

These release notes address the following from version 2.2c:

 Realtime vs. offline processing

 Operating specifications – non-integer number of pulses per frame

 Data loss

 Other possible solutions for non-integer pulses per frame

 User-specified MAP and signal processing parameters

 Data communication

Question: Is there a difference between real-time and offline processing?
ANSWER: Yes. Differences between real-time and offline include: pre-emphasis step, user-specific parameter adjustment,
communication to the board, and a few minor function calls/for loops. The real-time implementation was specifically
designed to minimize the latency in data communication and signal processing. The offline implementation was
predominately adopted from Nucleus MATLAB Toolbox (Cochlear Corp.)

o For engineers, compare the functions (CCi-MOBILE\MATLAB\AudioFileProcessor) ‘ACE_Process.m’ and
(CCi-MOBIE\MATLAB\Realtime) ‘ACE_Processing_Realtime.m’

Question: What is the operating specification: ‘non-integer number of pulses per frame’?
ANSWER: Non-integer pulses per frame will result in a selecting a percentage of a single sample which is not permissible
(i.e. 4 samples verses 4.348 samples). The number of pulses per frame per stimulation cycle (RF cycle) depends on the
stimulation rate (Hz) and the number of selected electrodes (‘n-maxima’) as demonstrated in equation [1]. The number of
samples used in the overlap-and-add method (i.e. the variable, ‘block_shift’) must be an integer number of samples as
demonstrated in equation [2]. To account for this, a change in the stimulation rate will be made to create an integer number
of pulses.

𝑃𝑢𝑙𝑠𝑒𝑠𝑡𝑜𝑡𝑎𝑙 𝑓𝑜𝑟 1 𝑅𝐹 𝑐𝑦𝑐𝑙𝑒 = [
(𝐹𝑟𝑎𝑚𝑒(𝑠𝑒𝑐𝑜𝑛𝑑𝑠)∗𝐹𝑠)

(
𝐹𝑠

𝑆𝑡𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒
)

] ∗ [(′𝑛 − 𝑚𝑎𝑥𝑖𝑚𝑎′)] [1]

𝐵𝑙𝑜𝑐𝑘 𝑠ℎ𝑖𝑓𝑡(𝑠𝑎𝑚𝑝𝑙𝑒𝑠) = [
𝐹𝑠

(𝑆𝑡𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒)
] [2]

o For engineers, see the function (CCi-MOBILE\MATLAB\CommonFunctions\...)

‘initialize_ACE_integer_ppf.m’ lines 29-48 and lines 187-206 (ver 2.2c) for real-time implementation

Question: Is CCi-MOBILE losing data and/or dropping samples?
ANSWER: It is dependent on the real-time and/or offline implementation.

 For offline ACE/CIS implementation, there is not a loss in data. The remaining non-integer data bytes (RF
cycles) are processed with the subsequent frame and the remaining byte-size shift is applied throughout the entire
length of the offline speech token to provide stimulation without data loss. Because the signal is processing offline,
the buffer function (overlap-and-add) will automatically zero pad the data to ensure all frames can be processed.
NOTE: Adjustments to the user-specified parameters may ensure no data is lost.

o For engineers, see the function (CCi-MOBILE\MATLAB\AudioFileProcessor\...) ‘Stream.m’ lines 38-46
and lines 54-62 (ver 2.2c)

 For real-time ACE/CIS implementation, there is a loss in data. The numerical amount of data loss is in the form
of samples. The numerical amount of samples per stimulation cycle (RF cycle) is dependent on the user-specified
stimulation rate. The maximum number of dropped samples is equivalent to: (sampling frequency) / (stimulation
rate)1. NOTE: Adjustments to the user-specified parameters may ensure no data is lost.

o For engineers, see the function (CCi-MOBILE\MATLAB\Realtime\...) ‘ACE_Processing_Realtime.m’ line 7
(ver 2.2c), variable output ‘z’ are the dropped samples.

o NOTE: While there is a loss in a small amount of data for the real-time implementation of ACE/CIS, the
subject performance (N=8) with their clinical processor against the real-time implementation of ACE/CIS

1 NOTE: A non-integer value from this calculation will be rounded toward positive infinity (i.e. the MATLAB function, ‘ceil’)

through CCi-MOBILE did not result in a significant (p>0.05) difference in sentence intelligibility (results
shared at CIAP 2017).

Question: Can we simply use up sampling/down sampling to generate exact stimulation rates?
ANSWER. You could pending change to software and hardware routines. This is how we believe the clinical processors
from Cochlear Corp ensure exact stimulation rates. The software and hardware routines currently are hard-wired for
sampling rates of 16,000 samples/sec, a frame size of 8ms, and an interphase gap (IPG) of 8 us. To support the proposed
idea in real-time, there is a possibility of a latency. To support the proposed idea in general, modifications to the
communicative hardware routines would need to be updated.

Question: Can we amend dropped samples from non-integer pulses per frame in the next frame (i.e. following
MATLAB’s ‘buffer’ command)?
ANSWER. You could, but this will raise additional problems. The CI Lab at UT-Dallas developed a solution (suggested by
UWM) to amend the previously dropped samples from the prior 8ms stimulation cycle and continued to pass dropped
variables to the subsequent 8ms cycle. Based on both a 5s and 10s run time for real-time simulated by our lab, minimal
latencies were observed from comparing the current pipeline to the proposed pipeline (~5.2ms + 0.012). This required a
frame-by-frame change in the communication to the buffer to denote a change in the number of pulses per second within a
stimulation cycle (RF cycle) due to an accumulation of sufficient dropped samples resulting in the need for an additional RF
cycle periodically (depending on the overlap, i.e. fs/stim-rate). Additionally, the corresponding frequency components of
varying frame-by-frame analysis when compared one-to-one to the current implementation resulted in a large (unquantified)
change in the corresponding clinical levels and selected electrodes (if ‘n-maxima’ < total number of electrodes). This may
induce a perceptual change that has not been tested on CI subjects.

Question: Is CCi-MOBILE adjusting my user-specific signal processing (or MAP) parameters?
ANSWER: Sometimes. Currently, the architecture of the user-specified parameter checking algorithm ensures
minimum/maximum pulse widths are met for each 8ms frame. To compensate for parameters outside of the operating region
(i.e. total stimulation rate > 14400 pulses per second, or pulse width < 25 Hz or > 400 Hz), a reduction of the user-specific
stimulation rate is required to ensure an integer value of samples for each frame. This adjustment occurs during the
initialization process.

o For engineers, see the function (CCi-MOBILE\MATLAB\CommonFunctions\...) ‘initialize_ACE.m’ lines 29-
45 and lines 184-200 (ver 2.2c) for offline implementation

o For engineers, see the function (CCi-MOBILE\MATLAB\CommonFunctions\...)
‘initialize_ACE_integer_ppf.m’ lines 29-48 and lines 187-206 (ver 2.2c) for real-time implementation

RESPONSE: From our investigation of the software routines, the current state of the user-specific adjustment does NOT
include a notification (verbosity) when an adjustment is made, and the algorithm, in fact, contains loops that do not update
the variable outside of their function location. This can result in the user-specified stimulation rate to produce non-integer
pulses per frame, total stimulation rate (Hz) outside of the operating specifications, and in some cases a different stimulation
rate than the user specified.

 The CI Lab at UT-Dallas is developing the software release, ver 3.0 which will include a notification system to the
user during adjustment, a GUI MAP parameter check (including signal processing parameters), priority parameters
(hierarchy) for non-adjustment, and additional documentation/README support.

Question: Can I stimulate 116 bytes or 115 bytes per ear according to the UART buffer communication?
ANSWER: 116 bytes.

Question: Can I stimulate more than 116 bytes per ear due to unused space allocated in the buffer communication?
ANSWER: No. The development of the UART communication buffer specified particular amount of data within the first 258
bytes. This resulted in an asymmetrical organization of the buffer. Currently, the buffer includes reserved bytes (26 bytes).
These reserved bytes are for a header when performing bimodal processing. To increase the amount of total information
sent to the CI user, a hardware update would be needed as well as communicative routines from the software to the board.
This would require updating all boards distributed in the field.

 The buffer structure is provided in a separate (.pdf) here.

