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Abstract
This study proposes an effective angry speech detection ap-
proach employing the TEO-based feature extraction. Decorre-
lation processing is applied to the TEO-based feature to increase
model training ability by decreasing the correlation between
feature elements and vector size. Minimum classification error
training is employed to increase the discrimination between the
angry speech model and other stressed speech models. Com-
bination with the conventional Mel frequency cepstral coeffi-
cients (MFCC) is also employed to leverage the effectiveness of
MFCC to characterize the spectral envelope of speech signals.
Experimental results over the SUSAS corpus demonstrate the
proposed angry speech detection scheme is effective at increas-
ing detection accuracy on an open-speaker and open-vocabulary
task. An improvement of up to 7.78% in classification accuracy
is obtained by combination of the proposed methods including
decorrelation of TEO-based feature vector, discriminative train-
ing, and classifier combination.
Index Terms: angry speech detection, TEO-based feature, dis-
criminative training, classifier combination.

1. Introduction
Reliable stress/emotion detection can be used to increase the
performance of speech/speaker recognition systems for a range
of applications including spoken dialog systems, cognitive task
assessment, and spoken document retrieval. For this paper in
particularly, angry speech detection can be effectively employed
by industry for call center systems to improve costumer service.
Recently, extensive research has been conducted in the speech
area to improve the performance of the stress/emotion classifi-
cation [1]-[6]. The TEO-based feature has been well known to
be effective at representing traits of stressed state by reflecting
variations in excitation characteristics included in speech sig-
nals [2][7]-[9].

In this study, a robust angry speech detection scheme is pro-
posed, which is based on TEO-based feature extraction. Decor-
relation processing is applied to the TEO-based feature vector
to increase the ability of acoustic model training by decreas-
ing the correlation between feature elements and vector dimen-
sions. Minimum classification error training is employed to
obtain a more discriminative angry speech model from other
stressed styles such as loud and Lombard speech. In this study,
no knowledge on phonetic information of the input speech is
used, while past research for TEO-based feature processing fo-
cused mostly on vowels. A combination with conventional Mel
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Figure 1: TEO-CB-Auto-Env feature extraction flow [2].

frequency cepstral coefficients (MFCC) is considered to supple-
ment performance of the TEO-based feature in unvoiced seg-
ments. Here, we present the effect of the combination of TEO-
based feature and MFCC features on classification performance
according to the combining domain (i.e., feature combination
and classifier combination).

2. TEO-CB-Auto-Env: Critical Band Based
TEO Autocorrelation Envelope

Fig. 1 shows a flow diagram of our previously proposed TEO-
CB-Auto-Env feature extraction process [2]. The TEO [7][8]
profile obtained from the Gabor bandpass filter output is seg-
mented on a short-term basis, followed by an autocorrelation
operation. The operation is intended to determine the level of
“regularity” in the resulting segmented TEO response. Once
the auto-correlation response is found, the area under the auto-
correlation envelope is obtained and normalized. A single area
coefficient is found which corresponds to each frequency band.
The resulting vector of area coefficients has been shown to be
large for neutral speech (i.e., speech has high “regularity”) and
low for speech that is produced with irregular excitation struc-
ture (i.e., for speech under stress and or speech under vocal fold
pathology [9]). The TEO-CB-Auto-Env feature has been shown
to reflect variations in excitation characteristics including pitch
harmonics [2].

3. Minimum Classification Error Training

As a discriminative training method, minimum classification er-
ror (MCE) training [10] is employed in this study. The dis-
criminant function for class i can be defined as a log-likelihood
function for each class model which is estimated as a Gaussian
mixture model (GMM).

gi(X) = log

[
K∑

k=1

ωikN (X; μik,Σik)

]
(1)
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Using the defined discriminant function gi(X), the class mis-
classification measure can be defined as follows,

di(X) = −gi(X) + log

⎡⎣ 1

M − 1

∑
j,j �=i

exp{gj(X)η}

⎤⎦1/η

(2)
where M denotes the class number and η is a positive number
controlling the relationship between competitive classes. In this
study, we used 100 for η in formulating the log-likelihood dif-
ference from the most competitive class as the misclassification
measure. Eq.(3) shows the loss function used in this study,

λi(X) =
1

1 + exp(−γdi(X) + θ)
, (3)

where γ controls the slope of the sigmoid function and θ is set
to 0 in general.

In MCE training, the parameters of the discriminant func-
tion gi(X) are updated in a direction where the loss function
λi(X) is minimized. To minimize λi(X), we maximize the
misclassification measure di(X), which improves the classi-
fier discrimination across the different classes. As suggested
in [10], the parameters of the discriminant function are updated
as follows,

μ̃ikd(n + 1) = μ̃ikd(n)− ε
∂λi(X)

∂μ̃ikd

σ̃ikd(n + 1) = σ̃ikd(n)− ε
∂λi(X)

∂σ̃ikd
(4)

where,
μ̃ikd =

μikd

σikd
, and σ̃ikd = log(σikd). (5)

In Eq. (5), μikd and σikd denote the dth component of the pa-
rameter vectors μik and Σik for the model of class i. ε is a
positive value (< 1.0) and set to 0.1 in our experiments.

4. Proposed Angry Speech Detection
Here, the proposed methods for robust angry speech detection
are summarized as follows:

• Decorrelation of TEO-CB-Auto-Env feature parameter
• Discriminative training
• Feature combination
• Classifier combination
As presented in Sec. 2, the extracted TEO-CB-Auto-Env

feature vector consists of the same element number as the num-
ber of Gabor bandpass filters employed for processing. In this
study, we use 18 Gabor filters, resulting in an 18-dimensional
TEO-based feature vector. Our previous study demonstrated
that TEO-CB-Auto-Env feature values show a trend of fre-
quency dependency (i.e., large values in the mid and small val-
ues for high frequency bands) [4], which suggests there exists a
correlation relationship between feature elements of the TEO-
based feature vector, since they are obtained from neighboring
frequency bands. Here, we try to increase the model trainability
by decreasing the vector size and correlation through employing
a Discrete Cosine Transform (DCT) for the TEO-based feature
extraction.

The TEO-CB-Auto-Env was originally designed to repre-
sent non-linear characteristics of the voiced sound production
(e.g., vowels), showing effectiveness in stress/emotion detec-
tion [2][4]. However, sustained stress detection performance

Figure 2: Proposed feature and classifier combination scheme
for anger speech detection.

could depend on the ability of effective vowel sound detec-
tion. In this study, the entire speech duration is used without
prior knowledge of phonetic information of the input speech.
To sustain stress detection performance of the TEO-based fea-
ture in unvoiced sound segments, we believe that a conventional
MFCC could be effective at increasing performance. In our re-
cent study, a fusion of TEO and MFCC feature-based classi-
fiers using the Adaboost algorithm demonstrated performance
improvement for physical stressed speech detection using the
UT-Scope database [11].

In this study, we employ two types of combination methods;
(i) feature combination and (ii) classifier combination. In the
feature combination approach, the MFCC feature vector is ap-
pended to the TEO-based feature vector. In the classifier combi-
nation approach, the classifier based on the TEO feature and the
second classifier with an MFCC feature are composed at the de-
cision stage by combining the likelihood scores from both clas-
sifiers with a set scale factor. We also will observe the perfor-
mance trend for two combination approaches when applying the
discriminative training method. It is expected that the classifier
combination approach would be effective in taking an advan-
tage of the improved classifier obtained by discriminative train-
ing under the restricted development data condition. Fig. 2 il-
lustrates the proposed combination approaches for anger speech
detection.

5. SUSAS Corpus

In this study, performance evaluation for anger speech detection
was conducted using Speech Under Simulated and Actual Stress
(SUSAS) [1][12]. The SUSAS corpus consists of five domains,
encompassing a wide variety of stresses and emotions. A total
of 32 speakers were employed to generate in excess of 16,000
isolated-word utterances. The five stress domains include: (i)
talking styles (slow, fast, soft, loud, angry, clear, question), (ii)
single tracking task or speech produced in noise (Lombard ef-
fect), (iii) dual tracking computer response task, (iv) actual sub-
ject motion-fear tasks (G-force, Lombard effect, noise, fear),
and (v) psychiatric analysis data (speech under depression, fear,
anxiety). The database consists of a common highly confus-
able vocabulary set of 35 aircraft communication words [12].
Simulated speech under stress data consists of the data from
10 stressed styles (talking styles, single tracking task and Lom-
bard effect domains), while the actual speech under stress data
consists of speech produced while performing either (i) dual-
tracking workload computer tasks, or (ii) subject motion-fear
tasks (subjects in roller-coaster rides).
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Table 1: Data set for each evaluation session for open-speaker
& open-vocabulary task.

Data Set Configuration Total Utterances
Word† Speaker‡ (4 stresses)

Test 7 (×2)∗ 1 56
Training 21 (×2) 8 1,344
Development 7 8 448

†No word overlap among test, training, and development sets
‡No speaker overlap between test and training
∗2 times recorded

Table 2: Classification accuracy with MLE-training (%).
Feature Pairwise 4-Class Average
MFCC + logE (13) 92.94 69.92 81.43
TEO + logE (19) 90.16 65.00 77.58
DTEO + logE (13) 90.96 66.75 78.85
Feature Combination Pairwise 4-Class Average
TEO + MFCC + logE (31) 94.52 73.02 83.77
DTEO + MFCC + logE (25) 93.58 74.13 83.85

6. Experimental Results
A portion of the database from the SUSAS corpus was used for
performance evaluation of the proposed methods in this study.
We used four types of simulated stressed speech (neutral, an-
gry, loud and Lombard) which were collected from 9 male sub-
jects. Each stress set consists of 2 occurances of 35 words (i.e.,
total 70 words) making up 630 utterances, resulting in a total
2,520 utterance for all stresses. In order to have all utterances
participate in the classification test, 5 different combinations of
words were generated. Each combination consists of 7, 21, and
7 words entry for test, training, and development sets respec-
tively, having no word overlap between the 3 sets. The 5 combi-
nations of word sets were applied for all 9 speakers, conducting
a total of 45 independent evaluation sessions. The data sets em-
ployed for each session are summarized in Table 1. Note that a
speaker for an evaluation session does not overlap with speak-
ers in training and development data sets. It is also noted that
there is no word overlap among the test, training, and devel-
opment sets at each session, formulating an open-speaker and
open-vocabulary task.

For feature extraction, the TEO-CB-Auto-Env (TEO), the
proposed DCT transformed TEO-CB-Auto-Env (DTEO), and
the conventional Mel Frequency Cepstral Coefficients (MFCC)
were employed. An analysis window of 32 msec duration is
used with a 16 msec skip rate for 8-kHz speech data. For
the MFCC, a standard algorithm suggested by the European
Telecommunication Standards Institute (ETSI) was employed
[13], where the 23-Mel-filterbank outputs are transformed to 12
cepstral coefficients adding log-energy (i.e., c1-c12, logE). For
the TEO-based feature, 18 Gabor bandpass filters were used as
suggested by our previous study [2].

The evaluation was conducted with two types of classifi-
cation; (i) pairwise and (ii) 4-class classifications. In the pair-
wise classification, neutral and angry speech are only used for
a binary decision. For 4-class test, all 4 stresses (neutral, an-
gry, loud, and Lombard) are used for a 4-class classification,
which particularly evaluates the discrimination ability between
angry speech and other classes such as loud and Lombard. Each
model was estimated as a GMM which consists of 64 mixture
components, which were obtained through a conventional max-
imum likelihood estimation (MLE) algorithm.

Table 3: Classification accuracy with MCE-training (%).
Feature Pairwise 4-Class Average
MFCC + logE (13) 93.26 69.68 81.47
TEO + logE (19) 90.40 65.16 77.78
DTEO + logE (13) 91.11 67.30 79.21
Feature Combination Pairwise 4-Class Average
TEO + MFCC + logE (31) 94.29 72.86 83.57
DTEO + MFCC + logE (25) 93.13 73.41 83.77

Figure 3: Performance comparison of MLE and MCE training
for different types of feature extraction.

Table 2 shows performance of the feature extraction meth-
ods for angry speech detection, where each model was ob-
tained by MLE training. The number with the feature type
indicates the number of elements for each feature vector (i.e.,
vector dimension). Each value under “Pairwise” and “4-class”
indicates the average value over the classification accuracies
of neutral and angry speech for pairwise and 4-class tests re-
spectively. It can be seen that the proposed DCT-TEO-based
feature (DTEO) outperforms the conventional TEO-based fea-
ture (TEO). This result suggests that the employed decorrelation
process for TEO-based feature was effective at improving the
model ability to characterize the feature space, by reducing the
correlation between feature elements and vector dimension. We
can also see that a combination of the TEO features with MFCC
feature vector produced performance improvement compared to
all single feature cases. It is considered that the ability of the
MFCC to characterize the spectral pattern of speech signals was
effective at increasing angry speech detection.

Next, we conducted performance evaluation on the MCE-
trained models. Mean and variance parameters of the acous-
tic models were updated through 7 iterations of MCE training
over the development data presented in Table 1. Table 3 demon-
strates that the employedMCE training brought consistently im-
proved performance in the single feature cases compared to the
results in Table 2. This suggests that MCE training was ef-
fective at reducing classification errors by generating more dis-
criminative models between different stress classes. However,
for the feature combination cases (i.e., TEO+MFCC+logE and
DTEO+MFCC+logE), the MCE training was not as effective,
even resulting in degraded performance in classification accu-
racy. We believe that the large number of feature dimension
(31 and 25) could not effectively be applied to MCE training
where the development data would not share many parts of the
feature space with the test data. The development data consists
of 448 utterances which do not overlap with test data in terms
of speaker and vocabulary. We consider this a “sparse data”
problem in MCE training for large dimensional feature vector,
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Table 4: Classification accuracy of classifier combination with
MLE-training (%).
Classifier Combination α Pairwise 4-Class Average

TEO+logE &
MFCC+logE

0.25 93.97 73.89 83.93
0.5 94.60 74.44 84.52
0.75 92.78 72.54 82.66

DTEO+logE &
MFCC+logE

0.25 93.58 73.33 83.45
0.5 95.08 75.24 85.16
0.75 93.33 74.21 83.77

Table 5: Classification accuracy of classifier combination with
MCE-training (%).
Classifier Combination α Pairwise 4-Class Average

TEO+logE &
MFCC+logE

0.25 94.53 74.05 84.29
0.5 94.85 74.68 84.76
0.75 93.10 72.86 82.98

DTEO+logE &
MFCC+logE

0.25 94.21 73.33 83.77
0.5 95.16 75.56 85.36
0.75 93.58 74.21 83.89

and could be addressed by employing the model combination
approach. Fig 3 summarizes the performance comparison of
MLE and MCE training for each feature extraction method.

Table 4 shows the classification performance of the classi-
fier combination approach as proposed in Sec. 4. The score
scaling factor α and (1 − α) were applied to the likelihood
scores of TEO-based and MFCC-based classifiers at the de-
cision stage for the classifier combination. We obtained the
best performance with 0.5 score factor for both TEO+MFCC
and DTEO+MFCC cases. From the results, it can be seen
that the classifier combination was effective at increasing clas-
sification accuracy compared to the feature combination ap-
proach shown in Table 2. Table 5 presents the performance
of the classifier combination using the MCE-trained model.
It is worth noting that the MCE-trained classifier combina-
tion method showed improved performance compared to MLE-
based classifier combination method in both TEO+MFCC and
DTEO+MFCC, while we obtained a performance degradation
when applying MCE training to the feature combination for
TEO+MFCC and DTEO-MFCC. These results suggest that
classifier combination approach is effective at increasing the
classification performance by independently utilizing the MCE-
trained models under the restricted development data condition.
Fig. 4 illustrates the final performance comparison of feature
combination and classifier combination approaches employing
MCE-training.

7. Conclusions
In this study, an effective angry speech detection scheme was
proposed. Discrete Cosine Transform was applied to the TEO-
based feature vector and minimum classification error train-
ing was employed for a discriminative training of the acous-
tic model for stressed speech. The combination with a con-
ventional MFCC was applied in the feature domain and de-
cision stage to integrate the reliability of the MFCC feature
for representing spectral characteristics. Performance evalua-
tion was conducted using the SUSAS corpus in a manner of
open-speaker and open-vocabulary task. Experimental results
demonstrated that the proposed method is considerably effec-
tive at increasing angry speech detection among 4 types of
stressed speech; neutral, angry, loud and Lombard. We obtained

Figure 4: Performance comparison of MLE and MCE training
for feature and classifier combination approaches.

up to 7.78% improvement in classification accuracy compared
to the single TEO-based feature case, by combining several pro-
posed methods including decorrelated TEO-based feature, dis-
criminative training, and classifier combination approaches. Fu-
ture work could consider potential speaker dependent traits for
classifier combination factor α.
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