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Nonlinear Feature Based Classification of
Speech Under Stress
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Abstract—Studies have shown that variability introduced by [28], [29], [40], [45], [46] have shown distinctive differences
stress or emotion can severely reduce speech recognition accuracyin phonetic features between normal and speech produced
Techniques for detecting or assessing the presence of stres§;nder Lombard effect. Under emergency conditions such
could help improve the robustness of speech recognition systems. L . - .
Although some acoustic variables derived from linear speech as that |n.a|rcraft pilot communications, speech normally IS
production theory have been investigated as indicators of stress, Produced in a fast manner and can have aspects of emotional
they are not always consistent. In this paper, three new features fear. High workload, multitasking, and/or fatigue could cause
derived from the nonlinear Teager energy operator (TEO) are speech to sound slower, faster, softer, or louder than speech
investigated for stress classification. It is believed that the TEO produced under neutral environments. The physical G-force

based features are better able to reflect the nonlinear airflow t which a fiaht kpit pilot . duri |
structure of speech production under adverse stressful conditions. movement, which a fighter COcxpit piiot EXPErences auring rea

The features proposed include TEO-decomposed FM variation maneuvers, or the movement a person might experience while
(TEO-FM-Var), normalized TEO autocorrelation envelope area riding a roller coaster, can disrupt the typical speech production
(TEO-Auto-Env), and critical band based TEO autocorrelation process. A study by South [2] showed that pilots undergoing

envelope area (TEO-CB-Auto-Env). The proposed features are high G-force in a centerfuge resulted in a shrinkifig versus

evaluated for the task of stress classification using simulated and F2 (first df t | M fi |
actual stressed speech and it is shown that the TEO-CB-Auto-Env (first, second formant) vowel space. Moreover, emotiona

feature outperforms traditional pitch and mel-frequency cepstrum ~ @rousal can cause changes in respiration pattern and muscle
coefficients (MFCC) substantially. Performance for TEO based tension in the vocal tract. Such changes in speech production
features are maintained in both text-dependent and text-indepen- prought on by a variety of emotions have been the focus of a
dent models, while performance of traditional features degrades number of research investigations [7], [16], [23], [53].

in tgxt-independent models. Overall neutral Versus stress c!assifi- It is well-known that the performance of speech recognition
cation rates are also shown to be more consistent across different ; ) X o g
stress styles. algorithms is greatly influenced by the stressful conditions in
. which speech is produced. Workload task stress has been shown
Index Terms—Human factors, nonlinear speech feature, speech o . "
analysis, speech recognition, stress classification,TeagerenergyopIO significantly impact recognition performance [3], [4], [11],
erator (TEO). [16], [39], [41], [43], [54]. Adverse influence of the Lombard
effect on speech recognition has been reported in [28], [46].
Effects of different stressful conditions on speech recognition
and efforts to improve the performance of speech recognition
TRESS and its effects on the acoustic speech signal halgorithms under stressful conditions can be found in [3], [11],
een the subject of many studies [1], [2]. Adverse envil6], [17], [19]-[22], [41].
ronments, such as noisy backgrounds, emergency conditiond;or speech recognizers, a typical approach to improve
high workload stress, multitasking, fatigue due to sustaingeicognition robustness under adverse conditions (e.g., varying
operation, physical environmental factors (G-force), emotionedmmunication channels, handset differences) is re-training
moods, etc., are some of the factors which introduce str¢g$erence models (i.e., train-test in matched conditions). A
into the speech production process. When a speaker produgigglar method, called multi-style training [34], has been used
speech in the presence of background noise, Lombard efftcimprove speech recognition under stress, but at the expense
[35] will also occur since the speaker must modify his/hedf requiring the user to produce speech across a simulated
speech in order to increase communication quality over thange of stress styles. In a separate study, it was shown that
noisy environment. Numerous studies [6], [10], [16], [23], [24]multistyle training only works in speaker-dependent scenarios
and that performance actually degrades below neutral training
when applied in a speaker independent application [55].
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second set of speakers. Their results showed that recognitior

]

1
performance can be improved, but not to the same degree as : 1*.0
seen for speaker-dependent stress models. It is suggested th: 1 oral cavity
algorithms which are capable of classifying stress could be : Velocity
used to classify stressed speech from neutral. Model adaptatior ! proflle

techniques can be further used to adapt models so that stresse ]
speech can be recognized well. Shectlike ' Separation Laryngeal

J | <

In fact, stress classification cannot only be used to improve Jerflow ™ ',/ line eetion
the robustness of speech recognition systems, other scenario
can also benefit, such as telecommunications, military applica-
tions, medical applications, and law enforcement. In telecom-
munications, in addition to its potential to improve the tele-
phone-based speech recognition performance, stress classificecreatachment
tion can be used to route 911 emergency call services for high  region
priority emergency calls. Moreover, it can also be used to assess
a caller's emotional state for telephone response services. The
integration of speech recognition technology has already been
seen in many military voice communication and control appli-
cations. Since many such applications involve stressful envi-
ronments (e.g., aircraft cockpits, military peacekeeping/battle-
field setting), stress classification and assessment become cru £ 10N
cial to improve the system robustness in these applications [27].
Furthermore, computerized stress classification and assessmer
techniques can be employed by psychiatrists to aid in quanti-
tative objective assessment of patients undergoing evaluation. Flow lincs
Finally, stress classification can also be employed in forensic Truchea
speech analysis by law enforcement to assess the state of tele
phone callers or as an aid in suspect interviews.

Although much research has been conducted on stressful con-Fig- 1.  Nonlinear model of sound propagation along the vocal tract.
ditions for speech recognition, there has been limited work per-
formed in the area of stressed speech classification. The maAll speech features used in [55], [23], which include the
jority of studies in the field of speaker stress analysis have coMFCC, are derived from a linear speech production models
centrated on pitch, with several considering spectral features #éich assume that airflow propagates in the vocal tract as a
rived from a linear model of speech production [23], [53], [16plane wave. This pulsatile flow is considered the source of
[55], [57]. The number of studies in stress classification is mugeund production. According to studies by Teager [49]-[51],
more limited. One recent study [24] considered stress classlfiowever, this assumption may not hold since the flow is actually
cation using separate and concomitant vortices are distributed throughout
the vocal tract (shown in Fig. 1 [30]).

Teager suggested that the true source of sound production is
actually the vortex-flow interactions, which are nonlinear. This
Yoservation was supported by the theory in fluid mechanics [12]
and a new feature based on the autocorrelation of t ) weII. as by numerical simulatipn of Navier—Stokes. equatipn

MFCCs (AC-mel) ]. It is believed that ch_anges in vocal system phys,lol_ogy in-

' duced by stressful conditions such as muscle tension will affect

Stress classification performance using these features wtre vortex-flow interaction patterns in the vocal tract. There-
determined using separability distance metrics and neufate, nonlinear speech features are necessary to classify stressed
network based classifiers. It was shown that stress classificatggeech from neutral.
performance varied significantly depending on the vocabularylt can be stated that there are two broad ways to model the
size and speaker population. However, MFCC and AC-mleluman speech production process. One approach is to model
performed better than delta-MFCC and delta-delta-MFCC fthe vocal tract structure using a source-filter model [15]. This
vocabulary dependent tests. A later study showed that by usaggproach assumes that the underlying source of phoneme iden-
target driven features and context dependent phoneme netitplcomes from the vocal tract configuration of the articulators.
networks, stress classification performance could be measBecent studies have explored the prospect of decomposing the
ably improved [55]. Other acoustic features which have alsystem model characteristics for both vocal fold movement [5]
been shown to be useful as indicators of speech under strasd vocal tract structure [47]. An alternative way to characterize
include fundamental frequency'(), phoneme duration and speech production is to model the airflow pattern in the vocal
intensity, glottal source structure (especially spectral slop#act [52]. The underlying concept here, is that while the vocal
and vocal tract formant structure [23]. tract articulators do move to configure the vocal tract shape, it

False vocal
folds

1) estimated vocal tract area profiles;

2) acoustic tube area coefficients;

3) Mel-cepstral based parameters (MFCC [13]) includin
Mel-cepstral (MFCC), delta MFCC, delta-delta-MFCC
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is the resulting airflow properties which serve to excite thosystems, Kaiser [31], [33] derived the operator for discrete-time
models which a listener will perceive as a particular phonemsgnals from its continuous fornlr.[z(t)], as
Studies by Teager emphasized this approach [49]-[51], with )
follow-up investigations by Kaiser [31]-[33] to support those Ylz(n)] = 2°(n) — z(n + Dz(n — 1) 2
concepts. Although the airflow pattern shpwn In Fig. 1 may bv%herea:(n) is the sampled speech signal. For example, the re-
closer to that of the real speech production process, it is V&liina continuous TEO response foft) — A cos Q¢ is a con-
difficult, if not impossible to model it mathematically, since .g 2052, P . . .

. . . : tant:W[x(¢)] = A=Q=; and the response for the discrete equiv-
complete Navier—Stokes solutions of airflow require accura%(? . : 9 . 2

" . alent signalz(n) = Acoswn, isV[z(n)] = A*sin” w.

boundary conditions versus time. In an effort to reflect the The TEO is typically applied to a bandpass filtered speech

instantaneous energy of nonlinear vortex-flow mteractlongr nal, since its intent is to reflect the energy of the nonlinear

Teager Qeveloped an energy operator, with the supportlﬁ within the vocal tract for a single resonant frequency. Al-
observation that hearing is the process of detecting the ener, jugh the output of a bandpass filter still contains more than

Lgfszlr”[]glzﬁ ng elegant form of the operator was introduced oMe frequency component, it can be considered as an AM—FM
signal,r(t) = a(t) cos(2x f(¢)t). The TEO output of-(¢) can

d 2 22 be approximated as
Leletoll = <$ x(t)> ~ o) <W x(t)> Wlr(t)] ~ [alt)2n f(£)2. @3)
= [#()]* — z(H)E(?) @

This notion will be further explored during feature derivation in
Section II-D.

Infact, the TEO profile can be used to decompose an AM—FM
nal into its AM and FM components within a certain fre-

gncy band via

whereV[ -] is the Teager energy operator (TEO), at{d) is a
single component of the continuous speech signal. i

One previous study [9] considered stress classification usin
a nonlinear feature based on properties of TEO, where the shd
ofa pitch_normalized TEO profile was used. Good performance 1 Uly(n)] + Cly(n + 1)]
was obtained for speech produced under angry, loud, clear, and/(n) = o Arecos 1- 40 [a(n)] )
Lombard effect speaking conditions. That study, however, was

limited to stress classification of extracted front and mid vowels. Ua(n)]

Our focus, here, is to remove phone or word level depen-|a(n)| = 5 (5)
dency in the stress classification task, and thereby concentrate [1 _ <1 _ Yly(n)] + Yly(n + 1)]) ]
on correlates of nonlinear excitation characteristics asso- 4V [z(n)]

ciated with stress. For this purpose, we propose three new
features which incorporate TEO-based processing in thiere _ o _
study. The features are entitled TEO-decomposed FM variatior#/(n) = z(n) — z(n — 1) time domain difference signal;

(TEO-FM-Var), normalized TEO autocorrelation envelope area ¥[ -] TEO operator as shown in (2);
(TEO-Auto-Env), and critical band based TEO autocorrelation /(1) FM component at sample;
envelope area (TEO-CB-Auto-Env). These features explore thet(n) AM component at sample [36],
prospects of variations in the energy of airflow characteristics [37].

within the vocal tract for speech under stress. We compare fR8 the basis of this work, Marages al. [37] proposed a non-
performance of the proposed TEO-based features to traditioli@gar model which represents the speech sig@glas
MFCC and pitch information for the task of stress classification M
using speech under simulated and actual stress from data s(t) = Z (%) (6)
provided by NATO IST/TG-01 (SUSAS, SUSC-D).

The paper is organized as follows. In Section IlI, the back-
ground of the nonlinear Teager energy operator (TEO) is firdf€"

described, followed by sections where we propose three new t
() = am(t) cos <27r <fcmt —|—/ qm('r)d'r> + 9) @)
0

m=1

e

TEO-based stress classification features. An extensive set of(?
evaluations and discussion are presented in Section Il using
speech under stress from several simulated and actual stress oacombined AM and FM structure representing a speech res-
ditions. Finally, Section IV presents conclusions. onance at thenth formant with a center frequenay,, = fer.
In this relation ., (¢) is the time-varying amplitude, ang, (7)
is the frequency modulating signal at theh formant.
Although TEO processing is intended to be used for a signal
A. Background of the Teager Energy Operator with a single resonant frequency, we will find in Section I1-D
The continuous from of the TEO is shown in (1). Since speedhat the TEO energy of a multi-frequency signal does not only
is represented in discrete form in most current speech process@itects individual frequency components but also reflects in-
teractions between them. This characteristic extends the use of
IFor further information on NATO IST/TG-01 efforts on stress, see theiTEO to speech signals filtered with wide bandwidth band-pass
speech under stress web page at http://cslu.colorado.edu/rspl/stress.html. filters (BPF). These observations led us to propose the TEO-

Il. STRESSCLASSIFICATION FEATURES
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Fig. 2. Waveforms of 150-ms duration obtained from the voiced portion of word “help” spoken by the same male speaker under (a) neutral and (b) simulated
angry conditions.

based stress classification features discussed in the followlBipce AM—-FM signal analysis requires a carrier frequency

subsections. which must be higher than the modulating frequencies within
the signal, we filter the raw input speech through a Gabor
B. TEO-FM-Var: Variation of FM Component bandpass filter [37] (BPF) centered at the median fundamental

Voiced speech spoken under stress generally has differ@ffuency.0, with the root mean square (RMS) bandwidth
instantaneous excitation variations from voiced speech spolint 0/2. The Gabor BPF is employed since it has excellent
under neutral conditions. This can be verified by comparinjd€lobe cancellation. Here, we are only interested in fine exci-
voiced speech waveforms spoken under neutral and simulat@diPn variations which are believed to.reflect.changlng Ieve.Is
angry conditions. For example, Fig. 2 shows sample waveforiikspeaker stress. The absolute magnitude difference function

from the voiced part of the word “help” in both neutral and angrngDF) [42] is employed to automatically estimate the median

conditions. The differences in pitch excitation is clearly evidenfundamental frequency;0, based on the TEO profile of the

Therefore, features which represent fine excitation variatiorfd]tiré input. The reason to estimai€) based on the TEO

should be useful for stress classification. This observation mipfile is that the TEO profile usually reflects better and more
also be verified across a range of voiced phonemes and speal&fasistent period-to-period pitch information than that obtained
We consider this later in the evaluation section. However, Ift the original speech signal partly due to the square effect of
is reasonable to believe that the fine excitation variations ot® TEO- After the Gabor BPF, the TEO is applied and the
served in the speech signal are due to the effects of modulatidiSulting profile is used to separate the input speech signal into
This point is supported by comparing the waveforms of a puﬁ? AM a,”c?' FM components using (4) and (5). The frame-based
steady-state sinusoidal signal and a slowly modulating AM—F¥! variations are further computed as the proposed feature.
signal (shown in Fig. 3). We see that the AM and FM compOA-‘ flow d|agram for extra_lctm_g the first TEO-based feature
nents cause measurable variations in the resulting wavefofhE©Q-FM-Var) is shown in Fig. 4. Example waveforms are
It is believed that the modulation patterns observed in Fig.25© Shown at each stage of the feature extraction for neutral
are perhaps similar to the modulation variations due to stresafid stressed speech. We observe considerable differences in
Fig. 2. Therefore, a stress classification feature is needed whiBf final and intermediate feature response betweeen neutral
reflects these modulation variations. and stressed speech.

While it might seem straightforward to apply a standard _ i
pitch estimation algorithm to estimate these variations, tife TEO-Auto-Env: Normalized TEO Autocorrelation Envelope
large and erratic pitch changes under stress generally calie?
traditional estimation algorithms to fail, thus requiring human The second TEO-based feature entitied TEO-Auto-Env also
pitch label correction [16]. An alternative is to use the FMeflects the instantaneous excitation variations of speech. A flow
variation of each frame as the feature for stress classificatiatiagram is shown in Fig. 5.
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Fig. 3. Sample waveforms from (a) a single frequency (1 kHz) and (b) a modulated AM/FM response.
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Fig. 4. TEO-FM-Var Feature Extraction [waveforms represents a segment of /IH/ sound in the word fix under neutral (left column) and stressedr{right co
conditions].

The motivation for the TEO-FM-Var feature is to capturdand. According to the nonlinear model proposed by Maragos
stress dependent information that may be present in changeasl. [36], [37], voiced speech can be modeled as the sum of
within the FM component. Its processing is based on the entéd—FM signals of which each is centered at a formant fre-
band although the final FM variations are computed around thaency [shown in (6)]. If a filter bank is used to bandpass filter
restricted frequency band. However, the presence of stress maiged speech around each of its formant frequencies, the mod-
affect modulation patterns across the entire speech frequentation pattern around each formant can be obtained using TEO
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Fig. 5. TEO-Auto-Env Feature Extraction [all waveforms for B, C, and D are for the 2nd band, 1-2 kHz; waveforms represents a segment of /IH/ sound in the
word fix under neutral (left column) and stressed (right column) conditions].

AM-FM decomposition, from which variations of modulatiorthat used in the TEO-FM-Var feature extraction. Subsequently,
patterns across different frequency bands can be obtained. Seabh Gabor-filtered TEO stream is segmented into frames.
an approach, however, requires tracking all the formant frequén-order to have equivalent averaging effects for the formant
cies, which could be difficult to estimate reliably since most trasariations, the frame length is set to four times the median pitch
ditional formant tracking algorithms fail when speech is spokgreriod. Furthermore, the normalized autocorrelation function is
under stress, due to the large and erratic excitation variatioomputed for each frame. In the present formulation, if there is
[16], [23]. To avoid the difficulty of automatic formant tracking,no pitch variation within a frame, the output TEO is a constant
four fixed bandpass filters are used with frequency ranges arfd its corresponding normalized autocorrelation function is
(0-1 kHz), (1-2 kHz), (2-3 kHz), and (3-4 kHz), respectivelya decaying straight line from (0, 1) {@V, 0), whereN is the
The number of formants which fall into each of the four freframe length. The area under this ideal envelope (a straight
quency bands could range from 0 to 2 under neutral speakiimg) for this frame should beV/2. In the case when pitch
conditions [14]. Under stressful conditions, however, the fovariation is present in a frame, its normalized autocorrelation
mants can shift their location in frequency, and therefore ngnvelope will not be an ideal straight line, and hence the area
grate into an adjacent filter (i.e., increase/decrease the locatiorder the envelope will be less thay/2.2 By computing
formants by as much as 6% (a 3%—6% changefforl», and the area under the normalized autocorrelation envelope and
0%—-3% for F; and ) [16]). Different types, or varying de- normalizing it by /2, we can obtain four normalized TEO
grees, of stress will influence the distribution of formant charaautocorrelation envelope area parameters for each time frame
teristics, and pitch structure and spectral based pitch harmorfics., one for each frequency band) which reflects the degree
from neutral conditions. As a side note, in addition to the prof excitation variability within each band. Fig. 5 also shows
mary issue of formant migration into adjacent filters, additionaxample waveforms extracted at points during TEO-Auto-Env
pitch harmonics would also occur. This concept is addressedé@ature processing for the second subband (1-2 kHz). By
more detail in the following critical band based TEO featureomparing the extracted waveforms for neutral and stressed
(i.e., TEO-CB-Auto-Env). speech, we see significant changes that we believe would allow
The TEO-Auto-Env feature is obtained by passing the ratlhe TEO-Auto-Env feature to respond favorably for a task in
input speech through a filterbank consisting of 4 bandpassess. Similar degrees of profile variation was also observed
filters (BPF) (see Fig. 5). Each BPF output stream is procesded the other subband frequencies.
to obtain an estimate of each TEO profile. Since the TEO
output of a signal is roughly proportional to the square & TEO-CB-Auto-Env: Critical Band Based TEO
both its amplitude and frequency as shown in (3), and the Afitocorrelation Envelope
component for a single formant exhibits periodicity similar to The uniform partition of the entire speech frequency band
the fundamental frequency, therefore, filtering the TEO profilgr the TEO-Auto-Env was performed in an attempt to cap-
with a filter centered a#'0 captures variations around0. A
Gabor filter with a 3 dB bandwidth roughly equal @/2 2Since the area under the envelope is obtained by tracking the autocorrelation

peaks, its area can at most equal the autocorrelation response only if the auto-
can achieve thisl'0 is obtained by using the same method asurrelation function is a straight line.
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Fig. 6. TEO-CB-Auto-Env feature extraction.

ture stress sensitive changes outside the first formant. The TEO- TABLE |
Auto-Env feature allows us to probe nonlinear energy changes at ~ D!STRIBUTION OF PITCH HARMONICS ACROSSCRITICAL BANDS
higher frequencies. However, the frequency partition was coar

Statistics of Pitch Harmonics across Critical Band

(i.e., 1 kHz bandwidth). A finer partition might help derive a Data about Critical Band is from [34]

more effective feature for stress classification. Empirically, th Band Critical Band Frequency Average Harmonic Number
human auditory system is assumed to perform a filtering opeNumber Information (Hz) (Obtained from 12 voiced tokens)
ation which partitions the entire audible frequency range int Lower | Center | Upper | Bandwidth | Neutral | Augry | Loud | Lombard
many critical bands [44], [56]. Based on this observation, th— 8 ;Zg zgg = 133 ;gg = ;?‘7)
third proposed feature employs a critical band based filterbai—; 300 | 30 | 200 00 oo | 100 |04z | o088
to filter the speech signal followed by TEO processing (s€™ 4 400 | 450 | 510 110 108 | 025 | 092 | 100
Fig. 6). Each filter in the filterbank is a Gabor bandpass filtel 5 510 | 570 | 630 120 117 | 108 | 083 | 075
with effective RMS bandwidth being the corresponding critica__8 630 | 700 | 770 140 142 | 083 | 092 | o042
band. To extract the TEO-CB-Auto-Env feature, each TEO prc— Zzg &4(::) 1128% izg P ?Ez igg
file of a Gabor BPF output is segmented into 200-sample (-~ 7os0 T 170 1270 | 150 s 108 Tiss | 167
ms) frames with 100-sample (12.5 ms) overlap betweentwo a™ 10 | 1270 | 1370 | 1480 210 192 | 125 | 142 | 133
jacent frames. Similar to the extraction of the TEO-Auto-En'_ 11 | 1480 | 1600 | 1720 240 242 | 142 | 142 | 133
feature,M normalized TEO autocorrelation envelope area pe_ 12| 1720 | 1850 | 2000 | 280 242 | 158 | 200 | 158
rameters are extracted for each time frame (i.e., one for ea—> 22025 2 gzg S -
critical band), where! is the total number of critical bands. ~—— ;2700 T 2500 | 3150 50 25 | 267 | 292 | 3.0
This is the TEO-CB-Auto-Env feature vector per frame. Fig. ("1 | 3150 | 3400 | 3700 550 500 | 317 | 3.67 | 3.33

shows the entire feature extraction procedure.

1) Harmonic Analysis:The TEO-Auto-Env feature extrac-
tion is subject to the accuracy of median0 extraction, due to their increased complexity; but clearly they will also
which is not always reliable. The TEO-CB-Auto-Env extracinfluence the resulting feature response.
tion attempts to remové'0 estimation dependency. Although 2) Quantitative Analysis:Next, we wish to quantitatively
the TEO-CB-Auto-Env appears similar in structure to theerify how the difference of pitch harmonic distributions across
TEO-Auto-Env feature, both features are actually representiogtical bands affect the TEO output from each critical band.
very different aspects in the speech signal. The TEO-Auto-Elive assume that two harmonieg, andw,,, existin a critical
attempts to represent the variations around pitch caused by foend under neutral conditions, and that only one harmogic
mant distribution variations across different frequency bands;the same critical band due to an increased fundamental fre-
while TEO-CB-Auto-Env is focused more on representinguency when the same speech is produced under stressful con-
the variations of pitch harmonics since it has much higheitions. As a result, the TEO autocorrelation response from this
frequency resolution than the TEO-Auto-Env. When spokamritical band under neutral conditions will be different. Let us
under stressful conditions, a speech signal’'s fundamental fessume the output of a particular bandnder neutral speech
quency will typically change so that the distribution patternonditions can be written ag(n), and under stress conditions
of pitch harmonics across critical bands will be different fromas ¢*(n). Since the fundamental frequency for neutral speech
that of speech spoken under neutral conditions. To verifyill be much lower, the critical band will typically possess more
this, we manually computed the average harmonic numbrmonic frequencies. If we assume a male speaker doubles his
in each critical band from 12 voiced tokens for each gfitch under stressthen we could assume that the output signal
the four speaking styles in the SUSAS (discussed in Sdoem the critical band possesses two harmonics for neutral, and
tion 111-A) simulated stress domain (shown in Table 1). For eacbne harmonic for stress as follows:
voiced token, average pitch was calculated and the number

of harmonics (based on averaged pitch) which fall in each n'(n) = Ay, cos (wy,n) + Ay, cos (wy,n) (8)
critical band was obtained. From Table |, we can clearly ;
see the differences in harmonic distribution across critical ("(n) = A¢, cos(we,n) . ©)

bands between neutral, angry, loud and Lombard speech. The

difference in the number of harmonic terms within each bandere, the amplitudes.,,, A,, andA,, should be functions of

as well as the regularity of each harmonic, both influence tii@€t, however, to simplify our discussion, we assume that they
resulting TEO features between neutral and stress conditioR all constants. Next, we apply the TEOtén) and¢’ (),

Note that in the analysis for Table I, we did not attempt to 3Previous analysis of one sample speaker from SUSAS showed a mean pitch
quantify the number or form of the cross harmonic termsr neutral speech of 121 Hz and 243 Hz for speech under angry conditions.



208 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 9, NO. 3, MARCH 2001

which produces the following relations: We again point out that the resulting autocorrelation functions
in(13) and (14) resulted from the single and double harmonic out-

For Neutral: puts from a single critical band filter originally from (8) and (9).

‘11[77 (n)] _ (77 (n)) —ni(n— Dgi(n+1) Although this mathematical derivation appears quite complex,

9 this is in fact the simplest case since we are dealing with only a
single or double harmonics. For thisideal case, one might suggest

— (Ay, cos(wn, (n — 1)) + Ay, cos(wn,(n — 1)) thatcalculating the TEO autocorrelation functionsis unnecessary

X (Ay, cos(wy, (n+ 1)) + A, cos(w,,(n +1))) since they reflect the same variation trends as the TEO profile

= (Am COS(wm 7’L) + Aﬁz COS(wﬁz 71))

— 42 sin?(wp, ) + A2 sin?(wy, ) + 24y, Ay, sin® |tself. In real|.ty, hoyvgver, critical bandmay possess cross-har-
monictermsinadditiontothe pufé) harmonics. There may also
x [ “m = e cos((wn, + be amplitude and/or frequency modulating terms correspondin
2 Wiy wﬁz)n) p - q y . g P g
to each harmonic or cross harmonic term. All of these factors

+2A4,, Ay, cin? <wm + Wy, )COS((%I — wn,)n) can cause rapid ch_anges in th(_a TEO profile. The averaging effect
2 of the autocorrelation calculation can suppress some of the fast-
(10) changing variations and still maintain those fluctuations which
are believed to be due to stress. This process makes it easier to

For Stress: locate and track the upper envelope from the TEO autocorrela-

¢ (n)]=(¢"(n)" = ¢'(n = 1) (n+1) tion function than from the TEO profile itself.
= (A, cos(we,n))? — (Ae, cos(we, (n — 1)) As a result, the constant TEO profile will be represented as
x (A, cos(we, (n+ 1)) the autocorrelation envelope which is a decaying straight line

from (0, 1) to(NV, 0), whereX is the frame length. Those vari-
ations caused by harmonic distribution differences as well as by

; i modulations will be reflected by the change in the TEO auto-
If we compare¥[n*(n)] and V[(*(n)], we see that the TEO (iﬁrrelation envelopes.

output of band under stress is a constant, while the same outp 3) Waveform AnalysisTo further illustrate the output dif-

under the neutral speech condition is a function of time Ind%rences resulting from each critical band between neutral and

?hicsogﬁ‘flztrlgr?czfiawt%g?r%uoe r;gse&'”l + w,,z_”andb|wm - w7|72 |.' fl stressed speech, waveform analysis for an arbitrary critical band
. . ponses witl su sequgnty n l(5vasperformed(band 9wasselectedatrandomsinceitisamid-fre-
ence their autocorrelation functions. Let us first derive _the aHUencyband).Asegmentwith relatively stable pitch periods from
the voiced section of “help” under the angry stress condition was
employed for analysis. Accordingly, a corresponding segment
) Iy fromaneutraltoken of “help” was also extracted. Forthe example
. -1 i i waveform analysis considered here, the pitch of the neutral seg-
Ry (k) = z\}lgloo 2M +1 Z v [77 (n)] v [77 (n+ k)] " mentwas alsoyartificially increased usinz a pitch—synchronougsJ
(12) overlap-and-add (PSOLA) method [38] to the same pitch level
Next, we substitute the final result from (10), and finally we caaf the segment under angry stress to obtain a new segment for the
obtain purpose of feature comparison. This step was performed so that
the TEO-basedfeatureswouldreflectonlythe changeinnonlinear
Ry (k) = cos (wn, + wny)(n + k)) + sin? <“’m ;F“’fm) speech or airflow characf[eristics. In effgct, this allows_us_to sepa-
rate the feature problem into two parts (i.e., suppress inimpact of
x cos ((wy, — wy,)(n +k)) anincreased pitch level. It is believed that the presence of stress
= A7271 sin?(wy, ) + Av272 SinQ(w%)f 12 A7271 ATsz causes anincrgaseinthevarigbilityofairﬂowcharacter?stics,due
to differences in muscle tension of the vocal folds. This should

= A7 sin’(we, ). (12)

basic simple autocorrelation function

n=—M

X {sin4 <M> cos((wy, + wny, k) cause changes in airflow patterns above the vocal folds, thus in-
2 creasing the vortex interactions around the false vocal folds. The

4 sint <wm ;rwnz ) cos((wp, — wnz)k‘)} _ TEO is thus pelleyed to repr_esent a measure of the nonlinear en-
ergy present in this vortex airflow. However, under a stress con-

(13) dition such as anger, the rate of vocal fold movement is much

higher. Therefore, while we believe the TEO output of each crit-

This final autocorrelation function for the neutral TEO responseal band filter will have increased variability under stress, the

is complex, with frequency terms consistinguaf, + w,, and number of frequency harmonics in each frequency band will be
|wy, — wn,|. Similarly, we can obtain the autocorrelation funcless under stress (i.e., duetoanincreasein pitch). By adjusting the

tion for the stressed speech TEO response as follows: pitch of neutral to have the same mean as angry in this example,
we can temporarily remove the impact of some of the resulting
Ryjen(k) = Ad sin*(w, ). (14) TEO cross-terms present in the given critical band filter.

Fig. 7 shows the output waveforms from critical band 9
Clearly, the autocorrelation function for the stress case is a cdfrequency between 1080 and 1270, Table I) for original neutral,
stant, independent of correlation lag pitch adjusted neutral, and angry. We plot the three speech
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(al) Speech Waveform at the Output of Critical Band 9
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]
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(a2) TEO rofile of (al)

(a3) Autocorrelation of (a2) (Envelope shown by dashed line)

(bl) Speech Waveform at the Output of Critical Band 9

]
]
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(b2) TEO Profile of (bl)

(b3) Autocorrelation of (b2) (Envelope shown by dashed line)

(c1) Speech Waveform at the Output of Critical Band 9
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(c2) TEO Profile of (cl1)
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(c3) Autocorrelation of (c2) (Envelope shown by dashed line)

Fig. 7. Waveform analysis. (a) Neutral speech segment with averageRitch 111 Hz, (b) pitch adjusted speech by increasing the pitch for neutral speech
from (a) to 239 Hz, and (c) speech segment under angry stress with averagg'@iter240 Hz.

segments, their TEO profiles, and AM—FM energy componentsutput of critical band 9's neutral segment has two main peaks,
Fourier transform analysis of this example showed that tiéhich correspond to the main pitch harmonics in its spectrum;
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TABLE I
DESCRIPTION OFSUSAS DXTABASES

SUSAS DATABASE

DoMAIN Tyre oF STRESS OR EmoTiON SPEAKERS COUNT VOCABULARY
SIMULATED STRESS O SPEAKERS 8820 35 AIRCRAFT
-'éATI;IKLIgsG sLOW SOFT (ALL MALE) COMMUNICATION
FAST LOUD WORDS
ANGRY  GCLEAR
QUESTION
SINGLE CA".'I'.BRATED W.?RKL.OAD 9 SPEAKERS 189D 35 AIRCRAFT
TRACKING RACKING 1ASK: (ALL MALE) COMMUNICATION
T MODERATE & HIGH STRESS WORDS
ASK LOMBARD EFFECT
DuaL AcauISITION & COMPENSATORY 8 SPEAKERS 4320 35 AIRCRAFT
TRACKING TRACKING TASK: (4 MALE) COMMUNICATION
TAsK MODERATE & HIGH STRESS (4 FEMALE) WORDS
AcTuaL AMUseEMENT PARK ROLLER-COASTER 9 SPEAKERS 500 35 AIRCRAFT
SPEECH HevLicorTER CockPIT RECORDINGS (4 maALE, COMMUNICATION
UNDER (G-FORCE, LOMBARD EFFECT, 3 FEMALE) WORDS
STRESS Noise, FEAR, ANXIETY) (2 MALE)
PsyYcHIATRIC PATIENT INTERVIEWS: 8 SPEAKERS 600 CONVERSATIONAL
ANALYSIS (DePRESSION, FEAR, (6 FEMALE) SPEECH: PHRASES
ANXIETY, ANGRY) (2 MALE) & SENTENCES
while the pitch—in.creased segment and _the .stress_ed segm Voiced Sagmintton | Compute N Peak-picking to Poss,t';prgye:::i?cg Output
showed one main peak (pitch harmonic) in their spectre ] (FusdFane) Nommalized find the pich using Dynamic  [-—p>
L . - . """ Spasch Cross-corvelation Candidates Programming  § o
Distinctive differences in TEO profiles and corresponding —— e —— [ —— "1

autocorrelation functions are also shown between these three
speech segments [e.g., compare autocorrelation responses for
Fig. 7 (a3), (b3), (c3) ]. From this evaluation, we can see . )
that the angry speech is more than merely a pitch-incread@fj the évaluation. The following subset of SUSAS words
version of its neutral counterpart, since there are many otHf§fre used: “freeze,” “help,” “mark,” “nav,” “oh,” and "zero.
factors which make it different from neutral. Further studigd"9"y loud and Lombard styles were used for simulated
are needed to critically compare these factors across multiﬁF@eSS (sp(.eakers. were requested to speak in that style, and 85
speakers. We also note that the examples here are ideal cag% ,SPL pink noise played through headphones was used to
and in reality, there are cross-harmonic terms which magimulate Lombard effect). Data“for actual stress was selecte:j
the output of each critical band response very complicatd®™ the subject motion-fear “actual speech under stress
In addition, the Gabor bandpass filter centered at each critié@main. In the actual domain, a series of controlled speech data
band will include those harmonics in neighboring criticaﬁ:Ollectlon experiments were performed with sp_eakers riding
bands due to the gradual change of filter's frequency respoﬁaggusement park roller _coaster. Bgckground noISe levels and
characteristics. However, the waveform analysis here has serdd§SS levels were monitored during the completion of each
to illustrate that under stress, there are measurable changeddfi- Since the TEO is more applicable for voiced sounds than
the envelope of the autocorrelation of the TEO response, agi Unvoiced sounds, only high-energy voiced sections (i.e.,
that these changes are partly due to increases in fundameled/€!s. diphthongs, liquids, glides, nasals) were automatically
frequency under stress, partly due to the variability in tHextracted from the word utterances. All speech tokens were

harmonics present under stress, and partly due to nonlin§afPled using a 16-bit A/D converter at a sample rate of 8
variations occurred in the airflow in the vocal tract. kHz. A baseline five-state HMM-based stress classifier with

continuous distributions, each with two Gaussian mixtures, was
employed for the evaluations.

Fig. 8. Pitch tracking.

I1l. EVALUATIONS
A. Database B. Traditional Features

In this study, evaluations for stress classification were con-Since all three proposed features are based on nonlinear exci-
ducted usingpeech under simulated and actual st@dSAS) tation information, it was determined that it would be useful to
[16], [23], [25] database which is now available through LDCcompare their performance to the traditional pitch feature and
Table Il summarizes the main features of SUSAS. Two domaitiee MFCC [13] feature. The pitch feature is obtained using the
of SUSAS (simulated stress from “talking styles” and actualitch tracking method proposed in [48] (flow diagram shown in
stress from “amusement park roller-coaster”) were utilizéeig. 8). MFCCs have been widely used for speech recognition
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NoN-LINEAR

Discrere § OUTPUT
s coae [
(MeL Scate) Transror | MFCC

Fig. 9. MFCC extraction.

INPUT UTTERANCE, S, HMM BASED CLASSIFIER RESULT original, but a small level of perceived background noise is still
of Voiced Phone, X (S is utterance of X _ H i H
(sither neutral or under the T ® nder oither present. Round-robin training a}nd scoring were gmployed for
stress of a specific style, neutral or under both neutral and actual data. Fig. 10 shows the diagram of the
i.e., angry, loud or Lombard) Two REFERENCE MODELs the specified stress) e . . . .
of X under neutral and stress classification evaluation procedure for this evaluation.
e oy gy one The results of the first evaluation, text-dependent pairwise
classification, are shown in Fig. 11 . For simulated stressed

. . - N srpeech, the results show that the TEO-FM-Var feature can clas-

Fig. 10. Evaluation flowchart of text-dependent pairwise stress classificatiorn, .

sify neutral speech from their stress counterparts well (rates
) ) . ) ~_are in the range: 65.0%-82.2%), but it is not as successful in

of speech. Fig. 9 shows the extraction procedure of the MFCGG 696-48.29%). The TEO-Auto-Env feature is very consistent

feature. Pitch and MFCC have also been used previously fgf stress classification across different stress styles (rates fall

stress classification evaluations [24], [55]. Therefore, these typthe range: 73.9%-85.2%); while the TEO-CB-Auto-Env fea-

features represent a good basis of comparison for the new pigte keeps the consistency of TEO-Auto-Env but improves the

posed features. performance byt13.5% in terms of average classification ac-
o curacy (rates range from 87.4% to 98.2%). The two traditional
C. Stress Classification Results features, pitch information and MFCC have better average clas-

To determine which features are better for stress classifigfication accuracy than the TEO-FM-Var and TEO-Auto-Env
tion, we performed three different evaluations. First, text-depei@atures. However, they seem to have difficulty in differentiating
dent pairwise stress classification was evaluated to pre-seleetitral speech and speech with Lombard effect, and thus are less
good features from the proposed TEO features, and MFCC aransistent across different stress styles than the TEO-Auto-Env
pitch. Based on results from the first evaluation, we selected thed TEO-CB-Auto-Env features.
top three features and conducted a second evaluation for text-inFor speech from the SUSAS actual stress domain, since
dependent pairwise stress classification. Finally, a text-indepdine stress level of speech from roller-coaster rides is far more
dent multi-style stress classification evaluation was performedvere, stress classification rates were generally higher. The
for the same three features used in the second evaluation. results for the three nonlinear TEO-based features performed

1) Text-Dependent Pairwise Stress Classificatidxs the better than under simulated stress, with the TEO-CB-Auto-Env
first step, the task was constrained to be a text-dependérdture performing best. The result here, as seen in the sim-
pairwise stress classification. We trained an HMM model farlated case, is that the TEO-CB-Auto-Env feature performed
the voiced portion of each word using 18 tokens from nirgubstantially better than the traditional MFCC and pitch
speakers for each stress style, from the SUSAS simulafedtures. These results suggest the consistency of the TEO
stressed speech domain. One neutral HMM model per voiciegtures from simulated to actual speech under stress domains.
portion of each word was trained using 18 neutral tokenBurthermore, human interaction (manual pitch correction)
and 90 neutral tokens per word were used for pairwise testiisgneeded to improve the pitch estimation accuracy from
between neutral and stress style trained HMMs. Since onhaditional algorithms for actual stressed speech, thus making
18 stressed tokens per word for each style are availableawtomatic stressed speech classification difficult.
round-robin method (i.e., for each of 18 tokens, we use theDuring the extraction of the TEO-FM-Var and TEO-
remaining 17 tokens for training, and test on this token) wasuto-Env features, pitch information is utilized. For con-
employed for training and scoring. A total of 648 tokens wengenience, a simple absolute magnitude difference function
used for open test evaluation. For actual speech under stréA8/DF) method was used. Because of its simplicity, this
we used seven speakers producing 20 tokens of “freeze,” nimethod results in lower accuracy than other more sophisticated
tokens of “help,” 16 tokens of “mark,” 16 tokens of “nav,”pitch-tracking algorithms. Therefore, the relatively lower
15 tokens of “oh,” and 18 tokens of “zero” for neutral andlassification accuracy by these two features could have been
actual stressed conditions. A total of 188 tokens were used t@used by less accurate pitch estimation. As we observed,
open test evaluations. Since the speech data from the ach@kever, even the sophisticated pitch-tracking algorithm as
stress domain contains increased levels of background nomstegwn in Fig. 8 cannot give an accurate pitch estimation when
a previously formulated single-channel speech enhancemspgech is produced under stressful conditions. It is reasonable
method was first applied as a preprocessing phase [18] fortry a new feature which does not depend on the accuracy
all feature extraction methods. Informal listening evaluatioref pitch estimation. This partly explains why we proposed the
suggest that the enhanced speech sounds much cleaner thami& CB-Auto-Env feature.
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Fig. 11. Text-dependent pairwise stress classification results using SUSAS database (in-vocabulary test).
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Fig. 12. Text-independent pairwise stress classification results using SUSAS database (out-of-vocabulary test).

2) Text-Independent Pairwise Stress Classificatidm: the for the actual stress domain trained from 94 tokens, were
second evaluation, we selected the top three features, whided. For simulated stress domain, a set of 270 voiced tokens
are the TEO-CB-Auto-Env, MFCC, and Pitch, based on theaither than those used for training were extracted automatically
performance in the first evaluation, and conducted a textr test from the SUSAS database for each stress style; for
independent pairwise classification. The purpose here is dotual stress, a set 140 out-of-vocabulary voiced tokens were
verify whether these features are dependent on text or phonesreracted automatically for test from the SUSAS actual stress
information when performing stress classification. For thidomain. The neutral test set for both simulated and actual
purpose, only one HMM model for each stress style (i.estress domain consists of 272 out-of-vocabulary voiced tokens
angry, loud, Lombard, and actual) was trained from all tokemxtracted from the SUSAS database.
available for that stress style; that is, 108 training tokens The results, shown in Fig. 12, indicate that the same three
for angry, loud or Lombard HMM model, and 94 trainingfeatures have slight-to-measurably lower classification accuracy
tokens for actual stress model. Two neutral models, one for out-of-vocabulary test tokens than those in-vocabulary test
the simulated stress domain trained from 108 tokens and dokens (results shown in Fig. 11).
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It is expected that the MFCC feature would have the largest
performance decrease (average loss in classification rate: from
90.9% to 67.7%) because it is dependent on vocal tract spectral
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TABLE Il

TEXT-INDEPENDENTMULTISTYLE STRESSCLASSIFICATION RESULTS

UsING MFCC

structure and mainly designed for speech recognition. and tt Test | (a) Correct Detection || (b) Distribution of STRESS Detection

relies on text sequence information. The pitch information, i Speech Rate (%) Rate across 3 Stress Styles (%)

general, can classify stressed speech from neutral very well, | Style || Neutral | Stressed | Angry | Loud | Lombard

does not do as well in classifying neutral speech from stresst Neutral || 46.3 452 144 40.4

This is could be due to the lack in the pitch-tracking algorithm’ Axngry 85.9 58.6 185 22.8

ability to provide accurate pitch estimation. In this test, we di_Loud 89.3 489 207 19.6

not perform hand correction for pitch estimation results of a(ombard 719 459 185 351

tual stressed speech (as was performed in the first evaluation).

Although the performance of the TEO-CB-Auto-Env feature is TABLE IV

reduced, the decrease is the smallest. Its average classificationTexT-INDEPENDENTMULTISTYLE STRESSCLASSIFICATION RESULTS
USING PITCH

rate only decreases by 3.9%; while the average classification

I 0, 0
rate of pitch decreases by 7.0%, and.MFCC. by 23.2%. Mor est (a) Correct Detection || (b) Distribution of STRESS Detection
over, the TEO-CB-Auto-Env feature still remains the most cor Ra

. . te (%) Rate across 3 Stress Styles (%)

sistent across different stress styles compared to the other | Style | Neutral | Stressed || Angry | Loud | Lombard
features [standard deviation: TEO-CB-Auto-Env (8.36), MFCI N

; . eutral | 52.2 08 169 82.3
(8.78), Pitch (17.18)]. If we examine the performance decrea Angry 96.7 YWY 915
of the TEO-CB-Auto-Env feature for each stress versus neut .4 | 100 167 533 30.0
pair, we can see that the major decrease occurs for the simuléLombard | 95.6 08 97 80.5
domain, especially for the two pairs, neutral versus loud ana
neutral versus Lombard. As we know, simulated speech under

TABLE V

stress is not as easily identified as actual speech under stress %QT-INDEPENDENTMULTISTY

it is likely that some acoustic confusion or overlap between dif-
ferent stress styles exist. Also we should note that many mare

LE STRESSCLASSIFICATION RESULTSUSING

TEO-CB-AUTO-ENV

test tokens were used for the second evaluation. It is reasong Test | {a) Correct Detection | (b) Distribution of STRESS Detection
to conclude that the results here are more reliable statistica Speech Rate (%) Rate across 3 Stress Styles (%)
compared with those shown in Fig. 11, and that these perf Style | Neutral [ Stressed | Angry | Loud | Lombard
mance values would be realized in real voice communicati¢Neutral || 706 88 275 68.8
systems where stress classification is to be employed. ‘;“g:iy ggz gi‘g 2?3 1‘1'81

3) Text-Independent Multistyle Stress Classificatidgkfter o | - ' :

. . . TLombard 915 223 328 449

conducting the text-dependent and text-independent pairw=

stress classification evaluations, we considered a more ambi-
tious set of evaluations for text-independent multi-style stregmbard model picked over neutral]. In part (b) of each table,
classification. The same features (TEO-CB-Env, MFCC, Pitcle report the individual stress classification rates, assuming we
as in the second evaluation were used. The goal of this evadighieved correct detection (e.g., for the TEO-CB-Auto-Env fea-
ation is first to find out how accurate these features are in dgre (Table V), after correctly detecting angry speech as being
tecting neutral versus stressed speech, and further, to see Bfss 96.3% of time, we see that the angry model was actually
well they can classify stressed speech into different stress stylgected 65% of the time, with loud and Lombard selected 29.2%
We performed our evaluation on the SUSAS simulated domaghd 5.8% of the time). Finally, when the neutral model is selected
The reason for leaving the actual stress domain out is that actigrtheutral testtokens, we have correctdetection. When neutral to-
stress represents an extreme stressed condition (collected Wkdlgs are detected as stress, we have detection error, and we there-
speakers were riding roller-coasters) and can be more easily $#ite wish to identify which stress models are selectedin error. The
gled out. The same four HMM models (neutral, angry, loudiress classification rates reported for neutral test speech for part
Lombard) and vocabulary-test sets as used in the second evalym eachtable reflectthe error classificationrates, e.g., forthose
ation were employed. neutral tokensincorrectly detected 29.4% of the time as stress for
Results are shownin Tables llI-V. In each table, we first repdtie TEO-CB-Auto-Env feature (Table V), the majority were se-
correct neutral and stress detection rates [part (a) in each tabksjted as Lombard (68.8%), while a smaller percentage for the
For this part, the three stress models (angry, loud, Lombard) wetker two possible stress styles.
grouped together for an overall decision of “stress.” Therefore,Itis clear that the MFCC feature (Table 111) does not perform
if a neutral test token is submitted, correct detection occurs ordg well as either pitch (Table 1V) or the TEO-CB-Auto-Env
if the neutral model is selected [e.g., 70.6% of neutral test tokefemture (Table V) for text-independent multistyle stress classifi-
detected as neutral for the TEO-CB-Auto-Env feature (Table V)jation. The performance of TEO-CB-Auto-Env and pitch does
Forastressedtoken,ifanyofthethree modelsare selected, thenarg, with the TEO-CB-Auto-Env feature performing better for
say the token was correctly identified as being under stress [edgtection of neutral from stressed, while pitch performs better
forthe TEO-CB-Auto-Env feature (Table V), 96.3% of angry tedbr detection of stressed from neutral. This suggests that a com-
tokens detected as stressed speech, where either angry, lodnlration of pitch and TEO based features could improve stress
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TABLE VI
EVALUATION RESULTS FORINFLUENCE OF SPEECHRECOGNITION ON STRESSCLASSIFICATION

Test Correct Rate (%) for Both Speech Correct Rate (%) for Only
Speech Recognition and Stress Classification Stress Classification
Style MFCC | Pitch | TEQ-CB-Auto-Env || MFCC | Pitch | TEO-CB-Auto-Env
Neutral 84.0 8.5 0 88.3 92.6 97.9
Actual Stress || 70.2 22.3 0 96.8 89.4 97.9

classification performance. If we examine the distribution déatures strive to reflect what is believed to be the variation in
the stress detection rate across the three stress styles, the mmglinear airflow excitation during speech production under
confusing pairs are (angry, loud) and (neutral, Lombard). As veéress. Evaluation results using the SUSAS database for speech
commented earlier, all training and test data for stressed speanltler stress showed that the TEO-FM-Var and TEO-Auto-Env
are from the simulated domain of SUSAS. Some speakdeatures are not as effective for stress classification because they
might be better at simulating speech on a particular emotionagpend on pitch estimation accuracy. The traditional MFCC
style. Even though every speaker simulated each stressed sfglature heavily depends on its speech recognition ability, and
there is still overlap between different styles acoustically suthus works well for text-dependent pairwise stress classification
as angry and loud (e.g., sometimes people show their angeroy degrades rapidly for text-independent stress classification.
speaking louder). Pitch can be a useful feature for stress classification, but
We further conducted a final evaluation in the actual domalacks consistency and reliability partly because user input
to determine how the speech recognition aspect of these thceerection is needed to repair its estimation accuracy for speech
features contributes to stress classification performance. MF@@der high degrees of stress. The TEO-CB-Auto-Env feature,
is currently one of the most successful features for speech recbgwever, is the best feature evaluated for stress classification in
nition; pitch can be combined with other features for speetérms of both accuracy and reliability. Furthermore, evaluation
recognition; while TEO-CB-Auto-Env was proposed mainly toesults showed that this new feature does not depend on text
characterize the nonlinear airflow excitation during speech prioformation, but is capable of capturing those factors, which we
duction and therefore should not be as good at speech recogpaltieve, are nonlinear airflow excitation changes which cause
tion. To verify this, we used 12 text-dependent HMM modelksteners to perceive stressed speech sounding different from
(six for neutral, six for stressed) trained during the first evaheutral.
uation (see Section IlI-C1). While training tokens were also
used as test tokens, the round-robin method was employed to
ensure open-set testing. During testing, each token was sub- ACKNOWLEDGMENT
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