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Abstract
Many spectrum estimation methods and speech enhancement al-
gorithms have previously been evaluated for noise-robust speaker
identification (SID). However, these techniques have mostly been
evaluated over artificially noised, mismatched training tasks with
GMM-UBM speaker models. It is therefore unclear whether
performance improvements observed with these methods trans-
late to a broader range of noisy SID tasks. This study com-
pares selected spectrum estimation methods from three classes:
cochlear filterbanks, alternative time-domain windowing, and
linear prediction-based techniques, as well as a set of frequency-
domain noise reduction algorithms, across a suite of 8 evalua-
tion tasks. The evaluation tasks are designed to expand upon
the limited tasks addressed in past evaluations by exploring three
research questions: performance on real noise versus artificial
noise, performance on matched training tasks versus mismatched
tasks, and performance when paired with an i-vector backend
versus a GMM-UBM backend. We find that noise-robust spec-
trum estimation methods can improve the performance of SID
systems over the range of noise tasks evaluated, including real
noisy tasks, matched training tasks, and i-vector backends. How-
ever, performance on the typical GMM-UBM mismatched arti-
ficially noised case did not predict performance on other tasks.
Finally, the matched enrollment case is a significantly different
problem than the mismatched enrollment case.
Index Terms: mismatched condition, noise robustness, robust
features, speaker identification, speech enhancement

1. Introduction
Robustness to environmental noise is essential to most practi-
cal applications of speaker identification systems. A significant
body of work exists exploring spectrum estimation and noise re-
duction algorithms for this purpose, e.g. [1–21] . However, re-
view of this literature does not reveal which methods are most
successful or what their characteristics are across different noise
types or conditions nor how the algorithms compare to one an-
other. To this end, [20] carried out an extensive comparison of
several spectrum estimation methods. They found that selection
of the spectrum estimation technique had a significant impact on
SID performance in noise, and that the best spectrum estimator
depended on noise type and level.

Surveying the literature on spectrum estimation for noise ro-
bust SID, we find three general classes of modifications to the
baseline FFT-based MFCCs. One class of algorithms is based on
linear prediction. [1] compared objective functions for linear pre-

?This project was funded by AFRL under contract FA8750-12-1-
0188 and partially by the University of Texas at Dallas from the Dis-
tinguished University Chair in Telecommunications Engineering held by
J.H.L. Hansen.

diction coefficient estimation. [12] and [14] discuss weighted lin-
ear prediction. [19] discusses regularized variants of linear pre-
diction methods. Finally, [18] investigates frequency domain lin-
ear prediction. This class of algorithms was evaluated in [20],
where they found that, at all noise levels, the unweighted lin-
ear prediction offered performance improvement over baseline
FFT-MFCCs, while further improvements using weighted linear
prediction methods were possible, depending on noise type and
level.

A second class of alternative spectrum estimation methods
depend on a different window. [10, 21] discuss multi-taper spec-
trum estimation, which uses the average of spectrum estimates
computed from a suite of windows applied to each frame. [16]
demonstrated improvements using the asymmetric G.729 speech
coding window. The comparative evaluation of [20] found
that alternative windows offered performance improvements over
baseline for conditions with SNRs greater than or equal to 10 dB,
but were less effective than the linear prediction methods for all
but the original clean condition.

Finally, a third class of alternative spectrum estimation meth-
ods uses a gammatone filter bank as a cochlear filter simula-
tor. [8] demonstrated features computed from a 128 channel gam-
matone filter bank, post processed with downsampling, cube-
root, and DCT. [13] instead postprocessed the sub-band energies
from a 32 channel filter bank by taking the frame-mean of the
Hilbert envelope of the filter bank outputs. [9] applied a ten-
sor cross-speaker normalization to the cochlear filter bank out-
puts. [17] applied an energy-based mask to remove non-speech
time-frequency components. Cochlear filter bank methods were
not included in [20].

In addition to spectrum estimation methods, speech enhance-
ment has been applied as a noise reduction method for SID.
[2,3,7,13,14] found significant performance improvement using
power spectral subtraction (PSS). [5] discussed a Gaussian Mix-
ture Model (GMM) based speech enhancement method. [6] in-
vestigated the relative autocorrelation spectrum (RAS), an auto-
correlation domain technique. Finally, [13] evaluated four speech
enhancement algorithms, showing that the best technique de-
pended on noise type and level. The literature does not include a
comparative SID evaluation that includes both speech enhance-
ment methods and spectrum estimation methods.

In addition to the comparison of cochlear-filter class spec-
trum estimation and noise reduction methods for noise robust
SID, three additional questions remain. One is the performance
impact of the definition of the noise robustness problem. A SID
system depends on three partitions of data: development data
to estimate system models, enrollment data to estimate speaker
models, and evaluation data on which to perform recognition.
Noise robustness tasks are defined in terms of including or not
including noise in any combination of these partitions. Among



[1–21], noise is usually included only in the evaluation data. In
the following evaluation we will refer to as the ‘mismatched’
case. It is worth considering two additional noise robustness
problems: in one, all three of the data partitions are affected
by the same source of additive noise. We will refer to this as
the ‘matched’ case. In the other, general characteristics of the
noise affecting the evaluation data are known a priori, and are
used to generate additional sets of artificially noised develop-
ment and enrollment data, which are used in addition to the clean
source data. This occurred, for example, in the most recent NIST
Speaker Recognition Evaluation, SRE-2012. We will refer to
this as the ‘mixed’ case. [20] considers only the mismatched
case. The literature does not include a comparative evaluation
of noise reduction methods and spectrum estimation methods on
matched-case and mixed-case noisy SID, which may prove to be
significantly different problems from the mismatched case.

The literature also does not offer evidence on whether the
impact of noise reduction and spectrum estimation methods de-
pends on the pattern recognition system used. The GMM-UBM
method [22] is most common in the related literature, while the
current state-of-the-art technique is the i-vector method. Robust-
ness improvements due to spectrum estimation or noise reduction
methods may not carry over to an i-vector system.

Finally, most of the evaluations of [1–21] used artificially
noised speech segments. Generating noisy speech by adding
recordings of environmental noise to a clean speech recording
has the advantage that the SNR can be controlled. It is also
less expensive to collect and may be based on readily available
clean speech corpora. Unfortunately, naturally noised SID cor-
pora have not been widely available until the recent release of
the SRE-2012 evaluation data. Artificially noised segments do
not include the Lombard effect inherent to speech production in
noise (the effect of this on SID is discussed in [23]), and the
noise signals used are statistically homogeneous. Therefore, ex-
perimental results from the literature may not carry over to the
real-noise case.

It is the purpose of this study to broaden the classes of spec-
trum estimation techniques under investigation, to include noise
reduction methods in a comparison to spectrum estimation tech-
niques, and to significantly increase the scope of the evaluation to
answer new research questions regarding the role of noise robust-
ness problem definition, impact on i-vector backends, and effect
of real noise as compared to artificial noise. In order to carry out
this evaluation, a set of four evaluation tasks is described in the
next section.

2. Evaluation Tasks
In order to investigate the three primary research questions,
GMM-UBM system and i-vector systems are used with each of
the front-end techniques on four SID tasks, resulting in 8 equal
error-rate (EER) measurements per technique. These four tasks
cover the four combinations of real and artificial noise, crossed
with matched and mismatched evaluation conditions. Table 1
shows which evaluation tasks are used to fulfill each evaluation
function.

The Noisy Telephone (NoTel)1 corpus is used for the
matched condition real-noise evaluation. NoTel is a set of 11,027
sessions of telephone speech recorded in various naturally noisy
conditions, including roadside and in-vehicle. From this data
set, we have developed speaker verification task of 92,000 trials
(3,000 target trials), with 300 enrolled speakers. The task devel-
oped for this evaluation from the NoTel corpus is a ‘matched’

1The Noisy Telephone corpus is provided by AFRL and is not pub-
licly available.

Table 1: Speaker ID Evaluation tasks to address noise type and
evaluation regime research questions.

Matched Train Real/Art. Corpus
Matd. Real NoTel
Matd. Art. Art. Noised SRE10

MisMd. Real SRE12 Cond. 5
MisMd. Art. SRE12 Cond. 4

task in a broad sense, in that the development, enrollment, and
evaluation data are all noisy. However, as the NoTel corpus con-
tains several noise types, speakers may be heard in a different
noise type in enrollment versus evaluation.

An artificially noised version of the SRE-2010 [24] male and
female telephone-telephone trials is used for the matched condi-
tion artificial-noise evaluation. Recordings of HVAC and large
crowd noise (LCN) have been added to the development, enroll-
ment, and evaluation data at 6 and 15 dB-P SNR. db-P refers to
the psophometric weighting that has been used to calculate the
speech and noise powers in the noise adding process, in the same
manner as the SRE-2012 artificially noised segments2. The noise
type and level are selected randomly for each file. The develop-
ment data has been drawn from SRE 2005, 2006, and 2008, and
comprises 9,120 files. As with NoTel, this task is matched in
a broad sense, as enrollment and evaluation might occur under
different noise type and level regimes.

Finally, Common Conditions 4 and 5 of the SRE-2012 task
are used for the mismatched naturally and artificially noised eval-
uation conditions. Common Condition 5 of SRE-2012 has trials
with naturally noised evaluation data, as reported by the speak-
ers under collect, and comprises 73,008 trials, with 1,719 target
trials. Common Condition 4 has trials with artificially noised
evaluation data and comprises 143,727 trials, with 3,105 target
trials. For this task, development data is drawn from SRE 2004,
2005, 2006, 2008, and 2010 and is comprised of 8,401 files.

3. Speaker ID System
For the evaluation, two speaker modeling backends are used: a
GMM-UBM architecture [22] and an i-vector architecture [26].
For each task, these two backends share a 512-mixture UBM
with diagonal covariance matrices. The GMM-UBM system uses
MAP adapted speaker models with a relevance factor of 4. The i-
vector system uses a total variability (TV) matrix estimated over
5 EM iterations. 400-dimensional i-vectors are reduced to 250 di-
mensions with LDA. A Gaussian PLDA model of 250 columns in
the Eigenvoice matrix is used for scoring . All systems are gender
independent. This is required in the case of NoTel, which does
not include gender labels, and has been carried through to the
other systems for consistency and to reduce the computational
burden.

The baseline frontend uses the unsupervised Combo-SAD
[27], no pre-emphasis, 17 dimensional MFCCs computed from a
17-filter filter bank over 300-3400 Hz. The baseline and all other
frontends are post-processed with cepstral mean subtraction over
a 3-second sliding window, and appended with delta and accel-
eration coefficients. The baseline system EERs are shown in Ta-
ble 2. Increasing the UBM size to 1024 or 2048 mixtures may
reduce the baseline EER by one or two percentage points, but has
been reduced to 512 mixtures to reduce the computational burden
of the evaluation. For the same reason, the system development
data has been reduced by half of the amount otherwise available

2A MATLAB script for filtering and noise adding based on the
psophometric weighting is available from [25].



Table 2: Baseline system performance

Corpus Backend Noise Enroll EER (%)
NoTel i-vector Real Mtch. 4.967

SRE10-N i-vector Art. Mtch. 7.602
SRE12-4 i-vector Real MisMtch. 10.413
SRE12-5 i-vector Art. MisMtch. 12.786

NoTel GMM-UBM Real Mtch. 11.250
SRE10-N GMM-UBM Art. Mtch. 33.192
SRE12-4 GMM-UBM Real MisMtch. 14.078
SRE12-5 GMM-UBM Art. MisMtch. 20.160

given the source corpora.

4. Methods Under Evaluation
4.1. Linear Prediction Spectrum Estimation

Linear prediction (LP) based features were among the earliest
acoustic features used for SID [28]. The cepstral recursion was
the original cepstral linear prediction feature [29]. More recently,
the linear prediction power spectrum estimate has been substi-
tuted for the FFT spectrum estimate in MFCCs, yielding LP-
MFCCs [1, 4, 12, 14, 18, 19]. Also, noise robust features have
been based on the Minimum Variance Distortionless Response
(MVDR) spectrum estimate, which is based on the linear pre-
diction spectrum estimate [30]. A perceptually warped version
(PMVDR) has shown improvement on SID tasks [20, 31, 32].

Improvements to LP-MFCCs may result from weighting,
stabilization, and regularization. [12, 14] evaluated a suite of
weighted and stabilized LP estimators, finding that the methods
generally improved over LP-MFCCs and FFT-MFCCs, and that
stabilized weighted linear prediction offered the most consistent
improvements in EER. [19] evaluated regularized LP estimators,
finding that regularization improved each variant of weighted LP
estimator. Finally, frequency domain linear prediction (FDLP)
has also been shown to improve the performance of SID systems
in noise [18]. Based on these results, we have chosen 20th-order
LP-MCCs, 20th-order regularized LP-MFCCs (RLP), FDLP, and
PMVDR as representative of this class. The RLP code is con-
tained in [19], except modified to scale the spectrum estimate
by the RMS of the prediction residual. We have used λ = 10−7.
The FDLP implementation is from [33], modified to remove cep-
stral liftering and gain normalization, use 10 s segments, and 30th
order LP models for each subband, to match the parameter set-
tings described in [18].

4.2. Cochlear Filter Bank Spectrum Estimation

A class of features applied to SID noise robustness relies on
a bank of gammatone filters to provide the spectrum estimate.
These features often incorporate design choices motivated by
models of the human auditory system. The features in this class
differ in the way that the spectrum estimate is processed into fea-
ture frames. For this evaluation, Mean Hilbert Envelope Coeffi-
cients (MHECs) have been selected as representative of the class.
The MHEC implementation used here is described in [34].

4.3. Alternative Window Spectrum Estimation

Alternative windowing schemes may also improve the noise ro-
bustness of SID systems. [16] investigated two asymmetric win-
dows that improved performance versus the baseline Hamming
window. The present evaluation includes the G.729 speech coder
window evaluated in [16].

Another method to reduce the spectrum estimate variance
is to average the estimate over multiple windows. [21, 35] dis-

cuss these windows, while [10, 21] demonstrated their effective-
ness for SID noise robustness. Based on the results of that study,
the present evaluation includes the Sine Weighted Cepstrum Es-
timator (SWCE) set of tapers. The implementation is available
from [36].

4.4. Noise Reduction

We have selected three speech enhancement methods as repre-
sentative of those that have been applied to SID: power spec-
tral subtraction (PSS) [37], Wiener filtering (WF) [38], and log-
MMSE enhancement [39]. The a priori SNR used for our PSS
implementation is defined as:

ξML = max
(

Γxx

Γnn
− 1, ξmin

ML

)
, (1)

where Γxx is the observation power spectrum and Γnn is the esti-
mated noise power spectrum. Without this flooring, PSS signifi-
cantly degrades SID performance. We have used ξmin

ML = 0.1, i.e.
maximum 10 dB attenuation. Both components of the decision-
directed (DD) a priori SNR [38] used for the Wiener filter and
log-MMSE have similarly been floored. The gain functions used
for PSS and Wiener filter are:

GPSS =

√
ξML

γ
(2)

GWF =
ξDD

ξDD + 1
(3)

where γ is the a posteriori SNR:

γ =
Γxx

Γnn
(4)

The log-MMSE gain function is as given in [39]. All three en-
hancement implementations rely on the minimum statistics noise
estimator [40] as implemented in [41].

5. Evaluation Results
5.1. Raw Performance Impact

In this study, relative improvement or degradation in excess of
5% is treated as significant. Table 3 shows the relative improve-
ment (or degradation) versus baseline for each method under
each of the 8 evaluation regimes. Relative improvement greater
than 5% is marked in green, with relative degradation greater
than 5% in red. PSS, log-MMSE, MHEC, SWCE, and PMVDR
resulted in significant relative improvements averaged across all
tasks. Wiener filter and RLP resulted in significant degradation,
averaged across all tasks. The G.729 window, LP-MFCCs, and
FDLP did not result in significant shifts when averaged across all
tasks.

5.2. Influence of Evaluation Factors

Table 3 shows that there are significant differences in results
across tasks for each method. Three evaluation factors influence
the results. All of the methods improved more or degraded less
on real noise than on artificial noise (Table 4). However, matched
data reduced or eliminated the gains seen in mismatched tasks for
the enhancement methods, as well as for MHEC, PMVDR, and
FDLP spectrum estimation methods (Table 5). Negligible effects
of matched data were observed for the G.729 window and LP-
MFCCs. Finally, MHECs, SWCE, and PMVDR performed sig-
nificantly better when paired with an i-vector backend (Table 6),
while the Wiener filter performed significantly worse with an i-
vector backend.



Table 3: Relative % improvement (degradation) of methods to MFCC baseline. Columns are test conditions, in System-Noise-
Enrollment format. Iv are i-vector systems, GU are GMM-UBM systems. R for real noise, Ar for artificial noise, M for matched
training condition, MM for mismatched training condition. Green numbers denote improvement in excess of 5% relative. Red numbers
denote degradation in excess of 5% relative.

Method Iv-R-M Iv-Ar-M Iv-R-MM Iv-Ar-MM GU-R-M GU-Ar-M GU-R-MM GU-Ar-MM Mean
PSS (4.02) (7.75) +25.1 +9.58 (1.62) 0.00 +24.0 +3.87 +6.15
Wiener Filt. (18.8) (83.9) +20.7 (80.5) +0.155 +3.92 +29.0 +0.208 (16.2)
Log-MMSE (8E-3) +0.484 +22.3 +10.6 +0.839 +1.74 +19.8 +20.6 +9.55
MHEC +14.8 (5.91) +40.5 +24.4 +19.2 (3.4) +6.61 +11.1 +13.4
G.729 Win. +4.04 (1.33) +2.80 +0.508 +10.8 (2.55) (0.824) (0.283) +1.65
SWCE Win. +14.8 +12.7 +8.94 (1.94) +11.5 (1.99) +0.419 +3.06 +5.93
PMVDR +20.1 +3.39 +43.0 +27.5 +26.5 (9.33) (4.13) (3.84) +12.9
RLP (30.2) (142) (146) (156) (29.2) (14.0) (56.2) (43.9) 77.2
LP-MFCC +2.69 (7.75) +6.15 +4.03 +12.4 (4.25) (13.0) +1.28 +0.185
FDLP (2.00) (5.61) +21.3 +11.6 +6.73 +1.75 +8.27 10.0 +4.00

Table 4: Average relative improvement (degradation) across real
and artificially noised evaluation regimes. Positive numbers in
the ‘Shift’ column suggest greater relative improvement on real
data than on artificially noised data.

Method Artificial Real Shift
PSS +1.43 +10.9 +9.45
Wiener Filt. (40.1) +7.77 +47.8
Log-MMSE +8.35 +10.8 +2.40
MHEC +6.54 +20.3 +13.7
G.729 Win. (0.914) +4.21 +5.12
SWCE Win. +2.95 +8.91 +5.95
PMVDR +4.42 +21.4 +17.0
RLP (89.0) (65.4) +23.6
LP-MFCC (1.68) +2.05 +3.72
FDLP (0.574) +8.57 +9.14

Table 5: Average relative improvement (degradation) across
matched and mismatched evaluation regimes. Positive numbers
in the ‘Shift’ column suggest greater relative improvement on
matched evaluation tasks than on mismatched evaluation tasks.

Method Mismatched Matched Shift
PSS +15.6 (3.35) (19.0)
Wiener Filt. (7.65) (24.7) (17.0)
Log-MMSE +18.3 +0.764 (17.6)
MHEC +20.6 +6.17 (14.5)
G.729 Win. +0.549 +2.74 +2.20
SWCE Win. +3.25 +9.24 +6.62
PMVDR +15.6 +10.2 (5.45)
RLP (101) (53.7) +46.9
LP-MFCC (0.400) +0.771 +1.17
FDLP +7.78 +0.219 (7.56)

Table 6: Average relative improvement (degradation) across
GMM-UBM and i-vector evaluation regimes. Positive numbers
in the ‘Shift’ column suggest greater relative improvement with
an i-vector backend than with a GMM-UBM backend.

Method GMM-UBM i-vect. Shift
PSS +6.56 +5.74 (0.816)
Wiener Filt. +8.33 (40.64) (49.0)
Log-MMSE +10.8 +8.35 (2.41)
MHEC +8.37 +18.4 +10.1
G.729 Win. +1.79 +1.50 (0.288)
SWCE Win. +3.25 +8.61 +5.37
PMVDR +2.31 +23.5 +21.2
RLP (35.8) (119) (82.7)
LP-MFCC (0.908) +1.28 +2.19
FDLP +1.68 +6.32 +4.64

6. Conclusions

In comparing real noised tasks to artificially noised tasks, rela-
tive performance improvements were generally greater for real
noised tasks. Given the evaluation tasks used here, these results
suggest that artificially noised SID tasks do not predict perfor-
mance gains or losses on real-noised tasks due to spectrum esti-
mation and noise reduction techniques. Artificially noised cor-
pora have been important to research efforts because they can be
controlled for noise level and are simple to create. However, they
are only useful to the extent to which they predict performance
on real-noise tasks, and given the results here, further evaluation
should investigate under which conditions artifically noised tasks
may or may not predict performance on real-noised tasks.

For some methods, approximately the same impact on per-
formance was observed for GMM-UBM backends as for i-vector
backends, while for others, significantly more improvement was
observed when paired with an i-vector backend. These results
suggest that moving to an i-vector backend does not necessar-
ily erase performance gains observed in the GMM-UBM case,
and that performance gains or losses observed with a GMM-
UBM backend do not predict gains or losses observed with an
i-vector backend. GMM-UBM techniques are important because
they are simpler and more accessible, and offer a link to almost
two decades of SID research. However, i-vector techniques are
the state-of-the-art in SID. Research in noise robust SID should
not ignore i-vectors and other advanced backends.

The methods evaluated here generally offered significantly
less improvement, or significantly more degradation, on matched
enrollment tasks than on mismatched tasks. The exception is the
alternative window methods: The SWCE method did not offer
significant performance improvement on the mismatched tasks,
but did offer significant improvement on the matched tasks. We
conclude that matched tasks are a significantly different prob-
lem in SID than mismatched tasks, and that only a limited set of
extant noise robust frontend techniques may offer performance
gains on matched tasks. Research efforts in noise robust SID
have not yet addressed the matched enrollment case.

Finally, [16, 18] are examples of recent research efforts that
have treated FFT-MFCCs as the baseline technique. For mis-
matched tasks, PSS or log-MMSE should be considered part of a
noise robust SID baseline. Further, fair comparison demands that
multi-taper and cochlear spectrum estimation, as well as MVDR,
be considered in addition to FFT-MFCCs in any evaluation of
noise robust SID frontends.
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