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Abstract—This document briefly describes the systems sub-
mitted by the Center for Robust Speech Systems (CRSS) from
The University of Texas at Dallas (UTD) in the 2010 NIST
Speaker Recognition Evaluation. Our systems primarily use
factor analysis as feature extractor [1] and support vector
machine (SVM) classification framework. Our main focus in the
evaluation is on the telephone trials in the core condition and 10
second train-test condition. Novel elements in our system include
a supervised probabilistic principal component analysis (SPPCA)
based approach for factor analysis, and an algorithm for optimal
selection of the negative samples for training the SVM.

I. SYSTEM COMPONENTS

In this section, we describe the specific blocks used for
building our systems. Later, we will discuss how these parts
were joined together to form our sub-systems.

A. Feature Extraction

The acoustic features used in this submission were identical
for all the subsystems. A 60-dimension feature (19 MFCC
with log energy + A + AA) using a 25 ms analysis window
with 10 ms shift, filtered by feature warping using a 3-s sliding
window is employed [2]. To remove the silence frames, a
Hungarian phoneme recognizer [3] and an energy based voice
activity detection (VAD) method were used. A block diagram
of our feature extraction system is shown in Fig.2.

B. UBM Training

Two gender dependent UBMs with 1024 mixtures were
trained on the NIST 2004, 2005, 2006 SRE enrollment data.
We used the HTK toolkit for training. 20 iterations per mixture
split was used. These UBMs were later used for factor analysis
training and the joint factor analysis (JFA) based system.

C. Factor analysis

We used two different modeling approaches for our factor
analysis training, probabilistic principal component analysis
(PPCA) and supervised probabilistic principal component
analysis (SPPCA). For both methods, the Switchboard II Phase
2 and 3, Switchboard Cellular Part 1 and 2, and the NIST 2004,
2005, 2006 SRE enrollment data were used as the training
data. In total, 400 factors were used.

1) PPCA method: This is the classical probabilistic prin-
cipal component analysis (PPCA) approach for the factor
analysis model [4], as utilized in [5], [6], [1], and was
employed here as one of the two techniques.

2) SPPCA method: The supervised probabilistic principal
component analysis (SPPCA) model [7] is proposed to in-
tegrate the speaker label information into the factor analysis
approach using PPCA. The latent factor from the proposed
model is believed to be more discriminative than the one from
the PPCA model. We have performed extensive experiments
on this model, in combination with different types of inter-
session compensation techniques in the back-end for this
evaluation.

D. Channel Compensation

We have used three different channel compensation tech-
niques. In most of the cases, they were applied in pairs. They
are discussed below.

1) Linear discriminant analysis (LDA): LDA is a common
technique for dimensionality reduction and widely used in
pattern recognition applications. NIST 2004, 2005, 2006 SRE
enrollment data are used as the training data for LDA.

2) Nuisance attribute projection (NAP): The NAP algo-
rithm [8] is used to find a projection matrix intended to remove
the nuisance direction from the feature vectors. The NAP
matrix was also trained using the same factor analysis dataset,
obtained from the NIST 2004, 2005, 2006 SRE enrollment
data.

3) Within Class Covariance Normalization (WCCN): The
WCCN method [9] is based on linear separation between target
and impostor speakers using one versus all decision. NIST
2004, 2005, 2006 SRE enrollment data are used for training
the WCCN matrix.

E. Support Vector machine (SVM) training

The SVMs were trained using the SVM-light toolkit [10].
The background dataset consists of NIST SRE 2004, 2005,
2006, and the Switchboard II Phase 2 and 3, Switchboard
Cellular Part 1 and 2, with a total of 12,763 utterances. We
have used a novel algorithm for finding the best negative
examples for one of our SVM based systems. A similar idea
is considered in [11], [12] where a certain number of negative
examples were chosen based on system performance evalua-
tion. The novel aspect of our method is that, the difference
of two SVMs trained on different number of background
speakers is measured for each enrollment speaker [13]. Using
this difference information, the best speakers are selected as



the background data for each model. This method, unlike that
in [11], [12], is not dependent on the system performance and
thus can be applied for unseen data.

FE. Score Normalization

NIST SRE 2005 data was used for t-norm to normalize the
decision score obtained with the SVM system [14]. The t-norm
model is trained with a leave-one-out method, and the same
speaker utterances are excluded to train its’ own t-model. No
z-norm was used in the SVM case.

G. Score Fusion

Two methods were investigated for training the weights in
a linear score fusion technique. Score fusion software based
on Brummer et. al.’s FoCal toolkit! implemented the linear
logistic regression (LLR) method to train the fusion weights,
as well as a direct mean and variance-normalization method.
The score fusion software was also designed to automate the
process of choosing a fusion method and fused systems for
the best DCF value.

II. THE SUB-SYSTEMS

In this section, we describe the subsystems that were used in
our submission. In total, we have developed five subsystems,
four of which are SVM based and one of them is GMM based.
All of the SVM systems use the factor analysis front-end. A
brief description of the subsystems are given below.

A. SVM-SPPCA-LDA

This sub-system uses the factor analysis front-end features
as the input to the SVM classifier [1]. SPPCA algorithm for
training the factor analysis, LDA and WCCN was used for
channel compensation and t-norm for score normalization.

B. SVM-PPCA-LDA

This sub-system uses the factor analysis front-end features
as the input to the SVM classifier [1]. PPCA algorithm is used
for training the factor analysis and LDA and WCCN was used
for channel compensation.

C. SVM-SPPCA-NAP

Similar to the SVM-SPPCA-LDA system except this system
uses NAP instead of LDA for channel compensation. NIST 04
and 05 data were used for impostors for the SVM training. The
impostor selection algorithm was not used in this case.

D. SVM-PPCA-NAP

Similar to the previous SVM-PPCA-LDA system except this
one uses NAP in place of LDA for channel compensation.
NIST 04 and 05 data were used for impostors for the SVM
training. Also, the impostor selection algorithm was not used
in this case.

Uhttp://www.dsp.sun.ac.za/~nbrummer/focal/index.htm

E. GMM-UBM-JFA

The joint factor analysis (JFA) system is a commonly used
framework for speaker verification [5]. In this system, 300
speaker factors and 100 channel factors was used. Eigenvoice
matrix V was trained on Switchboard II, Phases 2 and 3;
Switchboard Cellular, Part 1 and 2; NIST 2005 and 2006 data.
Eigenchannel matrix U was trained on NIST 2004, 2005, and
2006 data; diagonal matrix D was trained on NIST 2004 data.

F. SVM-PPCA-LDA-BG

This sub-system uses the factor analysis front end-features
as the input to the SVM classifier [1]. SPPCA algorithm for
training the factor analysis, LDA and WCCN was used for
channel compensation and t-norm for score normalization. The
new background speaker selection algorithm was used in this
subsystem for SVM training.

G. Other developments

We have also implemented an ASR based system for this
evaluation. Following [15], ASR trained on Switchboard is
used to generate MLLR transform matrices for speaker veri-
fication tokens. The ASR employs PLP front-end and feature
warping [2]. A global MLLR transform and broad phone-
group transforms are estimated by the system. PCA is applied
to reduce the MLLR features’ dimension. MLLR features are
then use as input to the SVM classifier. We also explored
PMVDR [16] features for speaker recognition in a GMM-
MAP framework [17]. Due to lack of time and the magnitude
of the SRE 2010 evaluation we could not submit results for
these sub-systems.

III. DEVELOPMENT STRATEGY

In order to incorporate the new DCF parameters in our
system, we have generated new trial lists consistent with the
SRE 2010 trials. In this years evaluation, the P;q,g4e¢ parameter
was set to 0.001 instead of 0.01 as in SRE 2008. Thus it
is more meaningful to use a trial set that has a much fewer
number of target trials compared to nontarget trials. We ran
extensive experiments to find optimal parameters for our sub-
systems, including LDA dimension and number of impostors
(selected using our new algorithm) for SVM training. The
newly generated trials were used in these experiments.

IV. RESULTS

In this section we present some of the results that we have
obtained in the SRE 2008, tel-tel, core condition. The results
are shown in Table I. The DCF values are computed using the
new parameters, Cy,, = 1, Cp, = 1 and P,,, = 0.001 and
normalized with the value Cp,, = 0.001 as required.

V. THE CRSS SUBMISSIONS

This section describes the system results that were actually
submitted. NIST allows 3 submissions per train-test condition.
These are the submissions that were delivered.
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Fig. 1. A conceptual block diagram of the CRSS core system submissions. This shows a fusion of four of our SVM based sub-systems.
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TABLE I
EER AND DCF PERFORMANCE OF THE SUBSYSTEMS IN THE NIST 2008
SRE, 5M TRAIN-TEST, TEL-TEL SUB-CONDITION TRIALS.

System Male Female

EER (%) | DCF | EER (%) | DCF
1 SVM-PPCA-LDA 3.1235 | 0.262 3.2739 | 0.336
2 SVM-SPPCA-LDA 3.1256 | 0.309 3.2970 | 0.534
3 SVM-PPCA-NAP 3.1430 | 0.321 3.6406 | 0.386
4 SVM-SPPCA-NAP 3.1235 | 0.345 4.5486 | 0.511
5 GMM-UBM-JFA 3.1256 | 0.682 5.2024 | 0.638
6 | SVM-PPCA-LDA-BG 3.1256 | 0.231 3.2366 | 0.351

1) CRSS Primary-Core System 1: This is a fusion of
subsystems SVM-PPCA-LDA, SVM-PPCA-NAP and in Sec-
tion II submitted as CRSS_1_core_core_primary_lIr. We used
linear logistic regression for training the weights for fusion
and the FOCAL toolkit was used.

2) CRSS Alternate-Core System 2: This is a fusion
of  subsystems SVM-PPCA-LDA, SVM-PPCA-NAP,
SVM-SPPCA-LDA, SVM-SPPCA-NAP, GMM-UBM-
JFA and SVM-PPCA-LDA-BG. This is submitted as
CRSS_2_core_core_primary_llr. We used linear logistic
regression for training the weights for fusion. A conceptual
block diagram for this fusion system is given in

3) CRSS Alternate-Core System 3: This is a fusion
of subsystems SVM-PPCA-LDA, SVM-PPCA-NAP, SVM-
SPPCA-LDA, SVM-SPPCA-NAP and SVM-PPCA-LDA with
background selection for SVM. This is submitted as
CRSS_3_core_core_primary_llr. We used linear logistic re-
gression for training the weights for fusion.

A block diagram of the feature extraction block of the CRSS systems.

4) CRSS Primary-10sec System 1: This is the SVM-PPCA-
LDA system run on the 10sec train and test condition. Sub-
mitted as CRSS_1_10sec_10sec_primary_llr.

5) CRSS Alternate-10sec System 2: This is a fu-
sion of the SVM-PPCA-LDA and SVM-PPCA-NAP sys-
tems run on the 10sec train and test condition. Fusion
was performed using the FOCAL toolkit. Submitted as
CRSS_2 10sec_10sec_alternate_llr.

VI. COMPUTATIONAL RESOURCES

The speaker ID system was implemented on our CRSS high-
performance Rocks computing cluster running the CentOS
Linux distribution. The cluster comprises 18 HP Intel Quad-
Core Xeon 2.33 GHz CPU’s, yielding 72 CPU cores. A total
of 126 GB RAM is available internally on the system. A 4 TB
external RAID disk array is attached to the cluster by means
of the storage area network (SAN). The array is connected
with the cluster nodes through a 1 Gbit Ethernet switch.

VII. CPU EXECUTION TIME

The CPU execution times for the SVM systems are con-
siderably fast assuming that the UBM and factor analysis
matrices are trained beforehand. Time required for training
on a 5 minute utterance is 6.2771 minutes assuming a single
CPU, which gives a real time factor (RTF) of 1.2554. For
testing each 5 minute segment, it took 4.6034 minutes which
is gives an RTF of 0.9207.
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