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ABSTRACT 
This paper investigates the relative sensitivity of a GMM- 
based voice verification algorithm to computer voicealtered 
imposters. First, a new trainable speech synthesis algorithm 
based on trajectory models of the speech Line Spectral Re- 
quency (LSF) parameters is presented in order to model 
the spectral characteristics of a target voice. A GMM- 
based speaker verifier is then constructed for the 138 speaker 
YOHO database and shown to have an initial equal-error 
rate (EER) of 1.45% for the case of casual imposter attempts 
using a single combination-lock phrase test. Next, imposter 
voices are automatically altered using the synthesis algo- 
rithm to mimic the customer’s voice. After voice transfor- 
mation, the false acceptance rate is shown to increase from 
1.45% to over 86% if the baseline EER threshold is left un- 
modified. Fhthermore, at a customer false rejection rate of 
25%, the false acceptance rate for the voice-altered imposter 
remains as high as 34.6%. 

1. INTRODUCTION 

There has been considerable interest in voice verification 
technology over the past twenty-five years. Much attention 
has been devoted to methods for better characterization of 
the customer voice or at improving the background model 
for the imposter (e.g., [l, 21). Earlier studies by Rosenberg 
and Sambur [3], for example, investigated the sensitivity of 
voice verification algorithms to professional trained human 
mimics. That study found that the sensitivity to human 
impersonation is relatively low. For example, the false ac- 
ceptance rate was shown to increase from 1% (for casual 
imposters) to only 4% (for professional mimics). In recent 
years, however, several algorithms have been proposed for 
computer-aided voice conversion (e.g., 14, 51). While voice 
conversion approaches continue to mature, it is worth estab- 
lishing the current sensitivity of voice verification systems to 
attack by computer altered imposter voices. Therefore, this 
study first presents a new algorithm for speaker-dependent 
trainable speech synthesis and subsequently evaluates the 
approach by utilizing the algorithm as a preprocessor for 
the imposter voice prior to voice verification. 

2. TRAINABLE SPEECH SYNTHESIS: 
LSF TRAJECTORY MODELING 

Voice conversion techniques attempt to learn a functional 
mapping between an input source voice and desired target 
voice. Trainable synthesis algorithms, on the other hand, 
model the target voice directly. Consequently, algorithms of 
this type are also useful for text-toapeech synthesis applica- 
tions. The proposed trainable synthesis algorithm (referred 
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to as LSF-STM) is based on an extension of the Stochas- 
tic Trajectory Model (STM) approach proposed previous1 
by Gong and Haton for continuous speech recognition [ 6 , d  
Highlights of the LSF-STM algorithm follow, and a detailed 
description of the modeling strategy can be found in [8]. 

2.1. Speech Analysis Method 

The analysis algorithm partitions speech into monophone 
units and extracts trajectory representations of the observed 
feature sequences. Specifically, speech from the target voice 
is first partitioned at the phoneme level by an automatic 
HMM-based time-alignment procedure [9]. Using a pitch 
tracking algorithm, the pre-emphasized input speech is an- 
alyzed pitchsynchronously during voiced excitation and at 
a constant rate during unvoiced excitation [lo]. At each 
analysis instant, a short-time windowed waveform is ex- 
tracted by applying a Hanning window centered around the 
epoch location. A P t h  order LP analysis is then performed 
(P = 10 for 8 kHz speech). The LPC vector is transformed 
into a P-dimensional Line Spectral Requency (LSF) vec- 
tor [U]. Next, in order to characterize the temporal velocity 
of the spectral parameters, delta-LSF (ALSF) parameters 
are computed by a linear regression of the two adjacent LSF 
vectors surrounding the current analysis instant. The P- 
dimensional ALSF vector is appended onto the static LSF 
vector resulting in an observation containing 2P elements. 

An illustration of the feature extraction and trajectory 
encoding process is shown in Fig. 1. Here, the time-axis 
of the pitch-synchronous parameter sequence (Fig. 1B) is 
resampled to Q uniformly spaced points resulting in a final 
Q-state trajectory representation (Fig. 1C . In other words, 
an observation sequence of L frames, 0 = loll 02 , .  . . , OL} is 
mapped to a Q-state trajectory, X = {xI,x~, . . . , XQ}. The 
qth state of the trajectory contains a vector of LSF/ALSFs, 

x9 = [Wl(Q), . . . ,WP(Q)r Awl (d,. . . , A W P ( Q ) J  (1) 
where the j th  element of ~9 is represented as q b ]  and w j  (4) 
represents the j th  LSF. 

Additional information is extracted for each trajectory 
unit to aid in model estimation. For example, the acoustic 
class of the left and right adjacent phones is used to encode 
the phonetic context of each training pattern [12]. Vowels 
are additionally distinguished in the training data by 3 lex- 
ical stress markers (primary, secondary, or no stress). 
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2.2. Synthesis Trajectory Model 

The synthesis model consists of a Q-state trajectory repre- 
sentation. The state count is assumed fixed for all phones 
(Q = 5) and the number of modeled trajectories for each 
phoneme is based on the amount of available training data. 
Each monophone synthesis model is comprised of a set of K 
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Figure 1: Illustration of trajectory characterization. In (A) 
the wideband spectrogram of a hypothetical training pattern IS 
shown. In (B) LSF and ALSF vectors are pitckynchronously 
extracted from the waveform. Finally, in (C) the LSF and ALSF 
vectors are resampled to form a Q-state trajectory. 

LSF/ALSF spectral trajectories where the kth trajectory, 
T k ,  is described by, 

1. Q mean LSF/ALSF vectors, (pqk;  q = 1,. . . , Q),  
2. Q covariance matrices (Cqk). The covariance matrices 

are assumed to be diagonal and thus characterized by a 
set of Q state-dependent LSF/ALSF variance vectors, 
(u&;q = 1, .. ., Qh 

3. The probability of generating an observation from the 
kth modeled trajectory, pk = P(Tk). The probabilities 
follow the sum-to-one constraint, 

Unlike the recognition STM formulated by Gong and Ha- 
ton, the synthesis STM computes a perceptually motivated 
distance between an observed training data trajectory and 
a modeled trajectory. Specifically, the distance between 
the observed trajectory X = {xl , .. . , XQ) and kth modeled 
mean trajectory TI = {plk, . . . , pgk) is given by, 

Pk = I. 

Q P  

d(X,Tk) = ~ ~ ~ C q b ]  (%b1 - k k b l ) 2  + (2) 
q=l  j=1 

Q 2P 

(1-4 C.?U-Pl (%bl - ~ 9 k b I ) ~  * 

q=1 j=P+l 
Here, o (0 a 5 1) is used to adjust the relative contri- 
butions of the static (j = 1,2, . . . ,P) and dynamic (j = 
P + 1,. . . , 2P) LSF parameters in the distortion function. 
The j t h  LSF parameter weighting term for the qth modeled 
state, cqb is based on the Inverse Harmonic Mean (IHM) 
weight d ek ed previously in [13j for speech coding, 

c9 bl (3) 

where q [ O ]  = 0 and %[P+1] = ?r (assuming a P th  or- 
der stable LP analysis). Intuitively, since the weighting is 
inversely related to the distance between neighboring LSF 
parameters, mismatch in spectral peaks are weighed more 
heavily than mismatch in spectral valleys. 

2.3. Clustering Method 

The unit clustering algorithm is based on context-dependent 
monophone units with acoustic context classes previously 
formulated by Ljolje and Riley [14, 121. Given sufficient 
training data, model parameters for triphone trajectories are 
estimated. However, a back-off model set of left-context, 
right-context, and context-independent units are also esti- 
mated. During data clustering, a training set of R observed 
trajectories is extracted from various examples of a particu- 
lar phoneme (Le., Xr for r = 1,. . . , R). The clustering phase 
estimates the underlying parameters of a Q-tate (synthe- 
sis) STM using the Linde-Buzo-Gray (LBG) algorithm with 
iterative centroid splitting, 

1. Initialization : Initialize the number of modeled tra- 
jectories. to 1 (k = 1). For each state (q = 1,. . . ,Q), 
compute the centroid mean vector pqk and diagonal co- 
variance vector U$ from the sample mean and variance 
of the qth state of all available training tokens. 

2. Splitting Phase : For each modeled trajectory (k = 
1..  . . . K). sDlit the traiectorv if a sufficient number of 
t;ai&g 'iocens exist. ?hat &, the mean vector pqk is 
split into pqk(l +e)  and pqk(l - e) where e = O.2uqk. 

3. Distortion Computation : Compute the distance of 
each training token to the current set of modeled tra- 
jectories. That is, for each training token, X', com- 
pute d(Xr, TI) given in Eq. 2 for (k = 1,. . . , K; and 

4. Classification : With d(X',Tk), assign each training 
token to one of K current modeled trajectories such 
that the distortion function is minimized. 

5. Model Update : Update the state-dependent mean 
vectors and variance terms of each modeled trajectory 
using the assigned observations from Step 4. Update 
the trajectory probability @k) as the count of training 
tokens assigned to the kth modeled trajectory divided 
by the total number of training tokens. 

6. Iterate : Repeat Steps 2-5 until a convergence criterion 
is met or terminating iteration count is reached. 

r = 1 ,  ..., R). 

2.4. Model Parameter Based Synthesis 
The synthesis algorithm is pitchsynchronous in nature. 
During processing, the left-context and right-ontext acous- 
tic classes of the adjacent phonemes are determined and the 
most context sensitive model available is selected. Next, 
since the ith phoneme model consists of K(i )  possible pa- 
rameter trajectories, a single trajectory must be selected to 
represent the current phoneme. Following [15], this is ac- 
complished by conducting a Viterbi search for the trajectory 
sequence which minimizes a cost criteria. The best-path 
cost is comprised of a selection w s t  (related to how often 
the trajecto occurs in the training data) and a wncate- 
nation w s t  ?elated to the spectral discontinuity between 
two adjacent synthesis trajectories). Details of the search 
procedure and trajectory selection can be found in [8]. 

Once the appropriate trajectory sequence has been estab- 
lished, synthetic speech can be produced by first convert- 
ing the LSF mean vector representing the qth model state 
into a corresponding LPC vector [ll]. The vocal tract filter 
can then be excited by either a periodic pulse train dur- 
ing voiced speech or noise-like excitation during unvoiced 
speech. Since this simplified excitation model leads to poor 
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synthetic speech quality, we have considered tying an LP 
residual error waveform (extracted from the training data) 
to each trajectory model state in order to further convey 
speaker-dependent excitation. The tied LP residual to each 
modeled state is found by searching the short-time training 
data which “ i i e s  the spectral distortion criterion given 
in Eq. 2. The PSOLA [lo] analysis waveforms from the seg- 
ment with minimal distance are decomposed into source and 
spectral envelope components. The corresponding Q-state 
LP residual sequence is then assigned to model the proto- 
typical excitation for each state in the trajectory. 

3. SPEAKER VERIFICATION EXPERIMENTS 

3.1. YOHO Corpus Partitioning 

The YOHO corpus [16] consists of 138 speakers (106 male, 32 
female) producing short combination-lock phrases consist- 
ing of three doublets (e.g., ”twentysix, fifty-one, eighty- 
seven”). The doublets range in value from 21 to 99 with the 
following restrictions: (i) there are no exact decades (e.g., 
20, 30, 40), (ii) there are no double digits (e.g., 44, 55), and 
(iii) there are no numbers ending in “8” (e.g., 28, 38). Be- 
cause the vocabulary is restricted to doublet sequences, only 
21 phonemes are present within the database. 

Each speaker participated in 4 enrollment sessions consist- 
ing of 24 phrases each (i.e., 4 x 24 = 96 enrollment phrases). 
In addition, there are a total of 10 verification sessions, each 
of which consist of 4 phrases (i.e., 10 x 4 = 40 verification 
phrases). Since trajectory model estimation requires sev- 
eral minutes of training data, the experimental setup used 
in this section differs from the recommended database usage 
described in [16]. Specifically, it is necessary to partition 
the available data into three subsets to ensure open test 
evaluations: (i) data for estimating the LSF-STM synthesis 
units, (ii) data for estimating the GMM parameters for the 
speaker verifier, and (iii) data for imposter and customer tri- 
als. Therefore, the following data partition was considered, 

1. 92 of the 96 enrollment phrases for each speaker are 
used to estimate the LSF-STM synthesis models. 

2. 4 randomly selected enrollment phrases from each 
speaker were set aside for verification experiments. 

3. 40 verification phrases are used to train the GMM- 
based speaker verification algorithm. 

3.2. Baseline Speaker Verification Algorithm 

Speaker verification can be described in terms of a two- 
hypothesis problem in which the verifier must decide 
whether the speech presented to the system was produced by 
the customer or by an imposter. Given an input sequence of 
T short-time speech feature vectors, 0 = {OI, 0 2 , .  . . , OT}, 
the hypothesis can be tested using the likehhood ratio, 

(4) 

where X, and AE represent models for the customer and im- 
poster respectively. Furthermore, the log-likelihood ratio 
can be expressed as, 

logA(o)=logP(O IX) - logp(o  I & ) .  (5) 
During processing the log-likelihood ratio is compared with 
a threshold, P, in order to decide hypothesis 310 or 311. 
For customer distributions modeled by GMMs, the obser- 
vations are assumed statistically independent, therefore the 

log-likelihood of the observation sequence to the customer 
model is given by, 

m 

The imposter model, &, in this study is comprised of a 
set of B background speaker models. The models include 
the B/2 nearest background speakers as well as B/2 far- 
thest background speakers. Thus, each speaker enrolled in 
the system has a dedicated background model set. The nor- 
malizing term in Eq. 5 is then given by the log of the average 
likelihood across each of the background speaker models [l], _ _  

B 

logp (0 I A,) = log { $ CP (0 I Ab)} . (7) 
b-1 

The baseline speaker verifier was constructed in the fol- 
lowing manner. First, 40 combination lock phrases found 
in the verification portion of the database were used to es- 
timate a 32 mixture GMM for each customer (138 total). 
Observations consisting of 19 MFCCs were calculated ev- 
ery 10 msec and frames from silence regions were automat- 
ically discarded using an energy-based speech activity de- 
tector. Second, the background speaker model set was con- 
structed by submitting the verification phrases from each 
customer to the 137 remaining GMMs. The 5 models with 
the largest log-probability and 5 models with the smallest 
log-probability were chosen as the near and far background 
set. Therefore, each customer score is normalized using Eq. 7 
by (B = 10) background speakers. 

Simulations were performed to find the distribution of 
the log-likelihood ratio output for each hypothesis (311,310). 
Considering the customer case, 4 enrollment combination- 
lock phrases were submitted to the corresponding cus- 
tomer model. Since there are 138 customers, there are 

Likewise, 4 enrollment phrases from the remaining speak- 
ers in the database were used for imposter trials. Note 
that background speakers are excluded as imposters as sug- 
ested by Campbell [16]. Consequently, there are a total of f 138 x 127 x 4 = 70,104) imposter tests for hypothesis 310. 
Next, a decision threshold P, was k e d  to reveal a trade- 
off between false acceptance and false rejection errors. The 
baseline system achieved an EER of 1.45% (p = 1.56) for 
tests consisting of a single combination-lock phrase. 

3.3. Voice-Altered Imposter Trials 

While the false acceptance rate of the baseline system is 
low (1.45%), it is interesting to now consider the sensitiv- 
ity of the speaker d e r  to imposters whose speech has 
been transformed into the customer’s voice characteristics 
prior to processing. To simulate this scenario, the proposed 
LSF-STM trajectory synthesis technique is used. During 
voice transformation, each combination-lock phrase is au- 
tomatically segmented using an HMM-based segmenter (91. 
The phoneme label sequence is obtained using a dictionary 
lookup for each digit doublet. The resulting phone sequence 
is submitted to the LSF-STM synthesis algorithm and a se- 
quence of context-dependent LSF synthesis trajectories is 
determined. The input FO contour is left unmodified, how- 
ever the median FO of the imposter is adjusted to match the 
median FO of the customer’s voice using the PSOLA method. 

Fig. 2 illustrates histogram plots of log-A(0) under the 
different hypothesis scenarios. For Fig. 2A, the distribution 
of scores under hypothesis ‘Hl (customer access) is shown. 
Here, scores range in value &om [+1,+6] while exhibiting an 
approximately Gaussian shaped distribution about the mean ’ 

(138 x 4 = 552) values of log-A(O) under hypothesis 311. 
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value (approximately +3). The EER threshold (p = 1.56) 
is also shown as a solid line. Next, in Fig. 2B, the dis- 
tribution of the log-likelihood scores under hypothesis ‘U0 
(imposter access) are shown. Here, the majority of casual 
imposter attempts result in scores below the EER thresh- 
old suggesting a low false acceptance rate. The tail of the 
distribution is long resulting in scores ranging from -10 to 
values slightly greater than +2. The peak of the imposter 
distribution occurs at approximately +0.4 which is far below 
the EER threshold. Finally, in Fig. 2C, it is clear that voice 
alteration using LSF-STM synthesis impacts the verifier in 
3 ways, 
1. The overall peak in the imposter distribution is shifted 

from +0.4 to +2.2, a value above the EER threshold. 
2. The range of imposter scores is reduced from approxi- 

mately [-10,+2] to [0,+5]. The new distribution over- 
laps the customers’ distribution under hypothesis Xl. 

3. If the EER threshold is left unmodified, a substantial 
increase in false acceptance rate is noted. In fact, 86.1% 
of the altered-voice imposters using the LSF-STM syn- 
thesis scheme are falsely accepted by the verifier. 

By increasing the decision threshold (p),  a trade-off in 
customer false rejection versus imposter false acceptance can 
be determined. Table 1 summarizes the system performance 
for customer false rejection rates of 5%, lo%, 25%, and 50%. 
For example, at a false rejection rate of 25% (i.e., ,f? = 2.53), 
0.04% of the casual imposters and 34.6% of the voice-altered 
imposters are falsely accepted by the verifier. From this Ta- 
ble, it is clear that simply increasing the decision threshold 
yields an unacceptable customer false rejection rate. 

2.53 
50% 3.00 

Table 1: Imposter false acceptance (FA %) for a given customer 
false rejection (FR %) rate. System performance is shown for 
(A) false acceptance for casual imposter attempts, and (6) 
false acceptance voicealtered imposter attempts. 

4. DISCUSSION AND CONCLUSIONS 

This paper has presented a new approach for trainable 
speech synthesis based on trajectory modeling of LSF pa- 
rameters. A GMM-based verification algorithm was then 
constructed and shown to exhibit an EER 1.45% for casual 
imposter attempts. When the imposter voices are altered us- 
ing the proposed synthesis algorithm, the false acceptance 
rate increases to 86% if the original EER decision thresh- 
old is left unmodified. However, it is worth considering the 
circumstances in which the results were obtained. First, syn- 
thesis models were estimated from phrases spoken by each 
customer. Therefore the domains of the training and testing 
material were matched. Furthermore, GMM-based verifiers 
lack the capability of confuming that the correct digit se- 
quence was spoken by the imposter. However, we point out 
that the intelligibility of the synthetic speech digit sequences 
was found to be 99.5% in a formal listener evaluation. Fur- 
thermore, an additional listener evaluation of the processed 
synthetic speech c~nfirms the similarity of the altered im- 
poster voice to the customer voice (details can be found 
in [8]). Currently, we are considering conducting a more 
extensive evaluation using the NIST-SRE (1998) corpus. 
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Figure 2: Histogram plot of log-likelihood ratio scores, A(O), 
for (A) hypothesis N1: customer access, (6) hypothesis 
NO: casual imposter attempts, and for (C) hypothesis NO: 
voice-altered imposter attempts. 
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