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ABSTRACT

This study proposes a new set of feature parameters based
on wavelet packet transform analysis of the speech sig-
nal. The new speech features are named subband based
cepstral parameters (SBC) and wavelet packet parame-
ters (WPP). The ability of each parameter set to capture
speaker identity conveyed in the speech signal is com-
pared to the widely used Mel-frequency cepstral coeffi-
cents (MFCC). The proposed parametrization methods
are shown to achieve 48% and 67% reduction in relative
error over MFCC for 630 and 168 speakers, respectively
using the TIMIT (downsampled to 8 kHz) database.

1. INTRODUCTION

The problem of speaker identification can be divided into
two major stages. The first is feature extraction and the
second is classification of speakers based on the extracted
features. Although these two components may appear to
be independent, they are highly coupled. To be effective,
the features should be capable of separating the speakers
from each other in its space, whereas the classifier should
be tuned to differentiate the different classes in a given
feature space.

Recently, extensive research has been conducted on the
problem of speaker identification (ID). The identification
results can be as high as 99.56%(3] for the noise free TIMIT
(sampled at 16 kHz) database. However, for the same data
set transmitted over telephone channels, the identification
accuracy is reduced to 60% [3]. In fact, in practice, the
major applications for speaker identification such as infor-
mation retrieval from large speech databases, automatic
sorting of voice mail messages, telephone based financial
transactions and multimedia applications usually require
speech to be transmitted over a noisy channel. Hence, one
of the biggest obstacles in operating speech processing sys-
tems in real environments is the presence of background
and convolutional channel noise. One way to improve the
performance of speech processing systems is to formulate
parameters which are less sensitive to such environments.

Although the MFCC parameters achieve high ID rates
over 16 kHz sampled TIMIT, the results are not as good
for the telephone channel version. Furthermore, the dra-
matic degradation in ID rates over telephone speech can
be partly attributed to the MFCCs which are not immune
to noise. These reasons motivated us to formulate two
new features entitled subband based cepstral parameters
(SBC), and wavelet packet transform parameters (WPP),
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which allow embedded denoising or enhancement in the
feature extraction stage rather than filtering the speech
for improved speaker identification.

2. NEW FEATURE EXTRACTION

2.1 Subband Decomposition via Wavelet Packets

A detailed discussion of wavelet analysis is beyond the
scope of this paper, and we therefore refer interested read-
ers to a more complete discussion presented in [9]. In con-
tinous time, the Wavelet Transform is defined as the inner
product of a signal z(t) with a collection of wavelet func-
tions 94 »(t) in which the wavelet functions are scaled (by
a) and translated (by b) versions of the prototype wavelet:

P(t).
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Discrete time implementation of wavelets and wavelet
packets are based on the iteration of two channel filter-
banks which are subject to certain constraints, such as low
pass and/or high pass branches on each level followed by
a subsampling-by-two unit. Unlike the wavelet transform
which is obtained by iterating on the low pass branch,
the filterbank tree can be iterated on either branch at
any level, resulting in a tree structured filterbank which
we call a wavelet packet filterbank tree. The resultant
transform creates a division of the frequency domain that
represents the signal optimally with respect to the applied
metric while allowing perfect reconstruction of the origi-
nal signal. Because of the nature of the analysis in the
frequency domain, it is also called subband decomposi-
tion where subbands are determined by a wavelet packet
filterbank tree.

In this paper, we consider a 24 subband wavelet packet
tree which approximates the Mel-scale frequency division
as shown in Fig. 1. The wavelet packet tree is constructed
by cascading the basic two channel filterbank into various
levels.

2.2 Wavelet Packet Transform Based Feature
Extraction Procedure

Here, speech is assumed to be sampled at 8 kHz. A frame
size of 24 msec with a 10 msec skip rate is used to derive
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Figure 1:  24-subband wavelet packet tree.
Filters 1 2 3 4 5 6
MFCC 28 89 154 224 300 383
WPP 31 94 156 219 281 344
Filters 7 B 9 10 11 12

MFCC 472 569 674 787 910 1043
WPP 406 469 563 688 813 938

Filters 13 14 15 16 17 18
MFCC 1187 1343 1512 1694 1892 2106
WPP 1063 1188 1313 1438 1563 1688
Filters 19 20 21 22 23 24
MFCC 2338 2589 2860 3154 3472 3817
WPP 1875 2125 2375 2750 3250 3750

Table 1: Comparison of center frequency (Hz) of
24 uniformly spaced (in mel-scale) MFCC filter-
banks and WPP subbands

the SBC and WPP features, whereas a 20 msec frame with
the same skip rate is used to derive the MFCCs. We have
used the same configuration proposed in [3] for MFCC.
The reason for using a 24 msec window for WPP is due to
our analysis which requires the total number of samples
in the frame to be divisible by 64 while having compa-
rable frame sizes for all parameters under consideration.
Next, the speech frame is Hamming windowed and preem-
phesized. We found after some experimentation that the
tree given in Fig. 1, gave the best overall result among
a reasonable set of wavelet packet trees. The resulting
subband divisions finely emphasize frequencies between 0-
500Hz which normally contain large portions of the signal
energy. Equal partitions are used between 500-1750Hz
where each subband width is 125 Hz. The remaining fre-
quency axis is virtually the same as a Mel-scale division.
Therefore, the proposed tree assigns more subbands be-
tween low to mid frequencies while keeping roughly a log-
like distribution of the subbands across frequency. In Ta-
ble 1, the center frequencies of wavelet packet subbands,
and the 24 filters distributed uniformly in Mel-scale are
given for comparison purposes. The wavelet packet trans-

form is computed for the given wavelet tree, which re-
sults in a sequence of subband signals or equivalently the
wavelet packet transform coefficients, at the leaves of the
tree. In effect, each of these subband signals contains only
restricted frequency information due to inherent bandpass
filtering. The complete block diagram for computation of
SBC and Wavelet Packet Parameters (WPP) are given in
Fig. 2. The energy of the sub-signals for each subband
is computed and then scaled by the number of transform
coefficients in that subband. The subband signal energies
are computed for each frame as,
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N;
Wyx : wavelet packet transform of signal z,
i : subband frequency index (i = 1,2...L),
N; : number of coefficients in the i** subband.
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(3)

The analysis steps up to this point are common to the
derivation of both SBC and WPP. Since we use the or-
thogonal filters corresponding to Daubechies’s orthogonal
wavelets [6] in the wavelet packet transform, energy is pre-
served in the transformation.

2.3 Subband based Cepstral Parameters (SBC)

As in MFCCs, the derivation of parameters is performed
in two stages. The first stage is the computation filterbank
energies and the second stage would be the decorrelation
of the log filterbank energies with a DCT to obtain the
MFCC. The derivation of the SBC parameters follows the
same process except that the filterbank energies are de-
rived using the wavelet packet transform rather than the
short-time Fourier transform. It will be shown that these
features outperform MFCCs. We attribute this to the
computation of subband signals with smooth filters. In
the computation of the MFCC, the spectrum of the sig-
nal is filtered with either triangular or raised cosine type
filters to obtain filterbank energies. However, the filter-
bank between 0-1 kHz are uniformly arranged with a 100
Hz bandwidth. For a frame size of 20 msec, the frequency
resolution is 31 Hz. For MFCC, we partition the spectrum
between 0-1 kHz to obtain 10 uniformly spaced frequency
bands. Energy estimates within each of these bands are
obtained by multiplying the spectrum with a window of
3 sample points only. This filter is very coarse regard-
less of whether it is triangular or a raised cosine. On the
other hand, the effect of filtering as a result of tracing
through the low-pass/high-pass branches of the wavelet
packet tree, is much smoother due to the balance in time-
frequency representation. We believe that this will con-
tribute to improved speech/speaker characterization over
MFCC. These parameters have been shown to be effective
for speech recognition in car noise[10] and for classifica-
tion of stressed speech [1]. SBC parameters are derived
from subband energies by applying the Discrete Cosine
Transformation transformation:

L .
SBC(n) = Zlog S; cos <WW> , n 1,....n’
i=1
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where n'is the number of SBC parameters and L is the
total number of frequency bands. Because of the similarity
to root-cepstral [8] analysis, they are termed as subband
based cepstral parameters.

2.4 Wavelet Packet Parameters (WPP)

Essentially, the DCT step in the calculation of the MFCC
features, decorrelates the filterbank energies. It has been
shown [7] however that the wavelet transform is a bet-
ter decorrelator in coding applications. We know that the
Gaussian mixture densities typically used to model speak-
ers for ID, have diagonal covariances assuming that the
components of the feature vector are independent of each
other. The degree to which this assumption is satisfied
partly depends on the transform which makes the decor-
relation. We hypothesize that using a wavelet transform
instead of the DCT may satisfy the assumption better,
which in turn should lead to improved speaker identifica-
tion. In order to verify this hypothesis, we consider the
following scenario which is based on the idea that if fea-
tures are well decorrelated, the energy contributed by the
off-diagonal terms in the autocovariance matrix should be
smaller. We have derived the same number of features
from a fixed set of sentences each of which is approxi-
mately 3 seconds in duration. The same frame size and
skip rate are used to align both features for a fair compari-
son. Furthermore, the feature energy for each frame is nor-
malized to 1.0 to eliminate the differences resulting from
a different scaling of the parameters. The autocovariance
matrix R(n,m) is formed over time for each frame and
the absolute values of the off-diagonal terms are summed
to obtain an accumulated measure. The larger the off-
diagonal elements the higher the correlation between the
components of the feature vector. Here, we define the
term 7 based on the autocovariance of the feature vectors,
which denotes the total correlation for both wavelet and
discrete cosine transforms.

R = E[XX"] (5)
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where 7.+ denotes the the total correlation between com-
ponents of the feature vector over the entire speech data.
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Block diagram for Wavelet Packet Transform based feature extraction procudure.

R(n,m) is the autocovariance matrix of the feature vec-
tor X, N is the feature length and 7' is total number of
frames.

The total correlation term for the DCT used for SBC,
Tdet, is calculated in a similar manner. For all speech
evaluated, we consistently observed that 7, < 14c¢. This
result confirms our hypothesis that the wavelet transform
decorrelates the subband log energies better than a DCT.

WPPs are derived by taking the wavelet transform of
the log-subband energies. The wavelet parameters a and
bin Eq. 4 are continuous. For discrete implementation
one often samples ¢45(t) using a = ao™ and b = nboao™,

Ymn(t) = a0 " *p(a0 "t — nbo) (7)

where m,n € Z. Therefore, the WPP which are the
wavelet coefficients of the subband energies are obtained

by,
m/2
WPP(m,n) = ai /log Siv(ao™ ™t — mby)dt. (8)
0

It has been shown [6, 9] that multirate filters arranged
in a dyadic tree can be used to compute the coefficents
W PP(m,n). In our case, we used Daubechies’ 4 tap filters
to compute a 3 level wavelet transform.

2.5 Mel-Frequency Cepstral Parameters (MFCC)

A Mel is a unit of measure of perceived pitch or frequency
of a tone. The Mel-scale is therefore a mapping between
the real frequency scale (Hz) and the perceived frequency
scale (mels). The mapping is virtually linear below 1 kHz
and logarithmic above. Extensive research on MFCCs in-
dicate that they are less sensitive to noise compared to
other currently used parameters and provide better recog-
nition/identification performance than other parametriza-
tion schemes [5, 2]. Although the triangular filterbank is
used in this study, other windows such as Hamming or
Hanning type could be used. After windowing the in-
coming speech signal, the Discrete Fourier Transform of
the the frame of speech is taken. A magnitude spectrum
is computed and frequency warped in order to transform
the spectrum into Mel frequency in which the filterbank is
uniformly spaced. The filters multiplied with the magni-
tude spectra of the frame and log energies are computed.
Next, the discrete time cosine transform of the filterbank
log energies are taken to find the MFCCs. In this study,
20 filterbanks and 19 MFCCs are used for the simulations.



3. THE SPEAKER IDENTIFICATION
SYSTEM

2.1 The Gaussian Mixture Model

In this study, a Gaussian Mixture Model approach pro-
posed in [2] is used where speakers are modeled as a mix-
ture of Gaussian densities. The use of this model is moti-
vated by the interpretation that the Gaussian components
represent some general speaker-dependent spectral shapes
and the capability of Gaussian mixtures to model arbi-
trary densities.

The Gausssian Mixture Model is a linear combination of
M Gaussian mixture densities, and given by the equation,

pE[XN) = pibi() 9)

where Z is a D-dimensional random vector, b;(Z), i =
1,.., M are the component densities and p;, ¢ = 1,.., M
are the mixture weights. Each compomnent density is a
D-dimensional Gaussian function of the form

where /i denotes the mean vector and ) denotes the co-
variance matrix. The mixture weights satisfy the law of
total probability, Zf\ilpi = 1. The major advantage of
this representation of speaker models is the mathematical
tractibility where the complete Gaussian mixture density
is represented by only the mean vectors, covariance ma-
trices and mixture weights from all component densities.

4. EVALUATIONS

The simulations are conducted on the TIMIT database.
TIMIT contains 6300 sentences spoken by 630 speakers
sampling the regional accents of U.S. Although TIMIT is
sampled at 16 kHz, we downsampled to 8 kHz to simulate
more realistic environments. In the speaker ID system,
we used 32 mixtures with diagonal covariance matrices to
model each speaker. The models are trained by using the
Expectation Maximization algorithm (EM) [3]. The goal
of the EM algorithm is to start with an initial model,
), and iteratively estimate a new model X', such that
p(X | X') > p(X | ). For training, 8 unique sentences
(approximately 24 seconds) are used, whereas, for test-
ing 2 unique 3 second sentences are used separately. Al-
though the complete database consists of 630 speakers, we
also evaluate the parameters on a TIMIT test speaker set
consisting of 168 speakers. As a result we have 1260 and
336 test sentences for 630 and 168 speakers, respectively.
Wavelet packet transform is implemented by using a 32™¢
order Daubechies’ orthogonal filters. The simulation re-
sults with 3 seconds of testing data on 630 speakers for
MFCC, SBC and WPP parameters are 94.8%, 96.0% and
97.3%, respectively. WPP and SBC have achieved 98.8%
and 98.5% respectively, for 168 speakers. Although both
WPP and SBC performed equally well on a limited test
set (168 speakers generating 336 testing tokens), WPP

| SPEAKER ID SCORES (%) |

| TESTING [ MFCC | SBC | WPP ]
168 Speakers 96.4 98.5 98.8
# of miss 12 5 4
630 Speakers 94.8 96.0 97.3
# of miss 66 50 34

Table 2: Speaker ID Scores of Each Feature

outperformed SBC on the full test set. MFCC achieved
96.4% for 168 speakers, which is better than the 95.2%
reported in [4]. WPP achieved a 48% and 67% reduction
in relative error over MFCC for 630 and 168 speakers,
respectively. Table 2 summarizes the final results for all
three parameters. We have observed that these features
are better suited to speaker identification than MFCC over
the TIMIT database.

5. SUMMARY

A new feature set based on the wavelet packet transform of
the speech signal is proposed with application to speaker
identification. Two features entitled Subband Based Cep-
stral (SBC) parameters and Wavelet Packet Parameters
(WPP) were derived. We have shown that the accumu-
lated correlation measure for energies using wavelet trans-
form is less than that for the discrete cosine transform.
The simulation results indicate that the new parameters
are able to outperform MFCC over an 8 kHz version of
the TIMIT database. We are presently exploring the per-
formance of these features for other databases such as
NIMIT (telephone channel) and YOHO (session to ses-
sion variability) by utilizing the denoising techniques and
other signal enhancement techniques on the features itself
in the wavelet domain.
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