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ABSTRACT 
Speech production variations due to perceptually induced 

stress contribute significantly to reduced speech processing 
performance [a]. This study proposes an algorithm for 
estimation of the degree of perceptually induced stress. 
It is suggested that the resulting stress score could be 
integrated into speech processing algorithms to improve 
robustness in adverse conditions. First, results from a 
previous study motivate selection of a targeted set of speech 
features across phoneme and stress groups to improve stress 
classification performance. Analysis of articulatory, exci- 
tation, and cepstral based features is conducted using a 
previously established stressed speech database (SUSAS). 
Targeted feature sets are selected across ten stress conditions 
(including Apache helicopter, Angry, Clear, Lombard effect, 
Loud, etc.). Next, an improved targeted feature stress 
classification system is developed and evaluated achieving 
rates of 91.01%. Finally, application of stress classification 
is incorporated into a stress directed speech recognition 
system. An improvement of +10.14% and +15.43% 
over conventionally trained neutral and multi-style trained 
recognizers is demonstrated using the new stress directed 
recognition system. 

1 INTRODUCTION 
Speaker stress assessment is useful for applications 

such as emergency telephone message sorting. Here, 
stress can be defined as any effect that causes the 
speaker t o  vary the production of speech from neutral 
conditions. Neutral speech is defined as speech pro- 
duced assuming that the speaker is in a “quiet room” 
with no task obligations but to speak. With this 
definition, two stress effect areas emerge: perceptual 
and physiological. Perceptually induced stress result 
from the speaker’s perception that the environment is 
not, “normal” such that the speech production intentzon 
varies from neutral conditions. Causes of perceptually 
induced stress include emotion, environmental noise 
(Lombard effect), actual task workload (Apache he- 
licopter cockpit), statement context (Questzon), and 
speaking tempo (Fast ,  Slow). Physiologically induced 
stress is the result of a physical impact on the human 
body which results in deviations from neutral speech 
production despite intentions. Causes of physiological 
stress include vibration, G-force, drug interactions, and 
air density. In this study, ten perceptually induced 
stress conditions are considered (Angry,  Apache, Clear, 
Fast, Lombard, Loud, Neutral, Questaon, Slow, Soft). 
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Figure 1: Stress Directed Recognition Algorithm 

The problem of speaker stress classification is t o  
assess the degree to which a specific stress condit3ion is 
present in a speech utterance. Past research studies in- 
dicate that it is difficult to quantify these variations [2]. 
The variation in speech production due to stress can 
be substantial; and, will therefore have a direct impact 
upon the performance of speech processing applications 
if not addressed [7]. There have been a number of 
studies performed on analysis of speech under stress 
in an effort to identify meaningful relayers of stress. 
Unfortunately, many research findings at times disagree, 
due in part to the variation in the experimental de- 
sign protocol employed to induce stressed speech; and, 
to differences in how speakers impart stress in their 
speech production. Past research experience suggests 
that  no simple relationship exists to describe these 
changes [2, 71. Though a number of studies have 
considered analysis of speech under stress, the problem 
of stressed speech classification, to our knowledge, has 
not been addressed in the literature except for one 
study on detection of stressed speech using the Teager 
nonlinear energy operator [l] . Previous studies directed 
specifically at robust speech recognition differ from this 
study in that they estimate intra-speaker variations via 
speaker adaptation, front-end stress compensation, or 
wider domain training sets [3, 5, 71. 
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The assert,ion that a stress directed approach is 
better able to represent feature perturbations due to 
stress is supported by the observation that spectral, ex- 
cit,atioii, articulat,ory, and time domain speech features 
cluster in different domains between t,wo stress condi- 
tions [TI. Accurat,e representation of intra-speaker vari- 
ability due to  stress and noise is a limitation of speech 
processing algorithms that has been demonstrated in 
rela.ted studies on speaker identification and speech 
recognition [4]. The incorporat,ioii of dressed speech 
into speech processing algorithms has been applied 
previously to improve the performance of recognition 
syst,ems [a, 3, 5, 71. 

In order to  understand speech production under 
st,ress, a a  ext,ensive stress evaluation on speech produc- 
t,ion fea.tures such as glottal spectrum, pitch, duration, 
iiit,ensity, and formant/spect,ral structure was previ- 
ously conducted [2]. Extensive statist,ical assessment of 
over 200 parameters for simula.ted and a c h a l  speech un- 
der stress suggests that  stress classification based upon 
feat,ure distribution separability characteristics is possi- 
ble. A subsequent evaluation of features for application 
to  stress classificat,ion was conduct,ed using five stressed 
speech feature representat'ions [7]. These feature sets 
were considered wit,h respect t.0 (i) pair-wise stress class 
separability, and (ii) andysis of acoustic t,ube and vocal 
t,ract, cross-sectiona,l area variation under stress. Feature 
a.nalysis suggest,s t,hat perturbations in speech produc- 
t,ioii under stress are reflected to  varying degrees across 
inult8iple feature domains depending upon the stress 
condition and phoneme group. Hence, an algorithm 
t>ha.t uses a front-end phoneme group classifier [6] can 
improve overall st,ress classification performance [7]. A 
tandem neural network and HMM recognition system 
has also been shown to  be effective for recognition under 
several stress conditions including Lombard effect [7]. 
Finally, previous studies have also explored the effect of 
stress on recognition and approaches for compensation 

The goal of this study is to incorporate knowledge of 
speech stress content t,o improve recognition. A stress 
classifier is formulated which directs an HMM based 
shess dependent recognition system as shown in Fig. 1. 

[a, 3, 51. 

2 STRESS INDEPENDENT 
RECOGNITION FORMULATION 

An algorithm for sttress independent processing can 
be formulated with three major elements: (i) stress 
independent partitioning, (ii) stress classification, and 
(iii) robust st,ress dependent processing (recognition, 
e i h n c e m e n t  , or speaker identificat,ion/verification). 

2.1 Stress Independent Partitioning 
A pa,rtitioning algorithm that provides consistent 

speech parsing is a difficult ta,sk due to gradual tran- 
sit8ioiis between phonemes, the impact of stress, and 
coart,iculatioii effects. However, in a previous study on 

robust speech partitioning [6], an algorithm is formu- 
lated using HMM and Viterbi decoding to  parse noise 
corrupted speech by phoneme group. In a variation of 
this approach, the HMM models are trained using data 
from the neutral TIMIT and stressed SUSAS speech 
databases. Each cont,inuous density phoiieine group 
HMM model has five states per phoneme with two 
mixtures. The eight, models (SI:Silence, FR:Fricatives, 
VL:Vowels, AF:Affricates, NA:Nasals, SV:Semi-Vowels, 
DT:Dipht,hongs) form trained word grammars com- 
posed of phoneme group sequences. The Viterbi decod- 
ing then matches the state sequence to  the grammar for 
each input word to find phoneme boundaries. 

2.2 Target Driven Features 
In a previous study [7], articulatory, excitation, 

and cepstral based feature domains were assessed for 
application t,o stress classification. A niast,er feature 
set is creat,ed from which subsets of targeted feat,ures 
are selected using a separability distance metric and 
feature separability ranking based on statistical and 
subjective measures. From the articulatory feature 
domain, cross sectional vocal tract areas are used in the 
master feature set. For the excitation feature domain, 
pitch and duration are used. Finally, from the cepstral 
domain, auto-correlation Mel-cepstral features and their 
statistics (mean, standard deviation, and slope) are 
included. For each phoneme group and stress condition, 
a subset of these features is selected for a targeted 
feature stress detection system. Next, this codebook 
of stress detect,ion systems are combined to form the 
stress classification algorithm. 

2.3 Stress Classifier Formulation 
In formulating a stress classification system, it is 

necessary to realize that for a given stress condition, 
there are degrees of stress. Hence, it is necessary to 
estimate a stress probability response score to assess 
the stress level. However, a stress score for one stress 
condition alone is not sufficient, since it does not model 
mixtures of stress states. In order to model stress 
state combinations, also referred to as stress mixtures, a 
stress score must be obtained for each stress condition. 
This score is estiinat,ed by training a stress detect80r to 
recognize one stress condition given knowledge of the 
phoneme group. A codebook of these stress cletsectors 
will then provide an estimate of t,he degree of each 
stress state. The resulting vector of stress scores is then 
a more complete representation of t8he speaker's shess 
state. This formulation is based upon a mathematical 
framework that represents featmure movement from one 
region in a source generator space to  another (where 
each region is a stress state) [a]. 

Next, a general stress detection system employing 
neural networks is developed to  estimate a stress score 
p ( &  I wc); which measures the degree of stress given 
utterance wi spoken under stress condition k (Fig. 1). 
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Figure 2: Stress Classification Performance 

2.4 HMM Speech Recognition 
In order to  formulate a codebook of stress dependent 

recognizers, it is desirable to  use an existing HMM 
speech recognition framework a.s shown in Fig. 1. The 
syst,em incorporates stress class information in the 
source generator space by including data from each 
stressed speech region in the training of each stress 
dependent recognizer [2]. This is equivalent to maxi- 
mizing the word log probability p(w;  I &), given the 
overall word stress score J k .  The word stress score is 
calculated by averaging the scores across all partitions 
for a candidate word. These word score vectors, denoted 
wk = {wik I i = 1,.  . . , I } ,  are obtained from a codebook 
of speech recognizers spanning the source generator 
space. Once the maximum stress probability p([kmaz I 
z u i )  has been calcuhted as in Eqn. (l),  the speech 
features are passed t,o the stress dependent recognition 
syst,em trained for stress condition b m a z .  The final 
utt,erance decision is then calculated with Eqn. (2) 
by maximizing p(w; I [kmas) over every word in the 
vocabulary. 

+ 

d l k "  I W i )  = mfx P ( t k  I W i )  (1) 

d w i m a z )  = mi"" P(Wi  I tk") (2) 
At this point, the four preceeding components in- 

cluding stress independent partitioning, target driven 
features, stress classification, and HMM formulation 
can be integrated as shown in Fig. 1, for a stress 
independent recognition system. To achieve reliable 
performance, phonemic class partitioning is used to 
temporally divide input speech into a source generator 
sequence. With these phoneme labels, targeted features 
are extracted and passed to  the stress classification 
algorithm. It is of interest to  determine the importance 
of isolated versus context dependent stress classification 
using a partitioned phoneme sequence. To accomplish 
this, the following two m e s s  classifiers are evaluated 
in Section 3: mono-partition and tri-partition. Given 
a reliable stress classifier, the last step is to determine 

whether such information can improve the robustness 
of speech recognit<ion under stress. 

3 EVALUATIONS 
To illustrate the application of stress information to 

speech recognition, a series of simulations are performed 
using the SUSAS speech under stress database [7]. 

3.1 Stress Classification (Tri- Par t it ion) 
Mono-partition and tri-partition stress classifier re- 

sults are shown in Fig. 2 using a 35 word vocabulary 
set. The following features are made available to  both 
classifiers: auto-correlation Mel-Cepstral parameters 
and their derived features, durational, articulatory, and 
excitation. In order to reduce data  requirements for 
tri-partition classification, a targeted feature subset is 
selected for each stress condition and phoneme group. 
This results in a smaller and more meaningful feature 
set for stress detection. Each stress classifier consists of 
a codebook of neural networks, one for each phoneme 
group and stress condition. As Fig. 2 illustrates, when 
using isolated phonemes (mono-partition), measurable 
stress classification performance can be achieved. How- 
ever, when the stress classifier is based upon a context 
dependent phoneme sequence (tri-partition), perfor- 
mance significantly improves by +34.33% [7]. 

3.2 HMM Stress Independent Recognition 
Next, a speaker dependent, isolated word, continuous 

density hidden Markov model recognizer is used. The 
HMM training method in this study employs a state 
tying initialization based upon the degree of similarity 
between mean mixture vectors in successive states. The 
models assume left-to-right transitions without skips. 
The training algorithm is based on the Baum-Welch 
forward-backward reestimation algorithm. 

Three stressed speech recognition evaluations are 
considered (Fig. 3). To establish a baseline level 
of performance, the first evaluation employs neutral 
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SUSAS STRESS DIRECTED RECOGNITION PERFORMANCE 
COMPARISON TO NEUTRAL AND MULTI-STYLE TRAINED RECOGNITION 
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Figure 3: Stress Directed Recognition Comparison 

trained HMMs that are tested with stressed SUSAS 
data.  An overall open test recognition rate of 70.50% 
is achieved, with performance ranging from 33% for 
Apache to  87% for Neutral speech. It is noted that 
recognition is most severely affected by Angry and 
Apache  speech due to their feature distributions; which 
are well separated from neutral speech. The second 
evaluation focuses upon multi-style trained HMMs. 
This approach differs from a previous study [5] in that 
training is speaker independent and speech is sampled 
a t  8kHz. An overall open test recognition performance 
of 65.21% is achieved; which is -5.29% lower than the 
neutral trained HMM. The third evaluation assumes 
estimated knowledge of the speaker stress state from 
a tandem neural network stress classifier and HMM 
recognizer trained for each stress condition. The stress 
directed recognition rate is 80.64%; which is +10.14% 
more than neutral trained, and +15.43% more than 
the multi-style trained HMM. This codebook of stress 
dependent HMM recognizers provides improved recog- 
nition performance using estimated stress classification 
knowledge. This evaluation has served to  illustrate 
the benefit of a stress directed formulation which en- 
compasses general speech production as reflected in a 
source generator space [2]. It should also be noted 
that we believe the speaker independent multi-style 
trained HMM attempts to represent a broader range 
of speech production with diminishing returns as the 
level of stress increases. 

4 SUMMARY 
In this study, we have considered (i) improved stress 

classification using targeted features and (ii) the formu- 
lation of a robust stress independent recognition system. 
A probability vector representing the degree of speaker 
stress is estimated by a classification algorithm. It was 
shown that context sensitive stress classification via tri- 
partitioning achieves better performance. The output 
stress probability vector can be employed to  measure 

mixtures of speaker stress (e.g., combined Fast and 
Loud speech). 

A robust stress independent recognition system was 
formulated, consisting of the following: (i) stress in- 
dependent speech partitioning, (ii) feature targeted 
stress classification, and (iii) stress dependent recog- 
nition. Stress classification performance is improved 
when speech is partitioned by phoneme group, target 
driven features are used, and excitation and articulatory 
features are employed. A codebook of neural network 
stress detectors are used to  estimate the speaker stress 
mixture probability vector. This vector is then used to 
select the most probable stress dependent HMM rec- 
ognizer, with an improvement of +10.14 to  +15.43% 
over neutral and multi-style trained systems. 
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