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ABSTRACT
It is well known that MFCC based speaker identification (SID) sys-
tems easily break down under mismatched training and test condi-
tions. One such mismatch occurs when a SID system is trained on
anechoic speech data, while test is carried out using reverberant data
collected via a distant microphone. In this study, a new set of feature
parameters based on the Hilbert envelope of Gammatone filterbank
outputs is proposed to improve SID performance in the presence of
room reverberation. Considering two distinct perceptual effects of
reverberation on speech signals, i.e., coloration and long-term rever-
beration, two different compensation strategies are integrated within
the feature extraction framework to effectively suppress the effects
of reverberation. Experimental evaluation is performed using speech
material from the TIMIT, four different measured room impulse re-
sponses (RIR) from Aachen impulse response (AIR) database, and
a GMM-based SID system. Obtained results indicate significant im-
provement over the baseline system with MFCCs plus cepstral mean
subtraction (CMS), confirming the effectiveness of the proposed fea-
ture parameters for SID under reverberant mismatched conditions.

Index Terms— Gammatone filterbank, Hilbert envelope, mis-
matched conditions, reverberation suppression, speaker identifica-
tion

1. INTRODUCTION

Recent advances in DSP manufacturing technology have enabled
automatic speech systems to be integrated to virtually every elec-
tronic/mobile component of an individual’s daily life. Nevertheless,
providing robustness to these systems still remains a challenge be-
cause of the variety of acoustic mismatch scenarios that may occur
between training and test conditions due to background noise, rever-
beration, accent, language, emotions, vocal effort, etc.

Specifically, performance of automatic speaker identification
(SID) engines has been shown to severely degrade under reverberant
mismatched conditions [1], [2]. Reverberation has various destruc-
tive effects on spectro-temporal characteristics of speech signals,
most notably including temporal smearing, filling dips and gaps in
the temporal envelope, increasing the prominence of low-frequency
energy, and flattening the formant transitions [3]. These effects in
turn can mask higher frequencies in the speech spectrum and blur the
spectral details, both of which are useful acoustic cues for speaker
identification.

Several compensation techniques to alleviating the adverse im-
pact of room reverberation on performance of SID systems have
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been reported in the literature, most of which were first developed
for automatic speech recognition or speech enhancement. The tech-
niques have been applied at different stages of SID systems, i.e.,
signal [4], feature [5], model [6], and scoring stages [5], [6]. At the
signal level, multichannel (e.g., microphone arrays) speech process-
ing techniques have been employed to provide robustness to SID
systems in reverberant and/or noisy conditions [4], although this
imposes additional hardware requirements and more complexity on
SID systems, and is not applicable in cases where only a single-
channel signal (e.g., telephone) or prerecorded mono speech data is
available. At the feature level, despite its simplicity, cepstral mean
subtraction (CMS) has been shown to be helpful, but only for small
reverberation times (a.k.a. T60) where the length of analysis win-
dows is comparable to that of the room impulse response (RIR) [2].
In [5], it was assumed that the effect of reverberation on the speech
signal can be modeled as an additive noise, and a spectral subtraction
method was adopted to suppress the reverberation before applying
CMS. A feature warping method was also applied and a significant
SID accuracy improvement was obtained over the baseline system.
At the model level, assuming that there is access to RIRs and that
a rough estimate of T60 can be calculated, reverberation classifica-
tion and acoustic model matching based on reverberant background
model (RBM) have been successfully employed [6], [7]. At the scor-
ing level, similar to methods used for channel mismatched condi-
tions, in [6] a combination of different normalization strategies were
used to remove possible biases in the calculated likelihoods.

Another way of dealing with reverberant mismatched conditions
in SID is to design acoustic features that are less susceptible to the
destructive effects of reverberation. Although not optimal, MFCCs
have been the most widely used acoustic features for SID. However,
it is well known that speech systems that use MFCCs are vulnerable
to training and test mismatch [2], and this has motivated extensive
research efforts to find more robust acoustic features capable of cap-
turing speaker identity conveyed in the speech signal. In particular,
feature parameters obtained from subband Hilbert envelopes have
shown promise for automatic speech and speaker recognition tasks
under reverberant mismatched conditions [8], [9].

In this study, inspired by the human perception mechanism in re-
verberation known as the precedence effect [10], a new set of acous-
tic feature parameters based on the Hilbert envelope of Gammatone
filterbank outputs is proposed. Given that the reverberation pos-
sesses two distinct perceptual effects on speech signals known as
coloration and log-term reverberation, two different compensation
strategies are integrated within the feature extraction framework to
effectively suppress the two effects. Performance of a GMM based
SID system [11] with the proposed feature parameters is bench-
marked against that obtained with MFCCs along with CMS under
four different reverberant mismatched conditions simulated using
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Fig. 1. Block diagram of the proposed feature extraction and reverberation compensation scheme

measured room impulse responses extracted from the Aachen im-
pulse response (AIR) database [12].

2. HILBERT ENVELOPE BASED FEATURE EXTRACTION

2.1. Mathematical model of reverberation

In a reverberant environment, the signal received at the microphone
is a delayed sum of a direct sound and its reflections from walls and
objects in the acoustic enclosure, and hence can be modeled as the
convolution of the RIR with the speech signal,

r(t) = s(t) ∗ h(t), (1)

where r(t) and s(t) are the reverberant and anechoic signals, respec-
tively, and h(t) is the RIR. The RIR h(t) can be partitioned into two
parts he(t) and hl(t) as,

h(t) =

⎧⎨
⎩

0, t < 0
he(t), 0 ≤ t <te
hl(t), te ≤ t <L

(2)

where L is the length of h(t), and te is a time window threshold
chosen such that he(t) consists of the direct path signal and a few
early reflections, while hl(t) consists of all late reflections. Late
reflections that smear the speech spectra and reduce signal quality,
are characterized by T60. These have a long-term effect on speech
signals and therefore cannot be compensated for using CMS within
the short-term speech analysis framework. On the other hand, early
reflections that cause coloration distortion and increase the promi-
nence of low-frequency energy, are characterized by the direct-to-
reverberant ratio (DRR) which is dependent on the distance between
the sound source and microphone.

In [13], it was shown that temporal envelopes of subband rever-
berant signals obtained from speech decomposition through a bank
of bandpass filters can be written as,

er(t, j) ≈ 1

2
es(t, j) ∗ eh(t, j), (3)

where er(t, j) is the temporal envelope of the reverberant signal at
the jth subband. Eq. (3) suggests that the temporal envelope of sub-
band reverberant signals can be approximated as the convolution of
the temporal envelope of the direct sound with that of the RIR in that
subband, assuming that the analysis window length is longer than the
RIR length L. It is worth mentioning that the signal envelope is also
a good measure for detecting the direct sound (first wave-front), as
suggested by a computational model for the precedence effect [10].

In this study, inspired by the human perception mechanism, the
Gammatone filterbank is employed for signal decomposition into
subbands, and the squared magnitude of the Hilbert envelope in each
subband is calculated as the temporal envelope. A normalization
strategy that functions as a form of automatic gain control (AGC) is

used in each subband to suppress any spectral coloration effect of the
reverberation in that subband [14]. In addition, since the long-term
reverberation corresponding to late reflections can be treated as an
additive Gaussian uncorrelated random process, a spectral subtrac-
tion technique is adopted to suppress the long-term effect of rever-
beration on the speech signal.

2.2. Mean Hilbert envelope coefficients

In this section, the procedure for extracting a new set of acoustic
feature parameters, based on the Hilbert envelope of Gammatone fil-
terbank outputs, for robust SID under reverberant mismatched con-
ditions is described.

The block diagram of the proposed feature extraction scheme is
depicted in Fig. 1. First, the preemphasized reverberant speech sig-
nal r(t) is filtered using a 32-channel Gammatone filterbank to sim-
ulate the effect of auditory filtering which takes place in the cochlea
[15]. The filterbank center frequencies are uniformly spaced on
equivalent rectangular bandwidth (ERB) scale between 50 and 8000
Hz (assuming a sampling rate of Fs = 16 kHz). Next, the temporal
envelope of the jth channel output r(t, j) is computed as the squared
magnitude of analytical signal obtained using the Hilbert transform.
More specifically, let

ra(t, j) = r(t, j) + ir̂(t, j), (4)

denote the analytical signal, where r̂(t, j) is the Hilbert transform of
r(t, j), and i is the imaginary unit. The temporal envelope e(t, j) is
thus calculated as,

er(t, j) = r2(t, j) + r̂2(t, j) . (5)

er(t, j) is also called the Hilbert envelope of the signal r(t, j). As a
particular requirement of the envelope convolution model in Eq. (3)
remarked in [13], the Hilbert envelope er(t, j) is smoothed using
a low-pass filter with a cut-off frequency of 20 Hz. Next, in each
channel, the smoothed Hilbert envelope is normalized by the long-
term average computed over the entire utterance as,

ern(t, j) =
er(t, j)

1
N

∑N−1
t=0 er(t, j)

, (6)

with N being the signal length in samples. As stated earlier, this
functions as an AGC and is used to suppress any spectral coloration
effect of the reverberation in different frequency channels.

In the next stage, the low-pass filtered normalized Hilbert enve-
lope ern(t, j) is blocked into frames of 25 ms duration with a skip
rate of 10 ms. A Hamming window is applied to each frame to mini-
mize discontinuities at the edges. To estimate the temporal envelope
amplitude in frame m, the sample means are computed as,

R(m, j) =
1

M

M−1∑
t=0

v(t)ern(t, j) , (7)
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where v(t) denotes the Hamming window and M is the frame size
in samples. Note that R(m, j) is a measure of the spectral energy
at the center frequency of the jth channel, and therefore provides a
short-term spectral representation of the speech signal r(t).

Up to this stage, only the coloration distortion due to early re-
flections has been suppressed. The long-term effect of reverberation
(due to late reflections) can be modeled as an uncorrelated additive
noise [16], and hence can be compensated via spectral subtraction.
As suggested in [17], it is assumed that the power spectrum of late
components of the RIR is a smoothed shifted version of that of the
reverberant speech, and thus the power spectrum of the clean speech
signal is estimated as,

|Ŝ(m, j)|2

= |R(m, j)|2 · max

[
|R(m, j)|2−γw(m− ρ)∗|R(m, j)|2

|R(m, j)|2 , ε

]
(8)

where R(m, j) is the short-term spectral energy obtained from the
previous stage, the symbol ∗ denotes the convolution in the time
domain, and w(m) is a smoothing function which is chosen as the
Rayleigh distribution. The parameters ρ and ε are the relative de-
lay of the late RIR components, and the maximum attenuation floor,
respectively. The relative delay has been shown to be independent
of reverberation characteristics and is commonly set to 50 ms for
speech which corresponds to 5 frames in our case. The flooring pa-
rameter ε is fixed to 0.01 which is equivalent to a maximum attenu-
ation of −20 dB.

To compress the dynamic range of the estimated spectral param-

eters Ŝ(m, j), the natural logarithm is applied. Finally, the discrete
cosine transform (DCT) is applied to: 1) convert the spectrum to
cepstrum, and 2) decorrelate the various feature dimensions. The
latter is important because GMMs with diagonal covariance matri-
ces can then be used to model the acoustic space of each speaker
(as opposed to full covariance matrices). The output is a matrix of
32-dimensional cepstral features, entitled the mean Hilbert envelope
coefficients (MHEC).

3. EXPERIMENTS

Performance of the proposed feature extraction and reverberation
compensation scheme is evaluated in the context of a GMM based
closed-set SID system. SID accuracies are used as a measure to
compare performance of the proposed features with that of MFCCs
plus CMS under reverberant mismatched conditions. Training and
test speech material is obtained from the TIMIT database that con-
tains signals from 630 speakers including 192 female and 438 male
speakers. There are 10 sentences per speaker recorded under clean
laboratory conditions at a sampling rate of 16 kHz. A total of 8 sen-
tences (∼ 24 s) are used to train the speaker models, while the re-
maining 2 sentences (∼ 6 s) test the models. To simulate different re-
verberant conditions, RIR samples extracted from the AIR database

Table 1. Properties of the four RIRs extracted from the AIR database
for experiments.

Room Type Dimension (m3) dSM (m) T60 (s) DRR (dB)

Studio booth 3.0× 1.8× 2.2 1.0 0.11 8.78

Meeting 8.0× 5.0× 3.1 2.80 0.25 2.89

Office 5.0× 6.4× 2.9 3.0 0.48 -0.89

Lecture 10.8× 10.9× 3.15 10.2 0.83 -5.62
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Fig. 2. SID accuracy for the proposed acoustic features with spec-
tral subtraction and for MFCCs with CMS, under anechoic and four
different reverberant test conditions.

are convolved with test material. Four RIRs with distinct source to
microphone distances (dSM ) are used including studio booth, meet-
ing, office, and lecture rooms. More information about the RIRs is
summarized in Table 1.

MFCC features are extracted from frames of 25 ms duration with
a skip rate of 10ms. Out of 27 filterbank log-energies, the first 12
cepstral coefficients are retained after applying the DCT (exclud-
ing c0) , and delta features are appended to form a 24-dimensional
feature vector for each frame. CMS is applied in an effort to help
reduce the mismatch due to reverberation. MFCCs plus CMS serve
as baseline acoustic features for subsequent comparisons. MHEC
features are obtained using the procedure described in Section 2.2.
A 31-dimensional feature vector is formed after excluding the en-
ergy term. Speech data from a total of 80 speakers including 37
females and 43 males are used as a development set to find the opti-
mum parameters for the spectral subtraction stage, i.e., γ = 0.1 and
ε = 0.01.

Two GMM based SID systems (one per feature type) are trained
for evaluations, using only anechoic speech contained frames. An
energy-based thresholding algorithm is adopted for silence frame re-
moval. For each feature type, both 16 and 32-mixture GMMs are
considered.

4. RESULTS

In this section, performance evaluation of the proposed acoustic
feature parameters and reverberation compensation strategies is re-
ported in terms of accuracy obtained from the GMM based SID
system.

Fig. 2 represents identification rates obtained with the proposed
acoustic feature parameters and reverberation compensation tech-
niques, under anechoic and four different reverberant test conditions
including studio booth, meeting , office, and lecture rooms, with T60

ranging from approximately 0 to 0.83 s. Speaker models with 16
and 32 Gaussian mixtures are employed to further investigate the ro-
bustness of the proposed features to over and underestimation effects
imposed by the speaker models. It is observed that when MFCCs are
used as acoustic features, even in the presence of small reverberation,
the SID accuracy tends to drop significantly toward an unacceptable

5450



level. It is also evident that as the reverberation time increases and
the distance between sound source and microphone becomes longer,
CMS is less effective, giving rise to a significant performance degra-
dation. On the other hand, the proposed feature parameters are much
more robust to changes in room reverberation, even with 16-mixture
speaker models. It is worth noting that because the compensation
techniques, i.e., CMS and spectral subtraction, themselves introduce
mismatch between training and test conditions, they should be ap-
plied to both training and test stages for the best performance to be
achieved.

In order to better assess the impact of the two reverberation sup-
pression stages in the proposed feature extraction algorithm, i.e.,
subband normalization and spectral subtraction, we consider the of-
fice room environment (T60 ≈ 0.5 s), and perform SID with and
without the compensation methods. Results are summarized in Table
2. It can be seen that even without the compensations, MHECs con-
sistently outperform MFCCs under this environment. The increase
in accuracy with only the subband normalization is higher than that
with only the spectral subtraction. However, the two strategies have
a synergistic effect on performance and further improvement occurs
when applied together. Also, it is obvious that CMS helps reduce
reverberation effects on MFCCs, although the performance is still
quite low.

Table 2. Effectiveness evaluation of the proposed acoustic features
with and without the compensation strategies. N refers to subband
normalization, and SS denotes the spectral subtraction.

Accuracy (%)

Feature + Compensation m16 m32

MHEC 62.91 60.91

MHEC + N 78.55 78.18

MHEC + SS 78.00 75.82

MHEC + N + SS 83.09 82.91

MFCC 26.18 28.55

MFCC + CMS 37.82 42.91

5. CONCLUSION

In this study the problem of SID under reverberant mismatched con-
ditions has been studied. It was confirmed that the performance of
GMM based SID systems with MFCCs plus CMS drops significantly
in the presence of room reverberation, especially when the reverber-
ation time increases. Inspired by the evidences observed from the
human perception mechanism, a new set of feature parameters based
on the Hilbert envelope of Gammatone filterbank outputs was pro-
posed, and a spectral subtraction method for compensating the long-
term effect of reverberation was adopted. The proposed feature was
shown to be consistently superior to MFCCs in performance under
mismatched training and test conditions due to reverberation, while
providing the same SID accuracy under clean matched conditions.
Further improvement in SID accuracy can be achieved with the fea-
ture parameters introduced in this study, by applying other compen-
sation techniques such as feature warping and acoustic model adap-
tation (e.g., MAP adaptation).
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