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Abstract
We investigate an effective feature extraction front-end for 
speech emotion recognition, which performs well in clean and 
noisy conditions. First, we explore the use of perceptual 
minimum variance distortionless response (PMVDR). These 
features, originally proposed for accent/dialect and language 
identification (LID), can better approximate the perceptual 
scales and are less sensitive to noise and speaker variation. 
Also developed for LID, shifted delta cepstral (SDC) approach 
can be used to incorporate additional temporal information. It 
is known that supra-segmental speech characteristics, such as 
pitch and intensity, provide better discriminative information 
for emotion recognition by fusing with other emotion 
dependent features. Combined PMVDR and SDC together, the 
system outperforms the baseline system (MFCC based)  by 
10.3% (absolute). Furthermore, we find both PMVDR and 
SDC offer much better robustness in noisy condition, which is 
critical for real applications. All the evaluation the proposed 
features using the Berlin database of emotion speech. 
Index Terms: PMVDR, shifted delta cepstral, emotion 
identification, robustness 

1. Introduction
Reliable emotion identification/reocgintion ( this two terms 
are used interchangeably) can be used to increase the 
performance of speech/speaker recognition systems for a 
range of applications such as spoken dialog systems, human 
computer interfaces, and gaming industry. Recently, extensive 
research has been conducted in the speech area to improve the 
performance of the stress/emotion recognition [1]-[6]. 
      In the emotion identification (EID) field, various types of 
features have been proposed, such as Mel-frequency cepstrum 
coefficients (MFCCs), pitch, intensity, and their variation [7, 
8]. One problem with EID systems is that it usually involves 
huge dimension feature sets. For example, more than 200 
features were used in [7] and about 1000 features were used in 
[8]. The feature sets are usually reduced with feature selection 
algorithms or principle component analysis. As a result, the 
feature extraction process is computation demanding and the 
selected features are highly dependent on the emotional 
database and are not robust against noisy signals. In this study, 
we focus on providing an effective and robust feature 
extraction front-end for emotion recognition system, which 
only utilizes few robust features that have the potential to 
perform well in online and real life task. 

In addition to features that are commonly used for emotion 
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recognition, we propose the use of perceptual minimum 
variance distortionless response (PMVDR) features and 
shifted delta cepstrum (SDC).  MFCCs [9] have proven to be 
one of the most effective feature sets for speech processes, 
especially automatic speech recognition (ASR) and speaker 
identification. They are computed by applying a Mel-scaled 
filter-bank either to the short-term FFT magnitude spectrum or 
to the short-term LPC-based spectrum to obtain a perceptually 
meaningful smoothed gross spectrum. Both the FFT and LPC-
based spectrum, however, have limited ability to remove 
undesired harmonic structures, especially for high pitch 
speech [10], which may affect emotion representation. 
Furthermore, studies have shown that FFT-based MFCCs are 
less effective for stressed speech recognition than LP-based 
MFCCs [11]. Moreover, MFCCs are expected to carry speaker 
dependent information. In fact, MFCCs are commonly used by 
almost all the state-of-the-art NIST SRE08 systems, including 
the best one [12]. In contrast, PMVDR directly warps the FFT 
power spectrum of speech during the feature estimation 
process, removing the traditional Mel-scaled filterbank as a 
perceptually motivated frequency partitioning. It can provide a 
better approximation of the perceptual scales. Another 
advantage is that PMVDR can effectively model medium and 
high-pitch speech and track the upper envelope. Therefore, it 
smoothes undesired speaker excitation information to better 
suppress speaker dependent information and yields more 
accurate recognition and faster emotion decoding in both clean 
and noisy conditions. 

In language identification, shifted delta cepstrum (SDC) 
approach [13] is widely used. The motivation to include this in 
the context of emotion recognition is to incorporate additional 
temporal information into the feature vector. 

The remainder of this paper is organized as follows: Sec. 2 
describes the database that is used to develop and evaluate the 
system. Sec. 3 describes the experiment baseline system. Sec. 
4 presents the different feature extraction schemes. Sec. 5 
discusses the EID results obtained from different feature 
extraction front-end schemes, and Sec. 6 presents conclusion 
and future work. 

2. Corpus
This study employs data from acted emotional speech, the 
Berlin Emotional database (EMO-DB) [14]. Although acted 
material has a number of well-known drawbacks, many 
studies have used this corpus (is a benchmark database for 
EID). Here, we decide to use it to establish a proof of concept 
for the proposed methodology. EMO-DB contains seven 
categories of emotions (Table 1). Ten German sentences of 
emotionally undefined content were used to produce all 
emotions by ten professional actors (5 female, 5 male). The 
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database is recorded in 16 bit, 16 kHz under studio noise 
conditions. For evaluation, the whole database is randomly 
divided into two disjoint sets, training and testing (80% for 
training, 20% for testing).  

  Table 1. EMO-DB database. 

Emotion Session 
Count 

Duration 
(sec) 

Avg. Segment 
duration (sec)

anger 127 336 2.6
boredom 81 225 2.8
disgust 46 154 3.3
anxiety/fear 69 154 2.2
happiness 71 181 2.5
sadness 62 251 4.0
Neutral 79 187 2.4
Sum 535 1488 2.8
 

3. Baseline System 
The Gaussian Mixture Models (GMM) classifier is a popular 
method for text independent speaker recognition and has been 
used for accent identification and EID. We use this approach 
as our baseline system. Figure 1 shows the block diagram of 
the baseline GMM training/testing system. The silence 
removal module sets aside silence in the audio files that are 
used for training and testing. A parallel gender ID system is 
used to select emotion sets for each gender (we do not use the 
gender information from the testing labels in order to mimic 
real life case). Next, gender dependent GMM are trained for 
each emotion. While testing, the incoming audio is classified 
as a particular emotion based on the maximum posterior 
probability measure over all the GMM candidates. Throughout 
this paper, we use 64 mixtures for all GMM to provide a fair 
basis for comparison of different feature extraction front-end.  

 
Figure 1: Baseline GMM based EID system. 

4. Feature Front-end
Psychologists and speech scientists have conducted extensive 
research in identifying speech emotion differences. Features 
such as pitch and intensity have been explored which were 
found to be useful for emotion recognition [7, 8, 15]. Here, we 
consider a combination of spectral and temporal information 
for EID. We believe that our features are capable of capturing 
more salient characteristics in EID tasks. 

4.1. Spectral Based Features 

4.1.1. MFCC

Many researchers have used spectral based features such as 
MFCC for the purpose of EID. In our study, an analysis 
window of 25msec duration is used, with 10msec skipping 
rate. We use traditional 39-dimensional feature vector 

consisting of 12-dim MFCC, 12-dim �MFCC, 12-dim 
��MFCC, 1-dim Energy, 1-dim �Energy, and 1-dim 
��Energy. This feature is used in the baseline system. 

4.1.2. PMVDR

Our previous research [16] showed that perceptual Minimum 
Variance Distortionless Response (PMVDR) feature 
extraction is better able to model the upper spectral envelope 
at the perceptually important harmonics, which may include 
important emotion clues. PMVDR cepstral coefficients 
provide improved accuracy over traditional MFCC parameters 
by better tracking the upper envelope of the speech spectrum. 
Unlike MFCC parameters, PMVDRs do not require an explicit 
filterbank analysis of the speech signal. We have found this 
new feature representation provides not only robustness 
against noise in speech recognition, but also higher accuracy 
in clean speech tasks. Here, we propose to test this feature in 
the context of EID. A block diagram of the PMVDR feature 
extraction [16] is shown in Figure 2. 

Figure 2: PMVDR feature extraction process. 

It has been shown that implementing the perceptual scales 
through the use of a first order all-pass system is feasible [18, 
19]. In fact, both Mel and Bark scales are determined by 
changing the only parameter, �, of the system [18]. The fiter, 
H(z), and the phase response, �(�), are given as 
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where � represents the linear frequency while �(�) represents 
the warped frequency. � controls the degree of warping. For 
16 kHz sampled signals, � = 0.42 and 0.55 approximate the 
Mel and Bark scales, respectively.  
      Utilizing direct warping on the FFT power spectrum by 
removing the filterbank processing step leads to the 
preservation of almost all the information in the short-term 
speech spectrum. We can now summarize the remainder of the 
proposed PMVDR algorithm as follows: 
1) Obtain the perceptually warped FFT power spectrum, 
2) Compute the “perceptual autocorrelations” by utilizing 

the IFFT on the warped power spectrum, 
3) Perform a ith order LP analysis via Levinson-Durbin 

recursion using perceptual autocorrelation lags, 
4) Calculate the ith order MVDR spectrum using Eq.(2) from 

the LP coefficients [17], 
5) Obtain the final cepstrum coefficients using the 

straightforward FFT-based approach. 
      Finally, we use 39-dimensional PMVDR features and each 
feature vector contains 12 statics, deltas and delta-deltas along 
with energy, delta and delta-delta energy. We used the same 
windowing and frame skipping as in MFCC before further 
processing. Cepstral mean normalization was also utilized on 
the final feature vectors. Since PMVDR remove the filterbank 
processing, we can avoid the demanding computation and 
noise sensitivity incurred filterbank processing. This is crucial 
to realistic emotion identification system. 
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4.2. Temporal Based Features 

4.2.1. Pitch and Intensity  

Pitch and intensity are tradition supra-segmental features used 
in EID since they can capture temporal characteristics, which 
is one of important characteristics of emotion expression.  

4.2.2. SDC  

The goal to include shifted delta cepstrum (SDC) in the 
context of emotion recognition is to incorporate additional 
temporal information into the feature vector. The SDC is in 
fact k blocks delta cepstrum coefficients [13]. Suppose the 
basic set of cepstrum coefficients, { , j = 1, 2, …, N-1}, 

is available (which can be MFCC or PMVDR statics in this 
study) at frame t, where j is dimension index and N the 
number of cepstrum coefficients. The SDC feature can be 
expressed as 

( )jc t

( ) ( ) ( ) ( ),

0,1, ..., 1
iN j j js t c t iP d c t iP d

i k
� � � � � � �

� �
 (3) 

where d is the time difference between frames for spectra 
computation, P is the time shift between each block, and k is 
the total number of blocks. The SDC coefficients can be 
concatenated with the basic cepstrum coefficients. Thus, we 
can obtain the feature vector as { , j=0, 1, …, N-1; ( )jc t

( ) ( )iN js t� , j=0, 1, …, N-1, i=0, 1, …, k-1}, which is the SDC 

version of features. The computation is illustrated in Figure 3. 

 

Figure 3. Computation of the SDC feature vector at 
frame t for parameters N-d-P-k. The horizontal 
hatched box means the basic cepstrum coefficients, 
diagonal hatched box delta feature vector. 

     The popular parameter configuration of SDC is N-d-P-
k in LID is 7-1-3-7. In our EID task, we fix the optimal 
configuration Dim-1-3-3 through hill-climbing algorithm, 
where Dim is the dimension of basic cepstrum coefficients 
and equals to 11 for both MFCC and PMVDR. 

4.3.  Multiple Stream Feature for Fusion and SDC

5. Experimental Results 

5.1. Results
Now we consider an evaluation of the effectiveness of the 
proposed feature extraction schemes. All experiments are 
based on the same experiment setup as in Sec. 3, and MFCC is 
the feature for the baseline system.  The results are displayed 
in Tab. 2 and Fig. 4. For short, MIP stands for MFCC+ 
Intensity+ Pitch; PIP stands for PMVDR+Intensity+Pitch. 

Table 2. Emotion identification accuracy (%) with 
Different feature front-end scheme 

  Without SDC With SDC 
MFCC 71.6 80.1
MIP 73.8 73.8

PMVDR 73.8 81.9 
PIP 78.3 79.2
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To fully exploit the acoustic information for EID in the feature 
extraction front-end, we can further combine the diverse 
feature streams. We can fuse MFCC and PMVDR, 
respectively, with intensity and pitch to get the MIP and PIP 
sets. In addition, we can also derive the SDC versions of 
MFCC, PMVDR, MIP, and PIP by following Sec. 4.2.2. The 
goal is to compare the contribution of multiple feature streams 
with SDC to EID tasks. For MIP-SDC, we first derive the 
MFCC-SDC, and then we combine it with pitch and intensity 
features. This also applies to PIP-SDC. 
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Figure 4. Bar graph for eight feature extraction front-end 
performance (2 basic features: MFCC, PMVDR; 2 multi-

stream features: MIP, PIP and their SDC version). 

Now we also want to compare the robustness of the 
different feature extraction schemes in noisy condition. We 
introduce 2 kinds of additive Gaussian white noise (10dB and 
0dB) to the EMO-DB database. We summarize the results in 
Fig. 5 and Fig. 6 for all the eight feature extraction schemes. 

5.2. Analysis 
From Table 2 and Figure 4 we can see that both PMVDR and 
its combined version, PIP, perform better than their 
corresponding competitors: MFCC and MIP, respectively. PIP 
is the best one of the four schemes without SDC. When the 
SDC is applied to the previous four feature vectors, greater 
improvements are achieved in basic features, MFCC and 
PMVDR, than in their fused versions. SDC has less 
contribution to the MIP-SDC and PIP-SDC. Although both 
SDC and feature combination schemes supposed to provide 
more temporal cues to help identification tasks, the union of 
SDC and feature stream fusion are inferior to the SDC alone. 
This result may be explained by the redundant information 
from two different temporal features may need to be well 
coordinated and synchronized before using them together.  
      In the noise robustness experiment results (Fig. 5), we see 
PMVDR well outperforms MFCC. Another important finding 
is that the use of SDC increases the performance in noisy 
condition in the four feature extraction schemes (PMVDR, 
MFCC, PIP, and MIP). This can be explained by the cepstrum 
coefficients subtraction operation in (3). Note, the multi-
stream fused feature shows worse robustness than uni-stream 
features. This result may be explained by the temporal 
sensitivity introduced by intensity and pitch features. One 
interesting result is that PMVDR seems to be excited about 
noise and performs better in 10dB condition than in clean 
condition, which deserves further exploration. 
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Figure 5. Robustness performance of the different basic 

feature extraction front-end. 
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Figure 6. Robustness performance of the different multi-

stream feature fusion front-end. 

6. Conclusions
To perform EID on short utterances less than 3 seconds is a 
challenge. An effective feature front-end is an important 
component of a good identification system. The proposed 
PMVDR-SDC feature extraction, which has not been used in 
the context of EID, outperforms the baseline system with an 
absolute gain of 10.3%. When the proposed PMVDR+SDC 
based EID system’s score is linearly combined with that of the 
baseline (best recall rate: 89.5%) in [8], with the weighting 
parameter 0.5 for every individual system, we can get an 
identification accuracy of 91.9%. This partly proved the 
efficiency of the proposed feature extraction from another 
perspective.  
     The improvement may be attributed to PMVDR in that it 
can better approximate the perceptual scales and less sensitive 
to speaker variation. Another advantage introduced by 
PMVDR is its robustness to noise. This result agrees well with 
previous work reported in the context of automatic speech 
recognition [16]. 
      SDC is another efficient way to integrate longer temporal 
information to compensate the basic cepstral coefficient 
features. We show that the use of this feature enhances the 
system performance both in accuracy and robustness. SDC 
works much better in the basic feature sets than in multiple 
feature stream combinations and is simpler than delicate 
feature fusion schemes. These results are concrete steps 
towards building a real life EID system. 

Future exploration on the possibilities of integrating more 
spectral and temporal information may help to build a more 
effective emotion recognition system. We will also conduct 
experiment with spontaneous (non-acted) databases.  
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