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ABSTRACT

There are many stressful environments which deteriorate
the performance of speech recognition systems. Exam-
ples include aircraft cockpits, 911 emergency telephone
response, high workload task stress, or emotional situa-
tions. To address this, we investigate a number of lin-
ear and nonlinear features and processing methods for
stressed speech classi�cation. The linear features include
properties of pitch, duration, intensity, glottal source, and
the vocal tract spectrum. Nonlinear processing is based
on our newly proposed Teager Energy Operator (TEO)
speech feature which incorporates frequency domain criti-
cal band �lters and properties of the resulting TEO auto-
correlation envelope. In this study, we employ a Bayesian
hypothesis testing approach and a hidden Markov model
(HMM) processor as classi�cation methods. Evaluations
focused on speech under loud, angry, and the Lombard
e�ect1 from the SUSAS database. Results using receiver
operating characteristic (ROC) curves and EER (equal er-
ror rate) based detection show that pitch is the best of the
�ve linear features for stress classi�cation; while the new
nonlinear TEO-based feature outperforms the best linear
feature by +5.2%, with a reduction in classi�cation rate
variability from 8.66 to 3.90.

1 Introduction

Current speech recognition and speaker identi�cation
techniques are not very successful in adverse conditions
where speech technology is needed. There have been lim-
ited success in addressing issues related to varying commu-
nication channels, handset di�erences, and increased vo-
cabulary sets. The ability to address such issues has been
achieved largely by merely collecting speech data from
the same adverse environments, and thereby re-training
reference models (i.e., train-test matched conditions). Is-
sues such as handset and channel responses are, to some
degree, easier to address, since their in
uence is generally
�xed over a voice transmission. The variability introduced
by speech under stress is much more challenging since it
has been shown that stress impacts phone classes in a non-
uniform manner [7]. Alternate training methods such as
multi-style training [10] can improve speech recognition
under stress, but at the expense of requiring the user to

�This work was supported in part by a grant from the U.S.

Air Force Research Laboratory/IFEC, Rome NY.

1The Lombard e�ect occurs when a speaker modi�es his/her

speech in order to increase communication quality when pro-

ducing speech in the presence of acoustic background noise.

produce speech across a simulate range of stress styles.
Studies have also shown that multi-style training only
works in speaker-dependent scenarios, and that perfor-
mance actually degrades below neutral training if applied
in a speaker independent application [13]. The primary
reason for this is that stressful conditions are too diverse to
be represented by limited training data, and that speakers
can at times use a non-uniform set of speech production
adjustments to convey their stress state. One approach
for robust speech recognition which has shown promise is
to �rst classify input speech as being neutral/stressed [13].
Special processing could then be applied once non-neutral
stress states are detected. In this study, only the �rst task
of stress classi�cation is considered.

Speech analysis plays an important role for successful
stress classi�cation. Past studies [4, 5, 12] showed that
speech characteristics in areas such as duration, intensity,
pitch, glottal source, and vocal tract spectrum can be use-
ful as indicators of speech under stress. One experiment
in [4] demonstrated useful variation patterns of several
features under loud speaking style. For example, dura-
tion and intensity are increased for vowels but decreased
for semi-vowels and consonants, and both the mean and
variance of pitch are increased. These features, however,
have never been employed for stress classi�cation.

Our previous study [1, 2] proposed the following three
new nonlinear TEO based processing features: TEO-
decomposed FM Variation (TEO-FM-Var), normalized
TEO Autocorrelation Envelope area (TEO-Auto-Env),
and TEO based Pitch (TEO-Pitch). They successfully
explored the prospects of variations in the energy of air-

ow characteristics within the vocal tract for speech under
stress.

In this paper, we �rst consider �ve linear features from
the domains: duration, intensity, pitch, glottal source,
and vocal tract spectrum, to classify stressed speech from
neutral. Bayesian hypothesis testing is employed for the
classi�cation. Second, we introduce our newly-proposed
TEO-based feature, which is derived from our previously-
proposed 4-band based TEO-Auto-Env feature. This new
TEO-based feature employs critical bands to partition the
frequency range. Sec. 4 presents stress classi�cation eval-
uations, with conclusions presented in Sec. 5.

2 Linear Stress Classi�cation

It has been shown that there are observable di�erences
in duration, intensity, pitch, glottal source, and formant
locations between neutral and stressed speech [4]. There-
fore, it would be useful to evaluate the performance of
features from such domains for stress classi�cation. Since
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pitch, glottal source information, formant locations are
meaningful for vowels, we extracted all �ve features only
from vowel sections of speech so that they can be com-
pared under the same scenario.

2.1 Linear Feature Description
Five features are considered here. The length of each
vowel in msec is used as the duration feature. The in-
tensity feature is de�ned as,

Intens =

vuut 1

K

KX
i=1

s2(i) (1)

where s(i) (i = 1; � � � ; K) represents theK individual sam-
ples in the vowel. Pitch, glottal source, and formant lo-
cations are extracted on a frame basis with frame length
being 32 msec and an overlap between adjacent frames
of 16 msec. The modi�ed simple inverse �lter tracking
(MSIFT) algorithm [3] is employed to extract pitch fre-
quencies from vowel portions. We use spectral slope as the
glottal source feature. It is not easy to obtain the glottal
spectral slope from the raw vowel speech waveform due to
the coupling e�ect between the sub-glottal structure and
the forward portion of the vocal tract. To avoid this e�ect,
we use only data obtained during closed vocal fold periods.
Since it is not easy to accurately locate the boundaries be-
tween vocal fold closing and opening periods, we compute
a frame-based log average amplitude FFT versus log fre-
quency for each vowel section. Next, a straight line is
used to approximate the envelope, and the line's slope is
considered as the glottal spectral slope. Finally, the �rst
two formant locations are used as the vocal tract spectral
information.

2.2 Bayesian Hypothesis Testing for

Stress Classi�cation
In our study, we consider pairwise (neutral/stressed)
classi�cation. Here, the stress classi�er is similar to a
Bayesian hypothesis testing system (i.e., two hypotheses:
H0 and H1). Under H0, the speech is neutral; while un-
der H1, the speech is stressful. When there is an input
speech feature vector, x, (x = x1; � � � ; xM ;M is the vector
length), two conditional probability densities have to be
calculated, that is, p(xjH0) and p(xjH1). The likelihood
ratio, �, is then de�ned as,

� =
p(xjH1)

p(xjH0)
: (2)

To obtain p(xjH0) and p(xjH1), we need to know
the probability density functions (pdf) of both neutral
and stressed speech features. The pdf is obtained from
training data by plotting the feature and then �tting
a pdf to the histogram. If we assume all components
(x1; x2; � � � ; xM ;M is the vector length) of the input
speech feature vector, x, have independent identical Gaus-
sian distributions, with mean, �n, and variance, �

2

n, under
neutral conditions; and with mean, �s, and variance, �2s ,
under stressed conditions, i.e.,
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then, p(xjH0) and p(xjH1) can be computed as follows,
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Thus, the log likelihood ratio (LLR) is found as follows,

ln� =M ln(
�n

�s
)+

1

2�2n

MX
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(xi��n)
2� 1
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MX
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(xi��s)
2

:

(7)
The following form of the LLR can be obtained from Eq. 7
for easy computation,

ln� =M ln(
�n

�s
)+

M

2�2n
(�̂2+(�̂��n)2)� M

2�2s
(�̂2+(�̂��s)2);

(8)
where �̂ and �̂2 are the estimated mean and variance of
input vector, x, which are de�ned as,

�̂ =
1

M

MX
i=1

xi; �̂
2 =

1

M

MX
i=1

(xi � �̂)2: (9)

The decision is made by comparing the LLR with a
pre-de�ned threshold, �. If the LLR is larger than �, the
input speech is labeled as stressed; otherwise it is classi-
�ed as neutral. The value of � depends on what criterion
is used for detection. In a stress classi�cation system,
a criterion should be selected so that the two important
probabilities, the false acceptance probability (FA) and
the false rejection probability (FR), should be as low as
possible. Obviously, it is not possible to minimize both
FA and FR, and hence, a compromise must be made. For
some systems, the requirement for one probability is more
important than the other. For a stress classi�cation sys-
tem, however, we are interested in overall accuracy and
have no preference. Therefore, the value of � correspond-
ing to equal error (FA=FR) rate (EER) is selected. In
our experiment, we calculate the value of FA as the ratio
of the number of falsely accepted (neutral/stressed) vow-
els to the total number of vowels, and the value of FR as
the ratio of the number falsely rejected (neutral/stressed)
vowels to the total number of vowels. By changing the
threshold value, the value of � corresponding to EER can
be found.

3 A New TEO-based Feature

Based on Teager's studies [11], the air
ow from the vo-
cal folds does not propagate uniformly as a plane wave in
the vocal tract, but is separated with energy concentrated
near the walls, and thus vortices are generated through-
out the vocal tract. To measure the energy from speech
which is produced by such a nonlinear process, Teager
developed an energy operator, which is known as Teager
Energy Operator (TEO) as follows,

	c[x(t)] = [ _x(t)]2 � x(t)�x(t); (10)

where 	[�] is the TEO, and x(t) is a single component of
the continuous speech signal. Kaiser [8, 9] later derived
the operator for discrete-time signals from its continuous
form 	c[x(t)], as,

	[x(n)] = x
2(n)� x(n+ 1)x(n� 1); (11)
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Figure 1: TEO-CB-Auto-Env Feature Extraction

where x(n) is the sampled speech signal.

Although TEO processing is intended for a signal with a
single resonant frequency, our previous work [1, 2] showed
that the TEO energy of a multi-frequency signal is not
only di�erent, but also re
ects interactions between fre-
quency components. This characteristic extends the use
of TEO to speech signals �ltered with wide bandwidth
band-pass �lters (BPF).

In [1], we proposed three TEO-based nonlinear features
for stress classi�cation. The 4-band �lterbank-based fea-
ture, TEO-Auto-Env, was promising and consistent. It is
suggested that stress may a�ect di�erent frequency bands
di�erently and an improved stress classi�cation feature
could be obtained by increasing the number of �lterbank
partitions to better re
ect subtle energy changes across
frequency. Empirically, the human auditory system is as-
sumed to be a �ltering process which partitions the entire
audible frequency range into many critical bands. Based
on this assumption, the new proposed feature employs a
critical band �lterbank to partition the speech signal fol-
lowed by TEO processing (see Fig. 1). Each �lter in the �l-
terbank is a Gabor bandpass �lter, with the e�ective root
mean square (RMS) bandwidth being the corresponding
critical band. To extract the TEO-CB-Auto-Env feature
vector, each TEO pro�le is segmented into 25 msec frames
with 12.5 msec overlap between adjacent frames in time.
Similar to the extraction of the TEO-Auto-Env feature,
M normalized areas under the TEO autocorrelation upper
envelope are extracted for each time frame (i.e., one for
each critical band), whereM is the total number of critical
bands. This is the TEO-CB-Auto-Env feature vector per
frame. Fig.1 shows the entire feature extraction proce-
dure. Since each critical band possesses a much narrower
bandwidth than the 1 kHz bandwidth used for BPFs in
the TEO-Auto-Env feature, post Gabor bandpass �lter-
ing centered at median F0 is not needed in the TEO-CB-
Auto-Env extraction. This makes the new feature inde-
pendent of the accuracy of the median F0 estimation.

4 Evaluations
A 33-word vocabulary under neutral, angry, loud, and the
Lombard e�ect speaking styles from the simulated domain
of the SUSAS (Speech Under Simulated and Actual Stress)
database [6] is employed for our evaluations. All data was
obtained by requesting speakers to speak in the corre-
sponding style (Lombard e�ect simulated with 85dB SPL
pink noise played through headphones). Only vowel sec-
tions of each vocabulary word were used for evaluations.

4.1 Linear Features

From all identi�ed vowels, duration, intensity, pitch, glot-
tal spectral slope, and formant locations are extracted us-
ing the methods described in Sec. 2.1. For each feature,
we use all available data to estimate the pdf (Fig. 2 shows
one example positive conditional Gaussian pdf for pitch
under loud stress style). These pdf's are then used to ob-

tain the ROC curves for the Bayesian hypothesis testing
approach. In order to achieve open-set test results, in the
test phase we �rst divide the data of each feature into 10
equal size sets. For each of the 10 sets, we test with 1 sub-
set and train with the other 9 in order to obtain the EER
threshold for Bayesian hypothesis testing. The �nal error
rate is obtained by accumulating all error rates from the
10 open-set tests. Di�erent testing feature vector lengths
(1; 5; 10) are used to obtain ROC curves and error rates.
An example of one of the many ROC curves is shown in
Fig. 3 for stress classi�cation between neutral and loud for
mean pitch information. Table 1 shows detection results
for all �ve feature domains using the Bayesian hypothesis
testing approach.

From Table 1, we can see that (1) pitch is the best
feature for stress classi�cation among the �ve features,
(2) error rates generally decrease as feature vector length
increases, (3) there are performance di�erences between
di�erent styles of stress, and (4) mean vowel formant lo-
cations are not suitable for reliable stress classi�cation.

4.2 TEO-based Nonlinear Feature

For the Bayesian hypothesis stress classi�cation approach
using the above linear features, we made an assumption
that all feature vector components were independent(i.e.,
we did not consider the correlation between feature com-
ponents). This assumption is actually not always true
(e.g., pitch values of two adjacent frames are usually de-
pendent). To consider the correlation issue, Eq. 7, 8
must be re-derived. An alternate approach, however, is
to choose an HMM framework since HMMs are capable
of modeling temporal transitions across frames. For this
evaluation, a baseline 5-state HMM-based stress classi�er
with continuous Gaussian mixture distribution was em-
ployed. Only two HMM models (neutral and stressed)
were trained for each pairwise classi�cation. For purposes
of comparison, we also used the HMM classi�er to evaluate
the pitch information. The evaluation results are shown
in Fig. 4. As expected, pitch achieves better performance
with HMM vs. the Bayesian hypothesis testing approach.
Furthermore, it is shown that the new TEO-CB-Auto-Env
feature not only performs better than our previous TEO-
Auto-Env feature, but also outperforms the pitch feature
in terms of both average accuracy and consistency across
di�erent stress styles.

5 Conclusions

In this paper, we investigated linear and nonlinear speech
features for the classi�cation of speech under stress. Both
Bayesian hypothesis and HMM frameworks are employed
for stress classi�cation. Evaluation results show that
pitch is the best stress classi�cation feature among the
�ve linear features. Although formant locations show ob-
servable di�erence under neutral and stressful conditions,
they were not suitable for stress classi�cation. Motivated
by our previous TEO-based features reported in [1], we



Vector Speaking Style of Submitted Test Speech OVERALL ERROR RATES
Length Feature Neutral Angry Neutral Loud Neutral Lombard Mean �mALL stand. dev. �ALL

Duration 45.13 45.38 38.21 38.72 40.77 40.26 41.41% 3.12
Intensity 40.26 37.44 34.87 32.82 40.77 39.49 37.61% 3.19

1 Pitch 18.95 18.57 11.94 11.63 24.08 24.18 18.23% 5.54
Glottal 33.33 36.78 41.38 41.72 42.76 42.07 39.67% 3.77

Formant 1 42.60 41.80 46.43 45.10 46.84 46.90 44.95% 2.24
Formant 2 51.48 50.88 58.20 54.51 52.98 49.88 52.99% 3.03
Duration 36.36 38.96 33.77 35.06 40.26 40.26 37.45% 2.78
Intensity 24.68 22.08 27.27 22.08 38.96 35.06 28.36% 7.08

5 Pitch 15.17 14.31 10.34 10.00 21.90 22.07 15.63% 5.34
Glottal 25.45 21.82 30.91 34.55 30.91 36.36 30.00% 5.49

Formant 1 40.60 40.30 46.12 45.82 47.91 46.87 44.61% 3.31
Formant 2 53.88 49.85 58.51 56.12 54.78 50.90 54.00% 3.23
Duration 41.03 35.90 38.46 35.90 38.46 46.15 39.32% 3.86
Intensity 23.08 17.95 28.21 17.95 35.90 35.90 26.50% 8.22

10 Pitch 12.76 11.72 7.24 8.28 20.69 19.31 13.33% 5.58
Glottal 25.00 17.86 35.71 35.71 28.57 32.14 29.19% 6.93

Formant 1 38.79 40.91 43.03 44.24 47.58 47.88 43.74% 3.61
Formant 2 55.76 47.58 59.39 57.27 53.33 55.15 54.75% 4.06

Table 1: Error Rates (percentage) of Open-set Pairwise Stress Classi�cation Using Five Linear Features
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proposed a new TEO-based nonlinear feature, TEO-CB-
Auto-Env. The new feature was shown to have better
performance for stress classi�cation than our previous fea-
tures. Moreover, it outperforms the linear pitch feature
by +5:2%, and is more consistent across di�erent stress
styles for stress classi�cation. Even though we may con-
clude here that the nonlinear TEO-CB-Auto-Env feature
using an HMM structure is very e�ective for stress clas-
si�cation, we suggest that it may be possible to integrate
HMM and Bayesian hypothesis frameworks for multiple
feature types. Since speakers can di�er in how they ad-
just speech features to convey stress, a combination of
linear and nonlinear features may be needed for universal
speaker stress classi�cation.
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