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Abstract

 

Index Terms:  Stress Detection, TEO-CB-AutoEnv, P-MIC, 
Speaker Variability. 

1. INTRODUCTION 

Speech production variability is caused by a number of 
factors which include stress caused by cognitive load, physical 
task load, or exposure to background noise resulting in Lombard 
effect. Additional variability factors include accent, dialect, and 
language differences. These diverse factors degrade automatic 
speech system performance as well as human speech perception. 
We note that in adverse noisy, stressful situations where speech 
technology such as speech recognition, speaker verification, or 
dialog systems is used, addressing noise is not a sufficient goal to 
overcome performance loss. In noisy stressful scenarios, even if 
noise could be completely eliminated, the production variability 
brought on by stress, including Lombard effect, has a more 
pronounced impact on speech system performance. 

                                                 
1 This project was funded by AFRL under a subcontract to 
RADC Inc. under FA8750-05-C-0029, and Univ. of Texas at 
Dallas under project EMMITT. 

We define the stress component as the external conditions 
(or environmental conditions) that impact speech production. For 
example, speech under noisy conditions (Lombard effect), 
speech while performing time-constraint tasks or decision-
sensitive tasks like the decisions such as those taken air traffic 
controllers or aircraft pilots (Cognitive stress), or speech while 
under drugs or alcohol use (chemical stress), or speech under 
task environments such as G-force or roller-coaster rides, reflect 
the range of scenarios seen in speech under stress. We designate 
speech under emotion as a separate category since motivation for 
this speech change is generally under the speaker’s control. 

Previous research in this field has concentrated on stress 
classification, stress detection using the SUSAS corpus while 
more recently on other realistic conversational corpora including 
CU-Move (in-vehicle route navigation dialog), SOM (Soldier of 
the Month), FLETC corpus (police/military training scenario), 
and UT-SCOPE (speech under cognitive and physical stress 
conditions)[1-4,11-15].  The comprehensive feature domains for 
research have focused on speech production including: 
fundamental frequency, intensity, duration, formant locations, 
spectral slope, including an extensive range of features such as 
traditional MFCCs features and nonlinear TEO-based features 
[12]. More recent studies have concentrated on the use of voiced 
segment (vowels) and the effect of stress on speech/phoneme 
durations [4,11]. Furthermore, most have concentrated on the use 
of traditional acoustic microphones. For certain applications, 
employing an acoustic mic may hinder human task performance, 
and therefore the use of alternative sensors becomes necessary. 
For example, if an audio sensor can be fitted to the vocal system 
of a fire fighter, law enforcement officer, or a aircraft pilot, it 
will capture not only the speech signal but allow monitoring of 
their physical status including alertness [6,8]. No study / research 
has yet been done to investigate speaker population size in 
formulating effective stress models in conjunction with 
alternative audio sensors, which represent two goals of this study. 
We also consider a combination of previously formulated TEO-
CB-AutoEnv features with traditional MFCC features for stress 
detection.  

The motivation is to have a reliable stress detection system 
which can be adopted as front end of speech systems. The paper 
is organized as follows: first, we describe our corpus 
development for the study, followed by the stress detection 
algorithm using TEO-CB-AutoEnv features. We explore 
experiment analysis related to speaker size in acoustic modeling 
for stress based on close-talk data and P-MIC data. After 
analyzing the results for both, we present the fused system using 
the Adaboost algorithm to leverage the strengths of each method.  
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Speech system scenarios can require the user to perform tasks 
which exert limitations on his speech production/physiology 
thereby causing speaker variability and reduced speech system 
performance. This is speech under stress, which represents a 
speech different from speech under neutral conditions. The stress 
can be physical, cognitive or noise induced (Lombard). In this 
study, the focus is on physical stress, with specific emphasis on: 
(i) number of speakers used for modeling, (ii) alternative audio 
sensors, and (iii) fusion based stress detection using a new audio 
corpus (UT-Scope). We used a GMM framework with our 
previously formulated TEO-CB-AutoEnv features for 
neutral/physical stress detection. Second, stress detection 
performance is investigated for both acoustic and non-acoustic 
(P-MIC) sensors. Evaluations show that effective stress models 
can be obtained with 12 speakers out of a random size of 1-42 
subjects, with stress detection performance of 62.96% (for close-
talking mic) and 66.36% (for P-MIC) respectively. The TEO-
CB-AutoEnv model scores were fused with traditional MFCC 
based stress model scores using the Adaboost algorithm, 
resulting in an improvement in overall system performance of 
9.43% (absolute, for close-talking mic) and 12.99% (absolute, 
for PMIC) respectively. These three advances allow for effective 
stress detection algorithm development with fewer training 
speakers and/or alternative sensors in combined feature domains. 
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This study employs UT-Scope corpus for algorithm development 
and experimental evaluations. For corpus details please refer [16]. 
For each stress condition, the speaker was instructed to repeat the 
sentences prompts, while performing the task. The physical task 
consisted of using a stair-stepper for 10 minutes at a constant 
speed of between 9-11 miles per hour (digital readout display). 
Data is collected with three distinct audio sensors – close-talking 
mic (Shure beta-54), far-field mic (Shure) and P-MIC. It is noted 
that range of the study would be expanded to address gender, 
audio structure (voiced segments/consonants/silence), 
spontaneous or prompted speech, domains (close-talk, pmic or 
far field), native / non-native speakers for stress detection. For 
the purposes here we focus exclusively on prompted speech for 
native female subjects. 

For this study, we employ 42 native female speakers with 
neutral and prompted physical stress conditions. Each speaker 
task segment is divided into 35 speech utterances (2-4 sec), 
resulting in a total of 5880 speech segments (42 spkrs * 35 
utterances per task * 2 tasks * 2 mics). The short duration (2-4 
sec) of the test utterances as well pose a challenge for the 
evaluation.  

Ten-fold cross validation scheme is employed. The results 
reported represent the average over all test utterances. 
Furthermore, the test data is speaker exclusive (speaker used for 
building the models are not used for testing the model) as well as 
utterance exclusive (the TIMIT sentences used to build the model 
are not used for testing the model). The amount of data per 
speaker used to build the model is consistent and same for all the 
speakers in the model. Each stress model was build with the 
same amount of data per speaker. The distribution of test labels is 
1:1 (i.e, number of utterances belonging to stressed speech is 
equal to number of utterances belonging to neutral category). 

3. STRESS DETECTION 

3.1. Algorithm Development  

Physical airflow for speech production can be considered as 
a nonlinear system [10]. By modeling speech production as a 
spring-mass mechanical assembly, it is possible to explore 
fundamental issues of linear and nonlinear oscillations as a part 
of the excitation process [9]. Kaiser showed [9] that energy 
contained in speech could be modeled more accurately using a 
nonlinear operator, which is termed as the Teager Energy 
Operator (TEO),  
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Where [.]ψ  is the discrete-time TEO. 

When a speaker is under stress, a number of factors will 
influence speech production including, air dynamics, muscle 
tension in true and false vocal folds, viscosity of oral tissue for 
airflow, ability and muscle control, movement of vocal tract 
articulators. Hence, TEO and/or TEO derived features will 
represent the change in nonlinear speech by modeling the airflow 
characteristics [1].  

The illustration in Fig. 1 shows a bandpass filtered speech 
(from critical band #9, frequency range 1080-1270Hz) with the 
resulting TEO profile, autocorrelation response, and estimated 
envelope (in the lower plots) for neutral and stressed (angry) 
speech. The reduction in area of the autocorrelation response 
(bottom, right as compared to the bottom, left plot) reflects the 
change in regularity of the excitation under stress. Thus TEO 
derived features will help represent the variations in speech due 
to stress. 

TEO-CB-AutoEnv (Teager Energy Operator – Critical Band 
– Auto Correlation Envelope) feature employs a critical band 
based filterbank to filter the speech signal followed by TEO 
processing. Each filter in the filterbank is a Gabor bandpass filter, 
with effective RMS bandwidth being the corresponding critical 
band. 

 
Fig. 1: TEO-CB-AutoEnv profile with change in stress 

For our study, the TEO-CB-AutoEnv features on a per frame 
basis are extracted by segmenting the TEO profile output into 
20ms frames with 10ms overlap between adjacent frames. M 
normalized TEO autocorrelation envelope area parameters are 
extracted for each time frame (i.e, one for each critical band), 
where M is the total number of critical bands (for this study M = 
18). This is the TEO-CB-AutoEnv feature vector per frame [1].     

Mathematically, TEO-CB-AutoEnv [1] using critical 
bandpass Gabor filters can be illustrated as, 
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where, 

)(ng j , j = 1,2,,18 is the bandpass filter impulse response, 

)(nu j , j = 1,2,,18 is the output of each bandpass filter, 

* denotes the convolution operator, 
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is the autocorrelation function for the ith frame of the 

TEO profile from the jth critical band, )(ni
jψ , j = 1,2,.., M and 

N is the frame length. 

3.2. Model Development 

To investigate the optimal speaker size to reliably represent 
the stress model, stress models are constructed using different 
numbers of speakers. The term speaker size in modeling 
represents the number of speakers used to train the model, and 
not the actual physical size of the speaker. To date, no effort has 
been made to quantify the number of speakers needed to build 
effective stress models. The different speaker combinations for 
this study are: 3, 6, 12, 20, and 35; to construct stress models 
from a pool of 42 native females. 

A GMM framework is used with our previously formulated 
TEO-CB-AutoEnv features, with a 20 ms window size and 10 ms 

2. CORPUS 
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skip rate, with 18-dimen. TEO-CB-AutoEnv features per frame.  
The TEOmix1 is a GMM stress model using a reduced 

number of mixtures, while TEOmix2 uses twice as many 
mixtures than TEOmix1. For example, while training a stress 
model (one model per stress style, hence two stress models, one 
for Neutral speech, and another one for Physical stress speech), 
using 12 speakers, TEOmix1 has 32 mixtures, while TEOmix2 
has 64 mixtures.  Table 1 summarizes the number of mixtures 
used to build the model. 

# spkrs ���� 3 6 12 20 35 

TEOmix1 16 16 32 32 64 

TEOmix2 32 32 64 64 128 

Table 1:  Number of mixtures in Stress GMM 

Table 2 indicates the stress detection performance of the 
TEOmix1 and TEOmix2 for different speaker population size for 
the stress model with data from the close-talk mic. TEO features 
perform above 60% for all speaker conditions, with performance 
slightly improving as number of speakers increases in the stress 
model. 

# spkrs ���� 3 6 12 20 35 

TEOmix1 60.93 61.37 63.71 63.46 63.58 

TEOmix2 60.87 61.47 62.96 63.16 62.70 
Table 2: Stress Detection Performance (%) for Close-talk Mic 

Table 2 indicates that the stress detection performance for 12 
speakers is 63.71% for 32 mixtures and 62.98% at 64 mixtures, 
while 20 speaker, 64 mixtures GMM is 63.46% (better by 0.18% 
over 12 speaker, 64 GMM model), and 35 speaker, 128 mixture 
GMM is 62.67% (better by -0.28% over 12 speaker, 64 GMM 
model). Thus, performance with 12 speakers, 64 GMM model is 
similar to those achieved by using more speakers. Also, the 
difference between the TEOmix1 and TEOmix2 for the same 
speaker size model is negligible, indicating that a reduced 
number of mixtures is acceptable to build the stress models. As 
seen, the performance remains consistent beyond 12 speakers. So, 
no major gain is achieved if we increase the training size 
significantly. As such, it is recommended that a training speaker 
set of 12 with 32 GMM mixtures is acceptable for stress model 
construction. 

3.3. Alternative Sensor  

While a close-talk acoustic mic is effective, it would be 
useful to explore performance with alternative input sensors for 
stress detection. The physiological microphone (P-MIC) was 
developed by Scanlon at US Army Research Lab. with the goal 
to assist for soldier monitoring and research on Sudden Infant 
Death Syndrome[6, 7]. This sensor is about one inch square in 
size with a gel-filled chamber, conical focusing aperture and a 
piezoelectric sensor behind the chamber [6,7] (see Fig. 3).   

As the gel-pad has an impedance similar to that of skin and a 
bandwidth permitting intelligible voice, the vibrations sensed on 
the throat can easily be transferred to the piezoelectric sensor and 
hence to the recording unit. The insulating material covering the 
sensor (not the gel-pad) helps to keep the acoustic (airborne) 
coupling with the ambient background to a minimum. Fig. 3 
shows the placement of P-MIC at the vocal system of a user, held 
closely by the use of a Velcro strap. 

 
Fig. 3: The Physiological Microphone (PMIC) and it’s 

placement around neck 

There are other non-acoustic sensors such as TERC (tuned 
electromagnetic resonator collar), EGG (electroglottalgram), 
GEMS (radar-based glottal electromagnetic sensors), ultrasonic 
or photoelectric sensors, bone- or skin-conduction 
accelerometers which can be used for the purpose, but we choose 
to use the P-MIC for the reasons mentioned above including 
lightweight and ease of use. 

# spkrs ���� 3 6 12 20 35 

TEOmix1 65.11 64.67 66.36 66.15 63.03 

TEOmix2 64.85 64.54 66.91 66.11 62.87 

wrt close +4.18 +3.30 +2.65 +2.69 -0.54 

wrt close +3.98 +3.08 +3.94 +2.95 +0.17 
Table 3: Stress Detection Performance across different 

speaker number in models 

Table 3 summarizes stress detection performance for the P-
MIC sensor. The last two rows compare P-MIC performance 
with that obtained from close-talk mic. For a reduced number of 
speakers in the model, P-MIC is about 3% better than close. 
Even for 35 speakers in the stress model, the performance is 
almost the same, or better with P-MIC sensor. The results 
indicate that P-MIC can be good alternative to a close-talk mic 
for applications in which the close-talk mic may hinder man-
machine interaction, (e.g., emergency response person when 
ambient conditions are noisy). Along with the performance 
shown above, P-MIC has (i) intelligible speech bandwidth, (ii) 
less acoustic coupling with ambient noise, and (iii) an option to 
help analyze the physical status of the user by acquiring heart-
rate and breathing pattern. 

3.4. Combined/Fused System 

The performance of the TEO-CB-AutoEnv features based 
model is close to 63%. TEO-CB-AutoEnv features are believed 
to represent excitation, and regularity / correlation of the signal 
with some spectral dependency, while MFCC represents spectral 
structure, vocal tract information along with spectral tilt. Hence, 
a fusion system based on a machine learning scheme such as the 
Adaboost algorithm could combine scores from TEO-based 
models and MFCC-based models and produce better overall 
performance. 19-dimension MFCCs extracted from 20ms 
window with a skip rate of 100 using HTK toolkit.   Adaboost 
(adaptive boosting) algorithm is an adaptive structure in which a 
weak classifier is repeatedly called, with weights adjusted in a 
way to bias in favor of misclassified instances during the 
previous iterations [5].  

Fusion scheme is implemented for both the mic types on the 
optimal model size (model with 12 speakers) obtained above 
from our experiment. 

Table 4 present the results for the fusion system for close-talk 
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and P-MIC respectively. The fusion scheme with MFCC stress 
model scores and TEOmix2 based model scores gave a 
performance of 72.39%, for close-talking mic data while the 
accuracy of 79.35% with P-MIC data. 

Hence, we see that combining excitation-based TEO-CB-
AutoEnv features with vocal-tract based MFCC features 
improves system performance by +9.43% in close-talk mic in the 
best case, while an improvement of +12.99% absolute occurs for 
P-MIC over the TEO-based system. 

Features Close-mic Pmic 

MFCC 73.61 77.77 
TEOmix1 63.71 66.91 

Fusion1 72.63 79.18 

Improvement (%) +8.92 +12.27 
  

 

MFCC 73.61 77.77 
TEOmix2 62.96 66.36 

Fusion2 72.39 79.35 

Improvement (%) +9.43 +12.99 
Table 4: Performance (% accuracy) for the fused 

system for 12-speaker size model 

5. CONCLUSIONS 

Speech systems generally show performance drop because of 
speaker-stress variability. This study has focused primarily on 
speaker size in modeling along with choice of acoustic sensors to 
improve stressed speech detection. The study focused on having 
a reliable framework for stress detection for physical stress, 
where speakers used a stair-stepper task at a constant speed 
during exercise and repeated sentence prompts. We found the 
stress detection performance (62.96%, close talk mic, 66.36% for 
P-MIC) was consistent with twelve or more training speakers in 
the stress model, for either audio sensor. The study also shows 
the P-MIC to be a very good alternative to the close-talk acoustic 
sensor and can be deployed in situations wherein close-talk mics 
may hinder man-machine interactions, (e.g., fire-fighters, or 
personnel working in hazardous conditions). By fusing TEO-CB-
AutoEnv feature model scores with traditional MFCC features 
using the Adaboost algorithm, the fused system shows an 
improvement of +9.43% (absolute, for close-talking mic) and 
+12.99%  (absolute, for P-MIC), indicating that both features 
model different aspects of speech under stress.  

Future work will focus on effect of scale change (when the 
database involves more number of enrolled speakers, say 100, or 
even more). Even still, for a smaller database or enrollment unit 
or application arena, we feel our results will hold true. Also, in 
future we will extend out study to include other variations like 
impact of non-nativity, different enrollment language, impact of 
age variations, and gender. 

The three advances discussed in this paper will allow for 
effective stress detection algorithm development, with fewer 
training speakers and/or alternative audio sensors. The combined 
feature domains will contribute to improving voice-interaction 
systems. The contributions here establish general yet flexible 
guidelines to build more effective stress detection algorithms for 
new man-machine/voice-interactive domains. 
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