
WAVELET PACKET TRANSFORM FEATURES WITH APPLICATION TOSPEAKER IDENTIFICATIONRuhi Sarikaya, Bryan L. Pellom and John H. L. HansenRobust Speech Processing LaboratoryDuke University, Box 90291, Durham, NC 27708-0291http://www.ee.duke.edu/Research/Speech ruhi@ee.duke.edu bp@ee.duke.edu jhlh@ee.dukeABSTRACTThis study proposes a new set of feature parameters basedon wavelet packet transform analysis of the speech sig-nal. The new speech features are named subband basedcepstral parameters (SBC) and wavelet packet parame-ters (WPP). The ability of each parameter set to capturespeaker identity conveyed in the speech signal is com-pared to the widely used Mel-frequency cepstral coe�-cents (MFCC). The proposed parametrization methodsare shown to achieve 48% and 67% reduction in relativeerror over MFCC for 630 and 168 speakers, respectivelyusing the TIMIT (downsampled to 8 kHz) database.1. INTRODUCTIONThe problem of speaker identi�cation can be divided intotwo major stages. The �rst is feature extraction and thesecond is classi�cation of speakers based on the extractedfeatures. Although these two components may appear tobe independent, they are highly coupled. To be e�ective,the features should be capable of separating the speakersfrom each other in its space, whereas the classi�er shouldbe tuned to di�erentiate the di�erent classes in a givenfeature space.Recently, extensive research has been conducted on theproblem of speaker identi�cation (ID). The identi�cationresults can be as high as 99.5%[3] for the noise free TIMIT(sampled at 16 kHz) database. However, for the same dataset transmitted over telephone channels, the identi�cationaccuracy is reduced to 60% [3]. In fact, in practice, themajor applications for speaker identi�cation such as infor-mation retrieval from large speech databases, automaticsorting of voice mail messages, telephone based �nancialtransactions and multimedia applications usually requirespeech to be transmitted over a noisy channel. Hence, oneof the biggest obstacles in operating speech processing sys-tems in real environments is the presence of backgroundand convolutional channel noise. One way to improve theperformance of speech processing systems is to formulateparameters which are less sensitive to such environments.Although the MFCC parameters achieve high ID ratesover 16 kHz sampled TIMIT, the results are not as goodfor the telephone channel version. Furthermore, the dra-matic degradation in ID rates over telephone speech canbe partly attributed to the MFCCs which are not immuneto noise. These reasons motivated us to formulate twonew features entitled subband based cepstral parameters(SBC), and wavelet packet transform parameters (WPP),

which allow embedded denoising or enhancement in thefeature extraction stage rather than �ltering the speechfor improved speaker identi�cation.2. NEW FEATURE EXTRACTION2.1 Subband Decomposition via Wavelet PacketsA detailed discussion of wavelet analysis is beyond thescope of this paper, and we therefore refer interested read-ers to a more complete discussion presented in [9]. In con-tinous time, the Wavelet Transform is de�ned as the innerproduct of a signal x(t) with a collection of wavelet func-tions  a;b(t) in which the wavelet functions are scaled (bya) and translated (by b) versions of the prototype wavelet: (t).  a;b(t) =  � t� ba � (1)W x(a; b) = 1pa Z +1�1 x(t) � � t� ba �dt (2)Discrete time implementation of wavelets and waveletpackets are based on the iteration of two channel �lter-banks which are subject to certain constraints, such as lowpass and/or high pass branches on each level followed bya subsampling-by-two unit. Unlike the wavelet transformwhich is obtained by iterating on the low pass branch,the �lterbank tree can be iterated on either branch atany level, resulting in a tree structured �lterbank whichwe call a wavelet packet �lterbank tree. The resultanttransform creates a division of the frequency domain thatrepresents the signal optimally with respect to the appliedmetric while allowing perfect reconstruction of the origi-nal signal. Because of the nature of the analysis in thefrequency domain, it is also called subband decomposi-tion where subbands are determined by a wavelet packet�lterbank tree.In this paper, we consider a 24 subband wavelet packettree which approximates the Mel-scale frequency divisionas shown in Fig. 1. The wavelet packet tree is constructedby cascading the basic two channel �lterbank into variouslevels.2.2 Wavelet Packet Transform Based FeatureExtraction ProcedureHere, speech is assumed to be sampled at 8 kHz. A framesize of 24 msec with a 10 msec skip rate is used to derive
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Figure 1: 24-subband wavelet packet tree.Filters 1 2 3 4 5 6MFCC 28 89 154 224 300 383WPP 31 94 156 219 281 344Filters 7 8 9 10 11 12MFCC 472 569 674 787 910 1043WPP 406 469 563 688 813 938Filters 13 14 15 16 17 18MFCC 1187 1343 1512 1694 1892 2106WPP 1063 1188 1313 1438 1563 1688Filters 19 20 21 22 23 24MFCC 2338 2589 2860 3154 3472 3817WPP 1875 2125 2375 2750 3250 3750Table 1: Comparison of center frequency (Hz) of24 uniformly spaced (in mel-scale) MFCC �lter-banks and WPP subbandsthe SBC and WPP features, whereas a 20 msec frame withthe same skip rate is used to derive the MFCCs. We haveused the same con�guration proposed in [3] for MFCC.The reason for using a 24 msec window for WPP is due toour analysis which requires the total number of samplesin the frame to be divisible by 64 while having compa-rable frame sizes for all parameters under consideration.Next, the speech frame is Hamming windowed and preem-phesized. We found after some experimentation that thetree given in Fig. 1, gave the best overall result amonga reasonable set of wavelet packet trees. The resultingsubband divisions �nely emphasize frequencies between 0-500Hz which normally contain large portions of the signalenergy. Equal partitions are used between 500-1750Hzwhere each subband width is 125 Hz. The remaining fre-quency axis is virtually the same as a Mel-scale division.Therefore, the proposed tree assigns more subbands be-tween low to mid frequencies while keeping roughly a log-like distribution of the subbands across frequency. In Ta-ble 1, the center frequencies of wavelet packet subbands,and the 24 �lters distributed uniformly in Mel-scale aregiven for comparison purposes. The wavelet packet trans-

form is computed for the given wavelet tree, which re-sults in a sequence of subband signals or equivalently thewavelet packet transform coe�cients, at the leaves of thetree. In e�ect, each of these subband signals contains onlyrestricted frequency information due to inherent bandpass�ltering. The complete block diagram for computation ofSBC and Wavelet Packet Parameters (WPP) are given inFig. 2. The energy of the sub-signals for each subbandis computed and then scaled by the number of transformcoe�cients in that subband. The subband signal energiesare computed for each frame as,Si = Pm�i[(W x)(i);m)]2Ni (3)W x : wavelet packet transform of signal x,i : subband frequency index (i = 1; 2:::L),Ni : number of coe�cients in the ith subband.The analysis steps up to this point are common to thederivation of both SBC and WPP. Since we use the or-thogonal �lters corresponding to Daubechies's orthogonalwavelets [6] in the wavelet packet transform, energy is pre-served in the transformation.2.3 Subband based Cepstral Parameters (SBC)As in MFCCs, the derivation of parameters is performedin two stages. The �rst stage is the computation �lterbankenergies and the second stage would be the decorrelationof the log �lterbank energies with a DCT to obtain theMFCC. The derivation of the SBC parameters follows thesame process except that the �lterbank energies are de-rived using the wavelet packet transform rather than theshort-time Fourier transform. It will be shown that thesefeatures outperform MFCCs. We attribute this to thecomputation of subband signals with smooth �lters. Inthe computation of the MFCC, the spectrum of the sig-nal is �ltered with either triangular or raised cosine type�lters to obtain �lterbank energies. However, the �lter-bank between 0-1 kHz are uniformly arranged with a 100Hz bandwidth. For a frame size of 20 msec, the frequencyresolution is 31 Hz. For MFCC, we partition the spectrumbetween 0-1 kHz to obtain 10 uniformly spaced frequencybands. Energy estimates within each of these bands areobtained by multiplying the spectrum with a window of3 sample points only. This �lter is very coarse regard-less of whether it is triangular or a raised cosine. On theother hand, the e�ect of �ltering as a result of tracingthrough the low-pass/high-pass branches of the waveletpacket tree, is much smoother due to the balance in time-frequency representation. We believe that this will con-tribute to improved speech/speaker characterization overMFCC. These parameters have been shown to be e�ectivefor speech recognition in car noise[10] and for classi�ca-tion of stressed speech [1]. SBC parameters are derivedfrom subband energies by applying the Discrete CosineTransformation transformation:SBC(n) = LXi=1 log Si cos�n(i� 0:5)L �� ; n = 1; ::::n0(4)
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Figure 2: Block diagram for Wavelet Packet Transform based feature extraction procudure.where n0 is the number of SBC parameters and L is thetotal number of frequency bands. Because of the similarityto root-cepstral [8] analysis, they are termed as subbandbased cepstral parameters.2.4 Wavelet Packet Parameters (WPP)Essentially, the DCT step in the calculation of the MFCCfeatures, decorrelates the �lterbank energies. It has beenshown [7] however that the wavelet transform is a bet-ter decorrelator in coding applications. We know that theGaussian mixture densities typically used to model speak-ers for ID, have diagonal covariances assuming that thecomponents of the feature vector are independent of eachother. The degree to which this assumption is satis�edpartly depends on the transform which makes the decor-relation. We hypothesize that using a wavelet transforminstead of the DCT may satisfy the assumption better,which in turn should lead to improved speaker identi�ca-tion. In order to verify this hypothesis, we consider thefollowing scenario which is based on the idea that if fea-tures are well decorrelated, the energy contributed by theo�-diagonal terms in the autocovariance matrix should besmaller. We have derived the same number of featuresfrom a �xed set of sentences each of which is approxi-mately 3 seconds in duration. The same frame size andskip rate are used to align both features for a fair compari-son. Furthermore, the feature energy for each frame is nor-malized to 1.0 to eliminate the di�erences resulting froma di�erent scaling of the parameters. The autocovariancematrix R(n;m) is formed over time for each frame andthe absolute values of the o�-diagonal terms are summedto obtain an accumulated measure. The larger the o�-diagonal elements the higher the correlation between thecomponents of the feature vector. Here, we de�ne theterm � based on the autocovariance of the feature vectors,which denotes the total correlation for both wavelet anddiscrete cosine transforms.R = E[XXT ] (5)�wt = t=TXt=1 NXm=1 NXn=1n 6=m jRwt(n;m)j (6)where �wt denotes the the total correlation between com-ponents of the feature vector over the entire speech data.

R(n;m) is the autocovariance matrix of the feature vec-tor X, N is the feature length and T is total number offrames.The total correlation term for the DCT used for SBC,�dct, is calculated in a similar manner. For all speechevaluated, we consistently observed that �wt < �dct. Thisresult con�rms our hypothesis that the wavelet transformdecorrelates the subband log energies better than a DCT.WPPs are derived by taking the wavelet transform ofthe log-subband energies. The wavelet parameters a andb in Eq. 4 are continuous. For discrete implementationone often samples  ab(t) using a = a0m and b = nb0a0m, mn(t) = a0�m=2 (a0�mt� nb0) (7)where m;n 2 Z. Therefore, the WPP which are thewavelet coe�cients of the subband energies are obtainedby,WPP (m;n) = 1a0m=2 Z log Si (a0�mt� nb0)dt: (8)It has been shown [6, 9] that multirate �lters arrangedin a dyadic tree can be used to compute the coe�centsWPP (m;n). In our case, we used Daubechies' 4 tap �ltersto compute a 3 level wavelet transform.2.5 Mel-Frequency Cepstral Parameters (MFCC)A Mel is a unit of measure of perceived pitch or frequencyof a tone. The Mel-scale is therefore a mapping betweenthe real frequency scale (Hz) and the perceived frequencyscale (mels). The mapping is virtually linear below 1 kHzand logarithmic above. Extensive research on MFCCs in-dicate that they are less sensitive to noise compared toother currently used parameters and provide better recog-nition/identi�cation performance than other parametriza-tion schemes [5, 2]. Although the triangular �lterbank isused in this study, other windows such as Hamming orHanning type could be used. After windowing the in-coming speech signal, the Discrete Fourier Transform ofthe the frame of speech is taken. A magnitude spectrumis computed and frequency warped in order to transformthe spectrum into Mel frequency in which the �lterbank isuniformly spaced. The �lters multiplied with the magni-tude spectra of the frame and log energies are computed.Next, the discrete time cosine transform of the �lterbanklog energies are taken to �nd the MFCCs. In this study,20 �lterbanks and 19 MFCCs are used for the simulations.



3. THE SPEAKER IDENTIFICATIONSYSTEM2.1 The Gaussian Mixture ModelIn this study, a Gaussian Mixture Model approach pro-posed in [2] is used where speakers are modeled as a mix-ture of Gaussian densities. The use of this model is moti-vated by the interpretation that the Gaussian componentsrepresent some general speaker-dependent spectral shapesand the capability of Gaussian mixtures to model arbi-trary densities.The Gausssian Mixture Model is a linear combination ofM Gaussian mixture densities, and given by the equation,p(~x j �) = MXi=1 pibi(~x) (9)where ~x is a D-dimensional random vector, bi(~x), i =1; ::;M are the component densities and pi, i = 1; ::;Mare the mixture weights. Each component density is aD-dimensional Gaussian function of the formbi(~x) = 1(2�)D2 jPi j 12 expf�12(~x� ~�i)TX�1i (~x� ~�i)g(10)where ~� denotes the mean vector andPi denotes the co-variance matrix. The mixture weights satisfy the law oftotal probability, PMi=1pi = 1. The major advantage ofthis representation of speaker models is the mathematicaltractibility where the complete Gaussian mixture densityis represented by only the mean vectors, covariance ma-trices and mixture weights from all component densities.4. EVALUATIONSThe simulations are conducted on the TIMIT database.TIMIT contains 6300 sentences spoken by 630 speakerssampling the regional accents of U.S. Although TIMIT issampled at 16 kHz, we downsampled to 8 kHz to simulatemore realistic environments. In the speaker ID system,we used 32 mixtures with diagonal covariance matrices tomodel each speaker. The models are trained by using theExpectation Maximization algorithm (EM) [3]. The goalof the EM algorithm is to start with an initial model,�, and iteratively estimate a new model �0, such thatp(X j �0) � p(X j �). For training, 8 unique sentences(approximately 24 seconds) are used, whereas, for test-ing 2 unique 3 second sentences are used separately. Al-though the complete database consists of 630 speakers, wealso evaluate the parameters on a TIMIT test speaker setconsisting of 168 speakers. As a result we have 1260 and336 test sentences for 630 and 168 speakers, respectively.Wavelet packet transform is implemented by using a 32ndorder Daubechies' orthogonal �lters. The simulation re-sults with 3 seconds of testing data on 630 speakers forMFCC, SBC and WPP parameters are 94:8%, 96:0% and97:3%, respectively. WPP and SBC have achieved 98:8%and 98:5% respectively, for 168 speakers. Although bothWPP and SBC performed equally well on a limited testset (168 speakers generating 336 testing tokens), WPP
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