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Abstract
Channel compensation is an integral part for any state-of-the-
art speaker recognition system. Typically, Linear Discrimi-
nant Analysis (LDA) is used to suppress directions containing
channel information. LDA assumes a unimodal Gaussian dis-
tribution of the speaker samples to maximize the ratio of the
between-speaker variance to within-speaker variance. However,
when speaker samples have multi-modal non-Gaussian distri-
butions due to channel or noise distortions, LDA fails to pro-
vide optimal performance. In this study, we propose Locally
Weighted Linear Discriminant Analysis (LWLDA). LWLDA
computes the within-speaker scatter in a pairwise manner and
then scales it by an affinity matrix so as to preserve the within-
class local structure. This is in contrast to another recently
proposed non-parametric discriminant analysis method called
NDA. We show that LWLDA not only performs better than
NDA but also is computationally much less expensive. Ex-
periments are performed using the DARPA Robust Automatic
Transcription of Speech (RATS) corpus. Results indicate that
LWLDA consistently outperforms both LDA and NDA on all
trial conditions.
Index Terms: Speaker Recognition, Linear Discriminant Anal-
ysis, Non-parametric Discriminant Analysis, Speaker Verifi-
cation, DARPA RATS, Locally Weighted Linear Discriminant
Analysis, Nearest-neighbor

1. Introduction
Automatic speaker recognition has made significant advances
in recent years [1]. Present state-of-the-art systems employ i-
Vectors [2] as the front-end. After i-Vectors have been extracted
from an audio signal, several channel compensation methods
are employed to reduce the impact of channel distortions. Here,
LDA with Fisher criterion [3] is one of the most commonly
used channel compensation tools. Post channel compensation
based on Probabilistic Linear Discriminant Analysis (PLDA)
[4] is used as the back-end to classify the i-Vectors.

LDA aims to compute a reduced set of dimensions onto
which i-Vectors can be projected, so that variability between the
same-speaker samples can be minimized while at the same time
maximizing the variability between different-speaker samples.
This is accomplished by maximizing the ratio of the between-
speaker covariance to the within-speaker covariance. Sources of
within-speaker variation can be different channels, languages,
acoustic environments, or speaking styles. These variations
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cannot only make within-speaker samples distribution multi-
modal, but can also introduce a non Gaussian behaviour. In [5],
the authors showed that when data in a within-class scatter ma-
trix comes from different channel sources, it is distributed in the
form of different clusters, with each cluster corresponding to a
separate channel source. In [4], the author clearly showed how
a Gaussian assumption on the distribution of i-Vectors leads to
sub-optimal performance in speaker recognition systems.

Recently, NDA was proposed by authors in [6], as a tool
to suppress above noted isuues. However, in this study, we ob-
served that NDA does not always provide improvement over
LDA. Furthermore, NDA is computationally very expensive
since it involves computing nearest neighbors of a speaker i-
Vector in each of the other speaker classes. Motivated by these
observations, we present an alternative non-parametric discrim-
inant analysis technique (LWLDA) that measures the within-
speaker variation on a local basis using an affinity matrix. The
affinity matrix is chosen such that nearby data pairs in the
within-speaker scatter are kept closer, while the far apart data
pairs are not imposed to be close to each other. Weighing the
within-speaker data in such a way helps in locally preserving
its multimodal property, and improves the system performance.
Since, we do not need affinity values for speaker i-Vectors be-
longing to different classes, this highly contributes to reducing
the computational costs. Furthermore, because of the pairwise
non-parametric computation, the between-class scatter is gen-
erally full rank with no eigenvalue multiplicity. Hence, the pro-
posed LWLDA can be employed for dimensionality reduction
into any dimensional spaces.

We evaluate LWLDA against LDA and NDA using DARPA
RATS corpora. The RATS data consists of conversational tele-
phone recordings that are retransmitted over a Multi Radio-Link
Channel System (MRLC) containing 8 channels [7]. Each of
these channels have different degrees and types of distortion
characteristics. We consider the following enrollment-test con-
ditions of RATS data: 120s, 30s and 10s. We show improve-
ment using LWLDA on all of these conditions. It can be noted
that we have shown improvement with LWLDA over LDA and
NDA on NIST Speaker Recognition Evaluation (SRE) data as
well in [8].

The remainder of the paper is as follows. We first give a
brief review of how LDA and NDA are used in speaker ver-
ification systems. Section III presents the proposed LWLDA
method. Section IV presents the experimental setup and Sec-
tion V discusses results of this study. Section VI concludes the
paper and discusses future work.



2. Parametric and Non-parametric
Discriminant Analysis

2.1. LDA

LDA attempts to maximize the discrimination between differ-
ent speaker i-Vectors by finding a set of dimensions where
between-speaker covariance is maximum while while at the
same time minimizing the within-speaker covariance. This set
of dimensions is obtained with the following procedure: First,
the between-speaker and within-speaker covariance matrices,
Sb and Sw respectively, are computed as,

Sb =
1

n

p∑
spk=1

nspk(µspk − µ)(µspk − µ)t. (1)

Sw =
1

n

p∑
spk=1

nspk∑
j=1

(ωspk
j − µspk)(ω

spk
j − µspk)

t. (2)

where, the number of speakers (or classes) is p. ω is an i-Vector
and nspk is the number of i-Vectors corresponding to a speaker
spk. µspk is the mean of i-Vectors belonging to speaker spk,
while µ is the global mean of all the n i-Vectors present in the
development data-set.

In order to formulate a criterion for class separability, after
computation of the scatter matrices, we need to convert them
to a number. This number should be larger when the between-
class scatter is larger or the within-class scatter is smaller. One
typical criteria is:

f = tr(S−1
w Sb). (3)

Our aim here is to optimize f by finding a linear transfor-
mation A, such that A would transform the i-Vectors from x
dimensions to y dimensions (y < x) as:

y = Atx. (4)

It turns out that the value of A that optimizes j, is given by the
eigenvectors corresponding to the largest eigenvalues ofS−1

w Sb

[3].

2.2. NDA

NDA accomplishes the same objective as LDA, except now, in-
stead of a global average, we consider a local sample mean. The
Local mean for an individual sample of a class is computed by
averaging the sample’s k nearest neighbors in other class [9],

Sb =

p∑
spk=1

p∑
l=1,
l 6=spk

nspk∑
j=1

wspk,l
j (ωspk

j −Mspk,l
j )(ωspk

j −Mspk,l
j )t.

(5)
where, wspk,l

j is the weighting function, and Mspk,l
j is the lo-

cal mean of k-NN samples for ωspk
j from class l, given as:

Mspk,l
j =

1

k

k∑
q=1

NNq(ω
spk
j , l). (6)

where, NNq(ω
spk
j , l) is the qth nearest neighbor of ωspk

j in
class l.

Sw is computed in a similar way as Sb, except the weighting
function is set to 1 and local gradients are computed within each

class. Once we obtain the scatter matrices, just like LDA, A is
computed as the eigenvectors corresponding to largest eigenval-
ues of S−1

w Sb.

3. Locally Weighted Linear Discriminant
Analysis

 

Start 

Choose an Affine transform 

Reformulate LDA equations in pair-wise manner 
(non-parametric way) 

Scale the weight matrix in reformulated LDA 
equations by the chosen affine transform 

Stop 

Figure 1: Steps involved in LWLDA computation.

In this section, we present a new method entitled localized
weighted linear discriminant analysis (LWLDA). LWLDA, like
NDA, is based on non-parametric discriminant analysis. How-
ever, unlike NDA, it focusses on weighing the within-speaker i-
Vectors. The weight matrix is computed such that the complex
(multi-modal) structure of the within-speaker data is preserved.
This is achieved by constraining the values of weight matrix to
be between 0 and 1. The values are large if i-Vectors are close,
while small if i-Vectors are far apart. Hence, far apart sample
pairs belonging to the same class will have less influence on
the within-speaker scatter computation as compared to closer
sample pairs. Sample pairs belonging to different classes are
not weighted by the weight/affinity matrix. This occurs since
we want them to be separated from each other, irrespective of
whether any affinity exists between them or not. Fig 1 shows
the basic steps involved in LWLDA computation.

3.1. Choice of Affinity Matrix

One of the easiest choices of an affinity matrix H can be: as-
sign Hi,j = 1, when i-Vectors are neighbors and Hi,j = 0,
otherwise. However, this kind of hard thresholding does not
represent the contribution that far apart i-Vectors might have in
Sw computation. Hence, we consider a Gaussian function that
varies with the local density h of data samples, as our affinity
matrix.

Hi,j = exp(−||ωi − ωj ||2

hihj
), (7)

where, hi represents a scaling factor that takes into account the
distribution of samples around ωi. It is defined as:

hi = ||ωi − ωk
i ||. (8)
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Figure 2: LWLDA: An example showing affinity matrix being
multiplied with a within-speaker scatter that has bi-modal dis-
tribution. Here, n = number of within-speaker i-Vectors.

where, ωk
i is the k-th nearest neighbour of ωi. The value of k

is derived heuristically, and can vary for different distributions.
Fig 2 shows a synthetic example that illustrates the process of an
affinity matrix being multiplied with a bi-modal within-scatter
distribution.

3.2. Lemma

Once an affinity matrix is chosen, next we need to incorporate
it in LDA equations. To accomplish that, we reformulate LDA
equations in a nonparametric manner, using data pairs.

The new Sb and Sw are given by:
Lemma:

S′
b =

1

2

n∑
i,j=1

W b
i,j(ωi − ωj)(ωi − ωj)

t. (9)

S′
w =

1

2

n∑
i,j=1

Ww
i,j(ωi − ωj)(ωi − ωj)

t. (10)

where,

Ww
i,j =

{
1

nspk
zi = zj = spk

0 zi 6= zj .
(11)

W b
i,j =

{
1
n
− 1

nspk
zi = zj = spk

1
n

zi 6= zj .
(12)

where, z are the speaker class labels.
It can be observed from the new formulation that ( 1

n
−

1
nspk

) is negative, while 1
n

and 1
nspk

are positive. Hence, when

data pairs belong to the same class, the terms in S′
b are weighed

negatively making S′
b smaller, while terms in S′

w are weighed
positively making S′

w larger. The exact opposite happens for
the case where data pairs belong to different classes. Terms in
S′

b are weighed positively making S′
b larger, while terms in S′

w

are given zero weight making S′
w smaller. Therefore, the new

formulation conforms to our notion of LDA, where the distance
between samples of different classes is maximized, while dis-
tance between samples of the same classes are minimized.

The transformation matrixA is computed the same way as
in the original LDA formulation, except now the local S′

b and
S′

w are used instead of the global Sb and Sw respectively. As a
result of the affinity transform, S′

b generally has a much higher
rank than p − 1. If the affinity value is set to 1 for all sample

pairs, S′
b and S′

w become equal to Sb and Sw respectively.
Hence, we can say that LWLDA is effectively a localized variant
of LDA.

In this study, we prove the Lemma for the specific case of
our choice of our weight matrix. A more general proof is given
in [10].

3.3. Proof of Lemma

Rewriting Eq. (2) as:

Sw =

p∑
spk=1

nspk∑
i=1

(ωi −
1

nspk

nspk∑
j=1

ωj)(ωi −
1

nspk

nspk∑
j=1

ωj)
t (13)

=

n∑
i=1

ωiω
t
i −

p∑
spk=1

1

nspk

nspk∑
i=j

ωiω
t
j

nspk∑
i6=j

ωiω
t
j

−
p∑

spk=1

1

nspk

nspk∑
i=j

ωjω
t
i

nspk∑
i 6=j

ωjω
t
i +

p∑
spk=1

1

n2
spk

spk∑
j=1

ωjω
t
j .

Let us assume 1
nspk

= Wi,j . Also, from our choice of affin-
ity matrix we know that the diagonal elements of Wi,j will be
ones. Hence, the above equation can be written as:

Sw =

n∑
i=1

Ww
i,iωiω

t
i −

n∑
i,j=1

Ww
i,jωiω

t
j (14)

−
n∑

i,j=1

Ww
i,jωjω

t
i +

n∑
j=1

(Ww
j,j)

2ωjωj
t

=

n∑
i=1

Ww
i,iωiω

t
i −

n∑
i,j=1

Ww
i,jωiω

t
j

−
n∑

i,j=1

Ww
i,jωjω

t
i +

n∑
j=1

Ww
j,jωjωj

t

=

n∑
i,j=1

Ww
i,j(ωiω

t
i + ωjω

t
j − ωiωj

t − ωjωi
t)

=

n∑
i,j=1

Ww
i,j(ωi − ωj)(ωi − ωj)

t.

Next, we know that the scatter matrix for the entire distri-
bution is the sum of the between-class and within-class scatter
matrices:

Sm = Sb + Sw =

n∑
i=1

(ωi − µ)(ωi − µ)t. (15)

Hence, we have:

Sb =

n∑
i=1

(ωi −
1

n

n∑
j=1

ωj)(ωi −
1

n

n∑
j=1

ωj)
t − Sw (16)

=

n∑
i,j=1

(
1

n
−Ww

i,j)(ωi − ωj)(ωi − ωj)
t.

3.4. Application of Affinity Matrix

Finally, after reformulating the LDA equations in a pairwise
manner, we apply affinity transform H . This is accomplished
by simply replacingW byH in the above equations.



Eval.
Cond.

Channel
Compensation Methods EER Miss

@4%FA
Miss

@2.5%FA
Miss

@5%FA
Miss

@1.5%FA
Miss

@1%FA
Miss

@3%FA
FA

@10%Miss
FA

@3%Miss

120s-120s
LDA 5.32 6.23 8.14 5.47 10.55 12.81 7.18 1.67 12.96
NDA 5.51 6.73 8.81 5.84 11.68 14.45 7.96 2.00 14.66

LWLDA 5.04 5.84 7.87 5.08 10.63 13.48 7.02 1.68 12.33

30s-30s
LDA 8.16 13.48 17.56 11.76 22.41 26.94 15.80 6.40 21.65
NDA 8.52 14.53 19.13 12.69 24.72 29.15 17.28 6.96 23.00

LWLDA 7.54 12.24 16.53 10.40 22.04 26.62 14.95 5.22 18.58

10s-10s
LDA 18.46 44.65 52.78 40.86 61.02 66.87 49.40 32.18 60.56
NDA 19.69 47.18 55.42 43.23 63.23 68.39 52.06 35.79 64.14

LWLDA 17.99 42.99 50.55 39.29 59.01 65.01 47.54 30.98 58.56
Table 1: Speaker recognition performance in terms of all the DARPA metrics (all values in %).

4. Experiments

We conduct our experiments using the corpora available as part
of RATS speaker recognition task. The data distributed by Lin-
guistic Data Consortium (LDC) in the form of: LDC2012E49,
LDC2012E63, LDC2012E69, LDC2012E85, LDC2012E117,
contain speech in five languages: Levantine Arabic, Dari, Farsi,
Pashto, and Urdu. We divide these data into three parts for our
system training, enrolment and test. There are a total of 305
speakers available for evaluation (enrolment and test), while
5913 speakers are set aside for training system hyperparameters
including Universal Background Model (UBM), Total Variabil-
ity (T.V.) Matrix and PLDA. All speakers represent both male
and female genders. There are 8 channels (A-H) through which
each of the speaker’s telephone recordings are retransmitted. In
addition to 8 channels, there is also the speaker’s original tele-
phone channel recording. Our evaluation and training data-sets
contain recordings from all 9 channels. Each speaker model
is trained using all sessions coming from 8 extremely degraded
communication channels as well as the original telephone chan-
nel recording. A trial is designed using one speaker model and
one test session. The test sessions are also chosen to represent
all 9 sources of speech recordings. To evaluate system perfor-
mance, we consider 3 duration-specific tasks with the following
enrollment-test conditions: 120s, 30s, 10s. The total number of
trials for each condition are created by taking a cartesian prod-
uct of all the enrolment and test sessions. This leads to roughly
3.2 million trials, with 10,617 target trials and 3,227,568 non-
target trials. It can be noted here, that in all the enrollment-test
conditions, system hyperparameters are all trained using com-
plete recordings. DARPA carried out the RATS project in five
phases using a list of metrics to measure the system perfor-
mance. These metrics, apart from measuring the Equal Error
Rate (EER), also measure the Miss probability and False Alarm
(FA) at different points on the Detection Error Trade-off (DET)
curve. In this study, we report our results using all the perfor-
mance metrics as identified by DARPA in the RATS project.

The speech is parameterized using 60-dimensional Mel-
Frequency Cepstral Coefficients (MFCCs) containing delta and
delta-delta coefficients. A gender independent, 2048 com-
ponent, full covariance UBM is trained using 55,982 record-
ings representing 5913 speakers. Each of these recordings are
roughly 15 min. long. The zero and first order statistics are
computed for each of the recordings from UBM, and then used
to compute a 600 dimensional T.V. matrix. Next, we extract
600-dimensional i-Vectors from the T.V. matrix and apply LDA,
NDA or LWLDA for channel compensation. After channel
compensation, we perform length normalization [11] and finally
classify the i-Vectors using PLDA scoring.

5. Results

Table 1 shows performance of our system using all three chan-
nel compensation methods. All results are obtained by using the
value of k, that gives optimal performance. It can be observed
that LWLDA gives better performance than LDA and NDA in
all enrollment-test conditions. In terms of EER, LWLDA pro-
vides 7.6% relative improvement over LDA and 11.50% rela-
tive improvement over NDA, in case of 30s-30s evaluation con-
dition. In terms of FA@10%Miss, the improvement increases
upto 18.44% over LDA and 25.0% over NDA. Other evaluation
conditions also show improvement with LWLDA, although it is
smaller than that obtained in case of 30s-30s evaluation condi-
tion.

5.1. Computational Complexity

NDA computation has 4 nested loops as can be observed from
Eq. 5. This leads to a computational time complexity of
O(p(p − 1)nspkk), which simplifies to O(p2nspkk). On the
other hand, LWLDA has only two nested loops with a time com-
plexity of O(pnspk). Hence, we can observe that NDA involves
much more computations than LWLDA.

6. Conclusion

In this study, we have considered the problem of multi-modality
for within-speaker i-Vectors that is caused due to channel or
noise distortions. Even though LDA has become an integral
part of many state-of-the-art speaker recognition systems, it still
fails to cope with the multi-modality issue. Recently, NDA
was proposed to address this problem, however, we observed
in our study that NDA falls short of providing sufficient gains
in system performance. Motivated by these observations, we
proposed an alternative way of computing the scatter matrices.
Using our proposed method of LWLDA, we obtained consistent
gains on different speaker recognition tasks employing DARPA
RATS data. We showed that not only is LWLDA better than
NDA, it is also much less computationally expensive. The fact
that LWLDA leads to dimensionality reduction upto any dimen-
sional spaces, can be extremely useful in areas like language
recognition, where the number of classes (languages) is usually
less than the number of i-Vector dimensions. Recently, NIST
conducted the SRE-2016 evaluation. Due to multi-modality
of different data-sets being used to develop systems, LWLDA
might provide gains to the systems used for SRE-2016 evalua-
tions. Hence, in future, we intend to apply LWLDA on SRE-
2016 data as well.
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