors
within each speech utterance. In this work, we attempt to model
spoof-specific variability across different speakers using i-vectors.

3.1. Feature extraction
3.1.1. TEO-CB-Auto-Env [9]

The TEO profile obtained from the critical band based Gabor band-
pass filter output is segmented on a short-term basis. Next, auto-
correlation is applied after framing. Once the auto-correlation re-
sponse is found, the area under the autocorrelation envelope is ob-
tained and normalized. One area coefficient is obtained for each filter
bank. It has been shown to be large for genuine speech and low for
spoofed speech (corresponding to large area coefficient for neutral
speech and small coefficient for stressed speech in stress detection
tasks). We use 18 Gabor filter banks, meaning that 18 dimensional
features is extracted from each frame. Fig. 1 shows a flow diagram
of TEO-based feature extraction.

3.1.2. PMVDR [8]

PMVDR features were first proposed by Yapanel and Hansen.
PMVDR computes cepstral coefficients by incorporating perceptual
warping of FFT power spectrum, replacing the Mel-scaled filter
bank with the minimum variance distortionless response (MVDR)
spectral estimator. These features have better spectral modeling
ability of speech signals compared to traditional feature extraction

methods. Previous studies have shown that perceptual knowledge
can differentiate between genuine and spoofed speech [4, 7, 10].
Since PMVDR incorporates perceptual warping of the spectrum, we
used PMVDR for this task. A schematic diagram of the PMVDR
front-end is shown in Fig. 2. Pre-processing includes pre-emphasis,
frame-blocking and Hamming windowing. For window size and
shift, we use the same configuration as TEO-CB-Auto-Env feature,
which is a 20 ms window with 10 ms shift.
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Fig. 2. Flow diagram of PMVDR feature extraction.

For each feature extracted, a Universal Background Model
(UBM) is trained using all available training data. In the context
in the spoofing detection i-vector system outlined of this paper, we
expect UBM to roughly model the acoustic structure represented by
TEO-CB-Auto-Env and PMVDR features.

3.2. Utterance level i-vector framework

In our utterance level spoofing detection system, each utterance in
i-vector modeling is represented by a GMM supervector:

M, =m+ Tx,, D

Where M, is the GMM supervector obtained from utterance u, m is
the speaker, channel, spoofing-independent supervector constructed
from UBM. The total variability matrix 7" is a low-rank projection
matrix obtained from all training data by factor analysis training
[19]. The i-vector is given by a normally distributed vector x,, con-
taining the total factors. The complete i-vector system is shown in
Fig. 3.

3.3. i-vector level fusion

Two i-vectors can be derived from each utterance(i.e. PMVDR-
based i-vector and TEO-CB-Auto-Env based i-vector). By con-
catenating these two i-vectors together, we expect to use genuine-
spoofing discriminative information provided by both features si-
multaneously. After whitening and length normalization, the dimen-
sionality is reduced to the original length by linear discriminative
analysis (LDA).
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Fig. 3. Flow diagram of i-vector system.

3.4. Back-end classifiers
3.4.1. Gaussian Classifier

A Generative Gaussian Classifier(GC) is investigated here for spoof-
ing detection. GC is a classical classifier which is more commonly
adopted in language identification. For the GC in our spoofing de-
tection system, i-vectors of each class (genuine and spoofing) are
modeled by a Gaussian distribution, where the covariance matrix is
the same for both categories. For each i-vector  corresponding to a
test utterance, we evaluate the log-likelihood for each category:

log P(x|Y;) = pl 27 'x — %M?Zflpi — %XT271X +c (2

Where p; is the mean vector for speech type Y;, ¥ is the common
covariance matrix, c is a constant related to training data and the
prior distribution of test data (we assume this is unknown, and set
P(Ygenuine) = P(Yapoos) = 0.5)).

3.4.2. Deep Neural Network

Two deep neural networks(DNNs) are trained for back-end scoring.
The first DNN system for spoofing challenge is implemented based
on KALDI and PDNN [12,20]. Firstly, 40 dimensional filter bank
feature are derived for each frame of every utterance. Subsequently,
11 consecutive frames of f-bank features (440 dimension in total)
are utilized as the first layer input. Here, we use 4 hidden layers with
1024 hidden nodes per layer, the final softmax layer consists of two
nodes, which represent the genuine and spoofing class probability
respectively. Since there is no speech content information involved
in this classification task, only two labels assigned for each input
acoustic feature set. Therefore, on the decoding part, an average
score across the whole utterance is employed as final classification
probability.

The second DNN is trained for each feature-based i-vector
(TEO-CB-Auto-Env and PMVDR). The input layer of the DNN
consists of i-vectors derived from the i-vector system described
above. We use a sigmoid activation function, 2 hidden layers with
1024 hidden nodes per layer, and a final softmax layer consisting of
two nodes, representing the genuine and spoofed class probability
respectively.

In the end, the output scores for all neural networks (f-bank fea-
ture, TEO-CB-Auto-Env and PMVDR) are fused using logistic re-
gression as the final output result.

4. RESULTS AND DISCUSSION

For our i-vector system, the UBM utilized in all experiments was
trained on all training data provided in the challenge database (both
genuine and spoofed dataset). The number of components here is set
to 512. The rank of the total variability matrix 71" defines the i-vector
dimensionality. We set this to 100 in our experiments empirically.

For comparison, we use the same ‘threshold-free’ equal error
rate (EER) metric as in ASVspoof 2015, which is implemented us-
ing the Bosaris toolkit [21]. Performance of all systems outlined in
Section 3 are evaluated on development and evaluation data.

4.1. Results on development data

As mentioned in the Introduction, the spoofing detection perfor-
mance of specific feature is heavily related with VC and SS algo-
rithms. Results from GC of different spoofing attacks are summa-
rized in Table 1. The fusion system always gives better performance
for all 5 different spoofing attacks. TEO-CB-Auto-Env and PMVDR
are doing well with different spoofing categories, which also inspires
us to combine them together to boost performance. Spoofing cat-
egory S2 is the worst among all attacks. This is not surprising
because we use amplitude based features, while S2 is obtained
only by changing a very small amplitude part of the Mel-cepstral
coefficient.

Spoof type Feature EER(%) | Accuracy(%)
MFCC 6.59 93.72
S1 TEO 4.80 95.58
PMVDR 1.94 98.30
TEO+PMVDR 0.79 99.27
MFCC 47.71 42.87
S2 TEO 15.71 84.32
PMVDR 24.63 75.56
TEO+PMVDR 12.73 86.30
MFCC 1.32 99.06
S3 TEO 4.48 97.34
PMVDR 0.82 99.42
TEO+PMVDR 0.27 99.78
MFCC 1.97 98.37
S4 TEO 4.43 97.16
PMVDR 0.69 99.48
TEO+PMVDR 0.21 99.86
MFCC 20.78 79.47
S5 TEO 6.79 93.49
PMVDR 9.79 90.43
TEO+PMVDR 4.85 94.22

Table 1. EER(%) and Accuracy(%) across all 5 spoofing attacks
using i-vector systems.

Spoofing detection performance on development data using var-
ious systems are presented in Table 2. Here, we regard five different
spoofing attacks as spoofed speech, and give the overall results. The
benefits of fusing two spoofing sensitive features is apparent, result-
ing in an absolute 5.50% EER performance boost and a 5.24% ac-
curacy improvement for the i-vector/GC system. Also i-vector/DNN
achieves the best overall performance.
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Feature System EER(%) Accuracy
TEO i-vector/GC 8.80 93.61
PMVDR i-vector/GC 7.17 92.88
TEO+PMVDR i-vector/GC 1.67 98.85
f-bank DNN 6.14 96.00
TEO i-vector/DNN 4.83 96.27
PMVDR i-vector/DNN 4.58 95.53
f-bank+TEO+PMVDR fusion 0.71 99.33

Table 2. EER(%) and Accuracy(%) for ASVspoof 2015 on develop-
ment data.

4.2. Results on evaluation data

On the evaluation data, we have 5 additional types of spoofed speech
acting as unknown attacks. The EER of known attacks for our pri-
mary i-vector/GC system is 0.67%, while the EER for unknown at-
tacks is 6.04%. Overall performance for all attacks is 3.35%.

known attacks S1 S2 S3 S4 S5

Primary 024 216 007 0.10 0.78
Flexible Primary 0.26 1.22 035 038 0.77
Fusion/DNN 0.17 2.03 0.19 0.08 0.67
Unknown attacks ~ S6 S7 S8 S9 S10

Primary 231 024 014 031 2720
Flexible Primary  2.47 0.22 035 0.32 32,65
Fusion/DNN 201 035 040 030 2794

Table 3. EER(%) and Accuracy(%) for ASVspoof 2015 on evalua-
tion data.

Table 3 shows the results obtained ASVspoof 2015 as primary
(train only using training data) and flexible primary (train using
training and development data) submissions. The relatively weak
performance for flexible primary shows that it is not necessarily
better to use more training data for spoofing detection. In a real
word application, a spoofing attack is more likely to be an open set
problem, as we always meet unknown attacks. We can’t include
all spoofed speech in the training data. It should also be noted
that although i-vector/DNN system performs better on the develop-
ment data, there is no obvious advantage in using DNN classifier
compared with simple Gaussian Classifier, as seen in Fig.4.

4.3. Imbalanced learning for i-vector system

Most learning algorithms assume or expect a balanced data distribu-
tion. When faced with imbalanced data, some learning algorithms
may fail to properly represent the distribution characteristics of the
data classes.

Here, we also experience the imbalanced learning problem; the
quantity of spoofed speech is roughly 3 times that of genuine speech
in the training set, while for development, the ratio becomes over 14.
One simple solution here is resampling, either upsampling or down-
sampling [22]. For upsampling, synthetic minority oversampling
technique (SMOTE) is a powerful method that has shown some suc-
cess in many applications [23]. Cluster-based downsampling works
in the opposite direction to acquire balanced data [24].

We apply downsampling on our training data for the i-vector
PLDA system (which does not perform well in spoofing detection
as described above). K-means is applied to cluster the spoofing i-
vectors. We downsampled 12625 spoofed i-vectors to 3750 to equal
the number of genuine speech recordings. Detailed performance

DET plot for i-vector/DNN system
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Fig. 4. DET plot for i-vector/DNN on evaluation data.

l Before Clustering ” After Clustering ‘
EER Accuracy EER Accuracy
30.71 69.28 10.07 88.92

Confusion matrix Confusion matrix
genuine | spoofing || genuine | spoofing
3488 9 3394 103
16388 33487 5810 44065

Table 4. System performance of imbalanced training based on i-
vector PLDA system (%).

comparison using the PLDA system is shown in Table 4, using the
development set.

From Table 4, the PLDA system is greatly improved after K-
means clustering. The confusion matrix shows that more genuine
speech has been identified as spoofed speech(103 VS 9). The ratio
is relatively small compared with the performance gain obtained on
spoofing data(16388 VS 5810). For spoofing detection system, the
primary goal is to reduce False Acceptance (FA) rates. Although not
as good as the i-vector GC system we proposed, it gives some mo-
tivation for applying a simple clustering solution as a preprocessing
step to i-vectors.

5. CONCLUSIONS

This study described a systems for spoofing detection. Two spoof-
ing sensitive features (TEO-CB-Auto-Env and PMVDR) were ex-
plored. The results showed our i-vector based system gives com-
petitive overall performance compared with [?,25,26]. A relative
+76.7% improvement in terms of EER was obtained by fusion. The
DNN setup performs well on known attacks, but not well on un-
known attacks. The issue of imbalanced training data, a typical fea-
ture of spoofing datasets, was demonstrated. A probe solution using
resampling showed promise. The low performance for ASVspoof
2015 *S10’ condition inspires us to focus more on this spoofing type.
However, this does not guarantee good performance for other unseen
attacks. The results here show both meaningful advancements, also
a point to direction for future research.Thus, our future work will
aim to identify spoofing detection features that generalize well.
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