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Abstract
In this study, a supervised probabilistic principal component
analysis (SPPCA) model is proposed in order to integrate the
speaker label information into a factor analysis approach us-
ing the well-known probabilistic principal component analysis
(PPCA) model under a support vector machine (SVM) frame-
work. The latent factor from the proposed model is believed to
be more discriminative than one from the PPCA model. The
proposed model, combined with different types of intersession
compensation techniques in the back-end, is evaluated using the
National Institute of Standards and Technology (NIST) Speaker
Recognition Evaluation (SRE) 2008 data corpus, along with a
comparison to the PPCA model.
Index Terms: speaker recognition, factor analysis, supervised
modeling

1. Introduction
Factor analysis approach has been successfully applied for
the state-of-the-art speaker recognition systems [1, 2, 3].
Eigenvoice, eigenchannel, and joint factor analysis (JFA)
have emerged as efficient approaches in solving the speaker
and channel variability under the Gaussian Mixture Model
combined with a Universal Background Model(GMM-UBM)
framework. At the same time, the SVM has also presented a
powerful ability to recognize speakers, using diverse feature in-
puts, such as the GMM supervector (GMM-SVM) [4]. Under
a SVM framework, some successful approaches have been pro-
posed. For example, Nuisance Attribute Projection (NAP) [4]
was proposed to remove the channel distortion, and the Within
Class Covariance Normalization (WCCN) [5] tried to minimize
the expectation error rate of false alarms and false rejections in
the one-versus-all case.

In addition, some successful efforts have combined factor
analysis and SVM. For example, the speaker GMM supervector
obtained from JFA was used as the feature input for the SVM;
alternatively, the SVM was trained using the speaker factor from
the JFA in [6]. In JFA modeling, the speaker and channel spaces
are assumed to be independent, however, some analysis sug-
gests the presence of channel factors in the JFA model also
contain speaker information [7]. As such, to release the inde-
pendence assumption, the total variability model was proposed
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in [7, 8]. In the total variability model, the speaker and chan-
nel spaces are combined and represented by one latent factor,
which was used as the feature to train the SVM. In addition, the
total variability model also avoids the assumption that the chan-
nel distortion of the enrollment data can be ignored in the JFA
model, since the total latent variables are extracted from both
enrollment and test data.

Since the total variability model is a classical application of
the probabilistic principal component analysis (PPCA) [9], the
main effect of the total variability model is to reduce the dimen-
sion of the GMM supervector so that the latent variables can be
estimated well using limited data. As a type of PCA, the total
variability model does not need speaker information, however,
the speaker label is generally available for the training data. To
incorporate the speaker label information into the dimension-
reduction projection processing, a supervised PPCA, similar as
the method in [10], is proposed here for the speaker recognition
task. The SPPCA, as an extension of the PPCA, inherits bene-
fit of the total variability and integrate the speaker information
into the projection processing so it is believed that more speaker
related information is retained in the SPPCA model rather than
more energy in the PPCA model.

This study is organized as follows. The next section be-
gins with a brief review of the total variability model, followed
by the description of the proposed SPPCA model. The esti-
mation algorithm of SPPCA is derived based on the EM algo-
rithm of PPCA in Sec.3. In Sec.4, the combination of SPPCA
and PPCA, named weighted SPPCA, is derived based on the
SPPCA algorithm. Sec.5 presents a series of experimental re-
sults with different intersession compensation techniques under
the SVM framework. Finally, research findings are summarized
along with a discussion of the impact in Sec.6.

2. The SPPCA model
2.1. Total variability review

In [8], the total variability model was proposed in place of two
separate models representing the speaker space and channel
space in classical JFA modeling. The method is composed of
the eigenvectors with the greatest eigenvalues of the total vari-
ability covariance matrix, in order to release the independence
assumption between speaker and channel spaces. Given an ut-
terance, the speaker and channel dependent GMM supervector
M can be written as follows:

M = m+ Tω, (1)

where m is the UBM supervector, T is a rectangular matrix of
low rank and ω is a random vector of dimension D having a
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standard normal distribution N(0, I). The components of the
vector ω are the total factors. Clearly, the total variability can
be considered as a classical PPCA model here, so the latent vari-
able ω can best explain the data covariance.

In general, some intersession compensation approaches fol-
lowing the PPCA model can be used to set aside the distortion,
such as WCCN, LDA, and NAP. The WCCN is an approaches
applied in one-versus-all SVM modeling to minimize the ex-
pectation error rate of false alarms and missing by using the in-
verse of the within class covariance. The LDA attempts to find a
new projection that minimize the within-class scatter caused by
channel effects, and to maximize the between-class scatter be-
tween speakers. The NAP tries to find an appropriate projection
matrix removing the nuisance direction by using the eigenvec-
tors having the largest eigenvalues of the within class covari-
ance. The WCCN followed by LDA and WCCN followed by
NAP have been proven to obtained better performance in [8].
After these front-end process, SVM classifier is used to recog-
nize the speakers.

2.2. SPPCA modeling

As an unsupervised technique, there is no label information
required using PPCA so given an utterance without the label,
PPCA is the best method to represent the utterance using a small
number of uncorrelated variables (ω in Eq.1). However, if label
information is available in the training data (such as Switch-
board corpora), it is reasonable to extend PPCA including the
label information, especially for the classification task, since
extracting the latent label related information is more important
than one representing the acoustic data in speaker recognition.
Considering the utterances in the training data, there are two
kinds of observations for each utterance, including the acoustic
data and the speaker label. PPCA provides a way to find the
latent variable using the acoustic data, however, there is no di-
rect way to use the speaker label into the training processing.
To integrate the speaker label into the training process, a similar
method to the eigenvoice model is used where the speaker label
is represented by a collection of the acoustic data from the same
speaker. As such, the supervised PPCA model can be written as
follows:

M = m+ Tω,

S = m+ V ω, (2)

where S is the supervector of the speaker, V is a rectangular
matrix of low rank. The pair (M , S) from Eq.2 are an observed
supervector pair of the utterance with the speaker label. In the
SPPCA model, the property of conditional independence is kept
so the supervector M and S are conditionally independent to
each other given the latent variable ω. In other words, the la-
tent variable ω is used to represent a supervector [MTST ]T .
In the model, the latent variable ω does not only represent the
acoustic data of the utterance, but also represents the speaker
information of the utterance which is expected to be extracted
prior to speaker recognition. In PPCA modeling, since the main
energy of the acoustic data is kept using the latent variable ω, it
is hoped that the variable ω carries sufficient speaker informa-
tion for recognition. However, in SPPCA modeling, the vari-
able vector ω directly represents both the utterance and the cor-
responding speaker label information, so it is certain that the
variable ω contains the speaker information.

Since speaker information is used to supervise the training
of the projection matrix T , the maximum likelihood solution of
this approach is identical to that of LDA from the analysis of
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Figure 1: The difference between SPPCA and JFA model.

[11, 12] so the approach can be considered a probabilistic LDA
when compared with PPCA. It is clear that the latent variable
ω in the SPPCA model is expected to carry more speaker infor-
mation than that in the PPCA model so better performance is
expected in the following recognition process. It is noted that
the SPPCA model is different from the JFA model, where the
speaker and channel spaces are assumed to be independent with
each other. In the JFA model, the variable ω can be split into
two parts ωs and ωc, so that the supervector M in Eq.2 can be
represented by concatenating ωs and ωc, and the supervector S
is represented only by ωs. However, in the SPPCA model, the
variable ω can not be split to represent the speaker and channel
individually, and must be considered as a whole, thereby avoid-
ing the independence assumption between speaker and channel
spaces. The difference between SPPCA and JFA is illustrated
in Fig. 1

3. Learning in the SPPCA model
First, some SPPCA parameters are defined: X (i) denotes the
ith utterance data, Y(s) denotes the sth speaker data includ-
ing all session from the speaker, where the ith utterance comes
from the sth speaker, ns denotes number of utterances from the
sth speaker. The relationship between X (i) and Y(s) can be
formalized as:

X (i) ⊆ Y(s), for the case of speaker of X (i) being s. (3)

Therefore, given a training data pool, the likelihood function,
which serves as the estimation criterion, is∏

i

max
ω

PGMM (X (i)|m+ Tω),∏
i

max
ω

PGMM (Y(s)/ns|m+ V ω). (4)

In the training phase, both observations X (i) and Y(s) are
available, therefore the posterior distribution of the variable ω
given (X (i) and Y(s)) can be calculated as follows:

P (ω|X (i),Y(s)) ∝ P (X (i),Y(s)|ω)P (ω)

= P (X (i)|ω)P (Y(s)|ω)P (ω), (5)

where the property of the conditional independence is applied.
To easily calculate the mean and covariance of the posterior
distribution from the existing PPCA approach, the Eq.2 can be
rewritten as:[

M
S

]
=

[
m
m

]
+

[
T
V

]
ω. (6)
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Therefore, employing the conditional independence, the mean
µω and covariance Σω of the posterior distribution can be ob-
tained as follows:

µω = l−1(T ∗Σ−1F̃ (i) + V ∗Σ−1F̃ (s)/ns),

Σω = l−1, (7)

where l = I+T ∗Σ−1N(i)T+V ∗Σ−1N(s)/nsV , Σ is the co-
variance matrix of the UBM, and N(i), N(s), F̃ (i), and F̃ (s)
are the Baum-Welch statistics defined in [3]. Since the two ma-
trices T and V are independent, the update formulas of both
matrices given the variable ω are the same as that for PPCA,
which is defined in [3] as well.

In the speaker recognition phase, given an input utterance,
which can be the enrollment file or test file, the posterior dis-
tribution of the variable ω can be estimated without the speaker
information as:

P (ω|X (i)) ∝ P (X (i)|ω)P (ω)

= P (X (i)|ω)P (ω), (8)

and then the mean of the distribution can be calculated as:

µω = l−1(T ∗Σ−1F̃ (i)), (9)

where l = I + T ∗Σ−1N(i)T . Although the solution looks
similar to that in the PPCA model, the projection is supervised
since the training of matrix T is influenced by the speaker in-
formation.

4. Weighted SPPCA model
In general, PCA is a unsupervised method which aims at ex-
tracting a subspace in which the variance of the projected data
is maximized, and LDA is a supervised method which maxi-
mizes the between-class scatter and simultaneously minimizes
the within-class scatter. Therefore, LDA is expected to include
more discriminative information than PCA, which is the same
in probabilistic case. However, under the SVM speaker recogni-
tion framework, after PPCA or SPPCA projection, the follow-
ing classifier is SVM which is a classifier that maximizes the
margin distance between the classes [13]. Since there are differ-
ent criterion between LDA and SVM, it is possible that the com-
bination of LDA and SVM do not generate a good performance.
On the other hand, the combination of PCA and SVM does not
have the possible combination problem since PCA minimizes
the reconstruction error and only produce a compact represen-
tation of the utterance. Therefore, a combination of PPCA and
SPPCA, named weighted SPPCA, is proposed to smooth the
gap between the criterion of LDA and SVM. Considering the
Eq.5, if the term P (Y(s)|ω) is ignored, SPPCA model becomes
PPCA model. Therefore, the posterior distribution of the vari-
able ω given X (i) and Y(s) in the weighted SPPCA model can
be formalized as:

P (ω|X (i),Y(s)) ∝ P (X (i)|ω)Pα(Y(s)|ω)P (ω), (10)

where α is a parameter from 0 to 1. When α is 0, the model is
PPCA model; when α is 1, the model is SPPCA model. Since
P (X (i)|ω) and P (Y(i)|ω) are Gaussian distribution with the
same covariance matrix Σ, Pα(Y(s)|ω) is also a Gaussian
distribution with the covariance matrix 1

α
Σ. Therefore, the

mean µω and covariance Σω of the posterior distribution in the
weighted SPPCA can be obtained as follows:

µω = l−1(T ∗Σ−1F̃ (i) + V ∗αΣ−1F̃ (s)/ns),

Σω = l−1, (11)

where l = I+T ∗Σ−1N(i)T +V ∗αΣ−1N(s)/nsV . As such,
the learning process of the weighted SPPCA is the same as
the process of the SPPCA except using the Gaussian distribu-
tion Pα(Y(s)|ω) with the covariance matrix 1

α
Σ in place of

P (Y(s)|ω).

5. Experiments and Discussion
The proposed algorithm is evaluated based on the 5min-
5min telephone-telephone male condition from the NIST 2008
speaker recognition evaluation (SRE) corpus.

5.1. Experimental setup

For parametrization, a 60-dimension feature vector (19 MFCC
with log energy + ∆ + ∆∆) using a 25 ms analysis window
with 10 ms shift, filtered by feature warping using a 3-s sliding
window is employed [14]. In order to set aside silence frames,
a phone recognizer developed from BUT [15] and the energy
based voice activity detection (VAD) were employed.

Next, a gender dependent UBM with 1024 mixtures was
trained on the NIST 2004, 2005, 2006 SRE enrollment data.
The Switchboard II Phase 2 and 3, Switchboard Cellular Part
1 and 2, and the NIST 2004, 2005, 2006 SRE enrollment data
were used to train the PPCA and SPPCA model. A total of
400 factors were used in both PPCA and SPPCA models. The
same data set as PPCA was used for both LDA and NAP train-
ing, and WCCN was trained on the same data as the UBM. The
SVM with cosine kernel was used here and the NIST 2004 and
2005 SRE enrollment data were used as the SVM background
impostors.

5.2. SPPCA evaluation

In order to evaluate SPPCA and PPCA models directly, all other
setups in the system are fixed. Table 1 presents the performance
of PPCA and SPPCA under the SVM framework, followed by
different session compensation approaches including WCCN,
NAP-WCCN, LDA-WCCN. Here, WCCN is always used as a
part of SVM and no variables in WCCN needs to be optimized.
In NAP and LDA cases, since the performance of the systems
depend on the dimension of LDA and NAP, only the best EER
and minDCF are presented with the corresponding dimension in
the table 1. The best EER and minDCF is a directly evaluation
of the speaker recognition ability of the latent factors extracted
from PPCA and SPPCA. For example, in PPCA-NAP-WCCN
case, the best EER 6.14 is achieved with the NAP of 260 di-
mension and the best minDCF 2.83 is achieved with the NAP
of 300 dimension. From Table 1, SPPCA significantly outper-
forms PPCA in WCCN and NAP-WCCN cases, and is slightly
better than PPCA in LDA-WCCN case. The reason that the
performance of PPCA with LDA-WCCN is closer to the perfor-
mance of SPPCA with LDA-WCCN is that SPPCA is actually
a probabilistic LDA so the similar criteria is used in both cases,
and 400 factors in PPCA model can cover the most energy of the
utterance so the output from PPCA hold the most speaker infor-
mation which can be extracted by the following LDA. However,
if the dimension of PPCA is not large enough, then the speaker
information will be partly lost after PPCA extraction, resulting
in weak performance.

In addition, the details of the minDCFs of the PPCA-NAP-
WCCN and SPPCA-NAP-WCCN SVM systems with differ-
ent dimensions are shown in Fig.2. After 300 dimension, the
minDCF increases sharply in both PPCA and SPPCA cases.
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Table 1: Performance of SPPCA and PPCA followed different
session compensation approaches for male

Algorithms EER (%) minDCF (× 100)
PPCA-WCCN 6.77 3.12

SPPCA-WCCN 6.39 2.83
PPCA-NAP-WCCN 6.14 (260) 2.83 (300)

SPPCA-NAP-WCCN 6.07 (220) 2.67 (240)
PPCA-LDA-WCCN 6.00 (160) 2.58 (120)

SPPCA-LDA-WCCN 5.82 (300) 2.53 (300)

100

NAP dimension

m
in

D
C

F

220 300140 180 260

2.7

2.8

2.9

3.0

minDCF of PPCA and SPPCA models:

real line represent SPPCA and dash line represent PPCA

Figure 2: minDCFs of the PPCA-NAP-WCCN and SPPCA-
NAP-WCCN SVM systems.

5.3. Evaluation of Weighted SPPCA

Since the different criterion between LDA and SVM, it is not
guaranteed that the combination of LDA and SVM results in
better performance although the improvement was shown in
[8] and our experiments. As such, the weighted SPPCA, as a
combination of probabilistic LDA and PCA is evaluated here
to present the possible improvement by the combination. Since
the training process of SPPCA cost a lot of computation so it is
very difficult to evaluate the influences of different α. As such,
only the case of α = 0.2 is evaluated and shown in Table2.
From the table, the performance of the weighted SPPCA with
alpha = 0.2 is better than the performance of PPCA and worse
than the performance of SPPCA. Clearly, the performance of
the weighted SPPCA depends on the parameter α, so it is pos-
sible that the best performance can be achieved by optimizing
the parameter α.

6. Conclusion
This study has considered an supervised PPCA and weighted
SPPCA models as an extension of PPCA model under the SVM

Table 2: Performance of weighted SPPCA with α = 0.2 fol-
lowed different session compensation approaches for male

Algorithms EER (%) minDCF (× 100)
SPPCA-WCCN 6.68 2.98

SPPCA-NAP-WCCN 5.98 (250) 2.75 (250)
SPPCA-LDA-WCCN 5.91 (240) 2.54 (160)

framework for speaker recognition. The corresponding EM-
algorithm based model learning and recognition algorithms are
derived. SPPCA is proposed to obtain more discriminative
speaker information for recognition and weighted SPPCA is de-
signed to smooth the different criterion between LDA and SVM,
resulting in optimizing the performance of speaker recognition.
The resulting study shows that the SPPCA model achieves an
improvement in the SVM based speaker recognition system and
the weighted SPPCA suggests an optimization approach when
LDA and SVM are combined for speaker recognition.
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