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Abstract

It is well known that the variability in speech produc-
tion due to task induced stress contributes significantly
to loss in speech recognition performance {6, 8. If an
algorithm could be formulated which estimates the speech
stress condition, then such knowledge could be integrated
to improve robustness of speech recognizers in adverse
conditions. In this paper. the problem of automatic
stressed speech recognition is addressed. The primary
goal is to formulate a tandem HMM and neural network
based algorithm for stress independent recognition. To
motivate an effective stress classifier, an analysis is per-
formed of speech produced across eleven stress conditions
(e.g. Angry. Clear, Fast, Lombard, Loud, Slow, Soft,
etc.). Features that differentiate stress using a previ-
ously established stressed speech database (SUSAS) are
employed. A neural network algorithm is formulated to
estimate a speech stress condition probability vector (with
classification rates on the order of 59-100%). The stress
classification output probability vector is used to weight
the outputs of a codebook of stress dependent HMM rec-
ognizers to generate an improved overall recognition score
(for a 6-11% improvement over neutral or multi-style
trained recognition systems). It is suggested that this
approach will accommodate the intra-speaker variability
due to task induced stress in adverse conditions.

1 Introduction

The problem of speaker stress independent recog-
nition requires the determination of the presence of
emotionally or environmentally induced stress during
human speech production. For example, when a
talker is experiencing anger. the emotion is generally
reflected by varying volume. duration. and pitch
across the utterance [5]. The talker may also delete or
emphasize portions of words while trying to express
ideas in a rapid and firm manner. The physiological
changes which occur in the.vocal tract., and the
resulting acoustic signal are dramatic and substantial.
Based upon past research studies [5. 8. 14], it is often
difficult to quantify the variations that occur. For
example, when Apache helicopter pilots are flying,
they undergo both task. physical, and emotionally in-
duced stress (stress group (Fg in this study). Though
a variety of studies have been performed on analysis
of speech under emotion or stress. many research
findings at times disagree. This is due in part to
variations in how researchers simulate stressed and
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emotional speech, and because speakers can differ in
how they vary speech production in order to convey
their stress state. Hence, if a consistent range of
production variations can be identified, speaker stress
conditions can be grouped into classes. Past research
experience indicates that there is no simple relation
to describe these changes [5, 8, 14].
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Figure 1: A'-dimensional Stress Dependent HMM
Recognition System
It is suggested that knowledge of the stress con-

dition of a speech utterance will improve the per-

formance of speech processing algorithms. Research
in the recognition field on fast adaptation methods
illustrate the benefits of modeling speaker differences.
Other studies confirm the shortcomings of considering
only inter-speaker variability in the speaker identifi-
cation [13] and speech recognition [7] areas.

Further evaluations of the effects of speaker stress
illustrate the serious impact on conventional recog-
nition systems [4]. Stressed speech recognition algo-
rithms have been formulated that attempt to adapt
existing techniques to improve performance [4, 6, 7,
9, 11. 12]. These techniques attempt to compensate
for the effects of stress or to simply study the effect of
stress on performance. Stress conditions considered
in these studies included Lombard effect, speaking
styles, and task workload {e.g., computer response
tasks. F-16 fighter pilot stressed speech).

The goal of this study is to incorporate estimated
knowledge of the speech stress condition to improve
recognition. This is accomplished by formulating a
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stress classifier which directs an HMM based stress
independent recognition system (see Figure 1). A
tandem neural network & HMM recognition system
has been shown to be effective for keyword recognition
under Lombard effect [2]. Previous studies have ex-
plored the effect of stress on recognition applications
and means to compensate for it (8, 9, 11]. The
modeling framework for this study is based on a
source generator framework, which allows for direct
modeling of stress perturbation within a multidimen-
sional feature space [6, 7, 8].

2 Stress Independent Recognition

An algorithm for stress independent recognition
requires three major elements: stress independent
partitioning, stress classification. and robust stress
dependent. recognition.

2.1 Stress Independent Partitioning

A separate HMM parsing algorithm is developed
using training data from the TIMIT and SUSAS
databases (see subsequent section) to partition the
speech used in this study. This technique employs
HMM models using five states and two mixtures.
There are eight models (SI = Silence. FR = Frica-
tives, VL. = Vowels, AF = Affricates. NA = Nasals,
SV = Semi-Vowels. DT = Diphthongs) in which to
represent phoneme groups.

2.2 Feature Analysis

An extensive evaluation on speech production
features (glottal spectrum. pitch, duration. inten-
sity, formant/spectral structure) was previously con-
ducted [5].  An evaluation of five feature sets is
conducted here to assess their potential as stress
relayers [14].  The parameters are Mel-cepstral
(%, delta-cepstral DC’;. delta-delta-cepstral D2(7;.
autocorrelation-cepstral AC;, and cross-correlation-
cepstral X'(; parameters. The AC; and X features
are new in that they provide a measure of the corre-
lation between Mel-cepstral coefficients.
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We considered the prospect of stressed speech
classification using the five speech feature represen-
tations as stress relayers with respect to (i) pair-wise
stress class separability, and (ii) analysis of acoustic
tube and vocal tract cross-sectional area variation
under stress. The findings suggest that perturbations
in speech production under stress are reflected to
varying degrees in the five speech feature represen-
tations [8. 14]. One of the proposed enhancements
to the stress classification algorithm relies upon a
conclusion in this study that asserts that phoneme
groups (such as fricatives) are affected differently by
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stress. Hence. an -algorithm that uses a front-end
phoneme group classifier [1] should improve stress
classification performance.

2.3 Neural Network Stress Classifier

The proposed classification algorithm involves four
distinct steps to generate a stress class probability
vector from raw speech data. Raw speech data is
partitioned. parameterized. and classified. A neu-
ral network classifier is formulated using a Cascade
Correlation network with an Extended Delta-Bar-
Delta learning rule{10]. The stress classification
algorithm includes three classes of features: single
frame. partition, and word based parameters. This
data set is created for both training and testing
of the classification algorithm. Single frame based
parameters are calculated for evenly spaced frames
in relative positions within each source generator
partition.

Partition based parameters provide summary in-
formation over an entire partition (phoneme). For
all frames in partition ¢, the mean, variance, slope
from leftmost (mmin/max) to rightmost (min/max),
minimum. and maximuin are calculated for each of
the seven coefficients used (either (7;, DC5, D2,
or AC;). Word based parameters include the total
number of frames (to incorporate a measure of word
duration). and the duration of each frame.

For targeted feature stress classification, a fast
back-propagation neural network is used. Both ar-
ticulatory (vocal tract shape) and excitation (pitch)
features are employed as well. A subset of features is
targeted via a statistical evaluation of separability. A
targeted parameter subset is obtained for each stress
condition ((+; (74} and phoneme group (FR, VL., AF,
NA. SV. DT) for a total of 54 subsets. Each subset
has a neutral network trained to detect a given stress
condition and reject all others (Table 2).

2.4 HMM Speech Recognition

Each of the stress dependent recognizers used in

. this study are trained for a single stress condition

across all words in the SUSAS database. During
the recognition phase. the HMM output probabilities
s are weighted using the stress condition output
probability vector {‘ from the neural network stress
classifier (see Fig. 1).

The motivation for formulating an algorithm using
weighted stress trained HMMs is that the neural net-
work stress classifier will sometimes make errors. The
application of a stress condition probability weighting
vector allows a codebook of HMM recognizers to
compensate speech that is a mixture of stress con-
ditions. The probability p(w;) that a given word w;
under stress condition f-;k across the isolated word

dictionary (i € (1,....1)) is calculated as follows:
1 k=K .
plui) = 5= ) plwiox | s & )p(nse)p(Er)
k=1
+ maxplwi x| 7. 6) (3)
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where K is the number of stress groups. & is the
probability vector from the neural network stress
classifier, and 7j; is the probability vector from the
codebook of HMM recognizers trained for word w;
under stress group k.

3 Evaluations
3.1 SUSAS Speech Database

The evaluations conducted are based upon data
previously collected for analysis and algorithm for-
mulation of speech recognition in noise and stress.
This database, called SUUSAS, refers to Speech Under
Simulated and Actual Stress, and has been employed
extensively in the study of how speech produétion
and recognition varies when speaking during stressed
conditions. SUSAS consists of five domains, encom-
passing a wide variety of stresses and emotions. A
total of 32 speakers (13 female, 19 male), with ages
ranging from 22 to 76 are employed to generate in
excess of 16,000 utterances. The five stress domains
include: 1) psychiatric analysis data (speech under
depression, fear, anxiety), ii) talking styles. (Angry.
Clear, Fast, Loud, Slow. Soft), ini) single tracking
task {mild task Cond50, high task C'ond70) or speech
produced in noise (Lombard effect). iv) dual tracking
computer response task, v) subject motion-fear tasks
(G-force, Lombard effect, noise, fear). The data base
offers a unique advantage for analysis and design of
speech processing algorithms in that both simulated
and actual stressed speech are available. A common
vocabulary set of 35 aircraft communication words
make up over 95% of the data base. These words
consist of mono- and multi-svllabic words which are
highly confusable.  Examples include /go-oh-no/,
Jwide-white/, and /six-fix/. Some of the actual
stressed speech utilized m this study 1s the same 35
word vocabulary spoken in an Apache helicopter with
two speakers both on the ground and in flight. A
more complete discussion of SUSAS can be found in
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the literature [5. 6, 7, 14].

Stress Classification Performance
Single Speaker. 5 Words. Stress Grouped
“Brake”. “East”., “Freeze”. "Help”, “Steer”
One Network per Phoneme Group
Mono-Partition Non-Targeted Features
Stress (lassification Rate (%)
Group C, [ DCi [ D2C, [ AC,
Angry. Loud Gy 85.20 | 73.53 | 88.89 | 94.12
Normal, Soft G» 92.69 | 89.71 | 91.04 | 86.76
Fast Ga 70.59 | T0.59 | 87.50 | 85.29
Question Gy 70.59 | T6.47 | T6.47 | 82.35
Slow Gy T6.47 | 52.94 | T6.4T | 64.71
Clear G T6.47 | 41.18 | 60.00 | 70.39
Lomberd Gy T6.47 | T0.539 | 57.89 | 94.12
O Overall | 78.90 | 76.94 | 79.32 | 80.62 |

Table 1: 5 Word Phoneme Group Dependent
Classification

3.2 Stress Classification

Perceptually similar stress classes are grouped to-
gether for training.data. The groups are indicated
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in Table 1 as G; where the index i indicates the
group number. Note that this grouping resulted from
informal listening tests as to which stressed conditions
are perceptually similar. Stress classes are grouped
as follows: Gy (Angry. Loud): G» (Cond50. Cond70.
Normal. Soft): Gz (Fast): G4 (Question). G5 (Slow):
Gs (Clear): and G5 (Lombard). By grouping the
classes into less confusable subgroups. performance
of the classifier becomes more robust across a larger
speech corpus and under noise for larger data sets.
This classifier is evaluated using a 5 word stressed
speech vocabulary from SUSAS with the results
presented in Table 1. For example, under angry/loud
stressed speech (group (7). a parameterization using
AC; provides better stress classification results than
DC; (ie.. 94% vs. 73%). Similarly. for Lombard
effect (group G7), the stress classification rate is much
higher (+36%) for AC; than for D2C;. However, for
(s (slow speech), the perforinance is lower for AC;
than for (; or D2C;. This is due to the durational
information being filtered out by the neural network
in order to minimize the global classification error.

Stress Classification Performance |
11 Speakers. 35 Words. Stress Grouped
Targeted Features & Phoneme Dependent
One Network per Phoneme & Stress Group
Tri-Partition Targeted Features
Stress Classification Rate (%)
Group Closed ] Open
Angry, Loud Gy 100.00 58.84
Normal G 100.00 100.00
Fast G 100.00 100.00
Question Gy 100.00 100.00
Slow G, 100.00 100.00
Clear Gy 100.00 100.00
Lombard G5 100.00 100.00
Soft Gy 100.00 100.00
Actual Gy 66.67 62.75
F Overall L 96.30 ] 91.29 I

Table 2: 35 Word Phoneme Group Dependent
Classification
\

The evaluation is extended to include 35 words
and 11 speakers. Features used include the AC; and
their derived features. durational, articulatory, and
excitation features. One back-propagation network is
trained for each phoneme group. Since the variability
of the data and the size of the pattern vector are so
large. this approach did not perform satisfactorily.

Next. a study is performed as previously discussed
to find a targeted subset of features for each stress
condition and phoneme group. This results in sig-
nificantly smaller pattern vectors that contain more
meaningful features for detection of stress. assuming
knowledge of the phoneme group. Stress classes
are regrouped as follows: Gy (Angry, Loud); G
(Normal): Gz (Fast): G4 (Question): G5 (Slow); G
(Clear): Gt (Lombard): Gs (Soft): and Gy (Actual).
Table 2 shows the classification performance of this
ensemble of neural networks. Each neural network
was tested on its ability to accept and reject a given
stress condition for each speech token.
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SUSAS Recognition Performance
11 Speakers, 35 Words. Stress Grouped Simulated & Actual Stress
HMM Neutral, Multi-Style. and Stress Dependent Training

Stress Neutral (%) Multi-Style (%) Dependent (%)

Group Closed | Open Closed | Open Closed | Open

Angry, Loud Gi 49.03 53.01 59.42 55.61 82.79 67.32

Normal Gy 95.78 79.35 69.81 66.02 95.78 79.35

Fast Ga 66.88 66.34 55.19 53.33 75.32 58.86
Question Gy 66.56 64.23 62.34 60.49 89.94 70.89 |
( Overall ]| 69.56 [ 65.73 [[ 61.69 | 58.86 || 85.96 [ 69.11 |

Table 3: Recognition Comparison

3.3 Stress Independent Recognition

Next, a speaker dependent, isolated word, discrete-
observation hidden Markov model recognizer is em-
ployed. A separate HMM is obtained for each word in
the system dictionary. The HMM used is a five state
left-to-right model, with each model beginning in
state 1. In the training phase. each model is initiated
with essentially random choices for non-zero elements
and then iteratively adjusted to increase P(@(M), the

probability of the observation sequence ® having been
generated by model M. The training technique is
based on the Baum-Welch forward-backward reesti-
mation algorithm.

Our preliminary results (see Table 3) show a 6-
11% improvement in recognition performance over
neutral or multi-style trained HMM models. The
following four stressed speech recognition evaluations
will be considered:

1. Neutral HMM
Establishes a lower bound on performance using
an HMM recognizer trained on Normal speech

and evaluated across stressed speech couditions
(see Table 3.

2. Multi-Style Trained HMM
For the purposes of comparison with previous
methods [9]. a single multi-style trained HMM
recognizer is also evaluated across all stress
styles.

3. Non-Weighted Stress Trained HMMs

It is possible that a codebook of stress depen-
dent HMM recognizers could provide improved
recognition performance without requiring an
estimated stress classification probability vector.
This evaluation will establish the benefit of em-
ploying a codebook of HMM recognizers that
span a particular stressed speech region in a
source generator space [6, 8]. This will contrast
with a single multi-style trained HMM.

4. Weighted Stress Trained HMMs
An estimated stress condition probability vector
will be used to weight the codebook of HMM
probability outputs. The key to this formulation
1s the stress classification performance. The re-
sults in Table 2 indicate that stress classification
using targeted feature sets is possible.

4 Summary
The use of stress classification in combination with

HMM recognition results in a viable robust stress
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independent speech recognition system. It is shown
that partitioning of stressed speech by phoneme group
is a contribution to the problem of stressed speech
recognition that facilitates stress classification for
stress independent recognition.
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