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The peripheral sensory auditory system is an intricate synergy between mechanical, chemical, 

and electrical bio-systems that generate complex temporal-spectral patterns of neural activity for 

sound perception. Artificial electrical stimulation provided by contemporary multichannel 

cochlear implants (CIs) aim to mimic the natural electrical stimulation patterns that occur at the 

spiral ganglion nerves; however, sparsity of information provided by the CIs is beyond 

comparison to the exquisite intricacies of a normal auditory system. This, in part is due to the 

current limitations inherent in the design of CIs, particularly the electrode-nerve interface, which 

may be a bottleneck for optimal performance. Spectral mismatch, poor temporal and spectral 

resolution, and current spread combined with patient-specific physiological, audiological, and 

cognitive factors are some of the key challenges that may impact performance and could 

potentially be responsible for large variations in CI performance outcomes. 



 

ix 

Although electrode placements relative to the spiral ganglion are generally unknown, 

conventional sound coding algorithms and clinical fitting procedures follow a one-size-fits-all 

strategy. This dissertation aims to customize/personalize the sound coding and fitting procedures 

according to an individual’s cochlear physiology. This is achieved by utilizing novel imaging 

procedures, more specifically CT images of recipients’ cochleae, to determine the precise spatial 

location and orientation of the electrode contacts and the corresponding neural stimulation sites 

to produce a tailor-fit frequency-to-place function. In addition, patient-specific channel selection 

optimization techniques have been presented that aim to optimize presentation of electrical 

stimulation patterns. The proposed schemes have been evaluated in groups of normal hearing 

individuals using CI simulations as well as cochlear implant recipients. The data from the 

experiments suggest that patient-specific sound coding and fitting schemes may potentially aid in 

achieving higher asymptotic performance and possibly faster adaptation to electric hearing. 
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CHAPTER 1 

INTRODUCTION 

The Cochlear Implant (CI) is one the greatest engineering marvels of modern medicine and can 

be considered a benchmark in neural prostheses for auditory restoration and rehabilitation. 

Although the history of auditory prostheses is relatively short, electrical stimulation of the 

auditory pathways has its roots across the globe which spans several decades. Our understanding 

of sound and the science of hearing dates as far back as the sixth century B.C., with fundamental 

interpretation of sound as vibrations by Pythagoras, followed by Galen’s discovery on nerves as 

the transmission mechanism of sound sensation to the brain in 175 A.D. The mechanics of the 

middle ear were not understood until the mid-sixteenth century when Andreas Vesalius 

discovered the malleus and incus, two of the three middle ear bones. This was followed by 

Gabriello Fallopio’s discovery of the cochlea in 1561, and finally the discovery of the organ of 

hearing – termed organ of corti by Alfonso Corti in 1851. The first demonstration of electrical 

stimulation came from none other than Alessandro Volta, the inventor of the electrical battery, in 

1800 when he placed the ends of a 50-volt battery in his each ear and experienced sensation of 

noise-like crackling sound [1]. Many years later, the first attempt towards an auditory prosthesis 

was reported by Drs. André Djourno and Charles Euriès in Paris in1957, which spurred intensive 

activities in the 1960s and 1970s in the United States, central Europe, and Australia towards the 

modern era cochlear implant. Pioneering scientists in the Unites States were Drs. William F. 

House, Doyle brothers – John and James Doyle, Francis B. Simmons, Robin Michelson, Michael 
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Merzenich, and Blake Wilson. In Australia, Dr. Graeme Clark led the research and development 

activities by founding the Bionic Ear Institute. Parallel research efforts across Europe were led 

by Drs. C. H. Chouard, Stefaan Peeters, F. E. Offeciers, Kurt Burian, Erwin Hochmair, and 

Ingeborg Hochmair. In these early years of struggle towards commercial CI development, 

technical and safety concerns raised skepticism among critics, mainly in the basic science 

community, who adamantly opposed the idea of a cochlear prosthesis. They believed that it was 

impossible to mimic the natural exquisite machinery of the inner ear and that cochlear 

implantation would not yield any useful hearing beyond environmental awareness or possibly 

speech cadences, at best. The pioneering and persistent spirit of the above scholars laid the 

foundation of the modern-day cochlear implant. The famous Bilger report commissioned by NIH 

in 1977 finally paved the way towards commercial FDA approved devices in the United States 

with the House-3M single-electrode implant being the first to get FDA approval in 1984, shortly 

followed by Nucleus multichannel implant in 1985. For further details on the inspirational 

history of cochlear implants, please see [2-5]. 

The last three decades have seen exponential growth in cochlear implantation, both in 

terms of the number of implant recipients, as well as scientific advancements and publications 

across the globe. Figure 1.1 depicts the number of implant recipients which has increased at least 

5 fold in the last decade from 60, 000 implant recipients in 2001 to 324, 000 by the end of 2012 

[6]. The number of scientific publications as indexed by PubMed mirrors the same exponential 

trend, from on average 141 publications per year in the 1990s to 284 per year in the years 2000 – 

2010 (see Figure 1.2). Year 2015 alone has produced 630 publications in the field of cochlear 

implants. These trends indicate both a maturity of the field as well as reflection of the confidence  
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Figure 1.1. Number of implant recipients over time [3, 6-8]. 

 

Figure 1.2. Annual number of scientific publications in the field of cochlear implants as indexed 

by PUBMED. The data were retrieved on October 17, 2015 from http://www.pubmed.gov [9]. 
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in implant technology and performance that has led to a growing market share of CIs as an 

effective auditory prosthesis. 

Contemporary cochlear implants can provide a high level of speech recognition and aural 

ability to a majority of implant recipients that are on par with normal hearing individuals, at least 

in quiet environments. In general, CI outcomes are very encouraging and to a much greater 

extent very surprising because implants provide only a very crude mimicking of limited aspects 

of the normal hearing physiology. In fact, it is the remarkable ability of the brain to decipher the 

artificial electrical stimuli of sparse inputs that has led to the ultimate success of the cochlear 

implant. Scientific studies suggest that implant outcomes largely depend on auditory pathways, 

central decoding, and neural brain plasticity. The importance of the brain in learning to classify 

the neural activity evoked by cochlear implants is so crucial, Drs. Wilson and Dorman describe 

the brain as “the tail that wags the dog” [4, 10, 11]. Therefore, in recent years there has been a 

strong push towards understanding the cortical function and brain plasticity in response to 

synthetic electrical stimulation of the auditory pathways. While the focus of this dissertation is 

not on top down processing, but instead to leverage the physiological and cognitive factors as 

blueprints when devising new signal processing strategies to improve the bottom-up peripheral 

processes in cochlear prosthesis. 

1.1 Problem Statement 

Cochlear implants, like other neural prosthetic devices, face two key challenges that have 

both theoretical and practical implications, namely analysis issues and presentation issues [1 - 3]. 

The analysis problem is concerned with how to effectively and efficiently encode the sound 

information given the limited number of channels. The presentation problem focuses on how to 
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optimally map the coded information into a perceptually meaningful neural stimulation via the 

prosthesis. At one end, current and emerging sound coding strategies along with novel speech 

processing algorithms aim to address the analysis issues; however, the presentation challenge is 

increasingly emerging as a bottleneck in limiting the possibilities and scope of what signal 

processing engineers can achieve with current technology. Shortcomings inherent in the design 

of contemporary CIs such as the limited number of electrodes and the associated current spread 

due to spatial channel interactions limit the number of perceptually discriminable stimulation 

sites and hence limit spectral resolution. The presentation issue, in part, may be one of the likely 

factors that results in large variability in implant outcomes – a question that continues to puzzle 

the CI research community. In essence, the presentation issue forms a bridge between the 

peripheral processing and the central auditory perception. 

Bridging the peripheral and central auditory systems are the neurons of the spiral 

ganglion that reside in the organ of corti. In natural hearing, sound creates a sequence of 

mechanical, chemical, and electrical bio-processes to stimulate these auditory nerve fibers to 

induce the sensation of hearing. Auditory nerve fibers have intrinsic “characteristic frequencies” 

(CFs) which are tonotopically organized in the cochlea, (e.g., nerve fibers located at deeper sites 

along the length of the cochlea have lower CFs and thus when they are simulated, lower pitched 

sounds are perceived). CIs exploit this natural phenomenon by providing electrical stimulation 

across the length of the cochlea via an electrode array, which is threaded into the cochlear bony 

labyrinth during surgery. Insertion depth of the electrode array, number of electrodes, electrode 

configuration, degree of neuronal survival, positioning and proximity of electrodes to the 

auditory nerve fibers largely determine which tonotopically mapped groups of nerve fibers are 
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stimulated by each electrode and thus form the core of the presentation challenge. Deeper 

electrode insertions generally favor improved speech recognition in CIs [4-9]. This is due to the 

accessibility of the apical regions of the cochlea which correspond to lower frequencies and 

hence theoretically more low-frequency speech information (e.g., location of fundamental 

frequency and the first formant frequency) which can be provided without spectral distortion. 

However, deeper electrode insertion has challenges of its own, including insertion trauma and 

optimal electrode placement (electrode array migrating to neighboring cochlear canals). 

Variations in electrode insertion depth result in differences in the accessible tonotopic range 

among implant recipients, (i.e., the range of CF stimulated at the corresponding electrode 

locations). For example, according to the Greenwood function, with an insertion depth of 30 mm 

from the round window, the most apical electrode would correspond to CF of approximately 185 

Hz, while a shallower insertion of 20 mm would correspond to 1170 Hz. This offset/mismatch 

requires user adaptation for effective decoding of distorted representation of speech through the 

CI. Despite the variations in electrode insertion depth and the fact that the final positions of the 

electrodes in relation to the nerve fibers are generally unknown and unique for each patient, 

contemporary CI sound processors use a standard mapping strategy which assumes that 

electrodes are optimally situated in the cochlea. Each electrode is programmed by the CI 

processor to stimulate nerve fibers corresponding to a predefined frequency-bandwidth. The 

standard mapping assigns default frequency allocation to all implantees and maps the full 

acoustic range of speech (approximately 100 - 200 up to 8500 Hz) to the tonotopic location of 

the electrode array with the expectation that CI users will learn to adapt to the modified map over 

time. Such a mismatch between frequency analysis bands of the CI sound processor and the CF 
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of the nerve fibers that are stimulated can result in frequency-place shifting (frequency offset), 

frequency compression, expansion, warping, or a combination of the above. These factors not 

only deteriorate spectral characteristics of the perceived speech but may degrade overall user 

performance. 

In addition to frequency-place mismatch, electrode channel-interference caused by the 

overlap of electric fields within the cochlea is a serious concern in present scala tympani 

implants. While the number of electrode contacts in a cochlear array may be up to 22 

independent electrodes, clinical evidence suggests that cochlear implant users are not able to 

utilize more than about 4 - 8 effective channels of stimulation when stimuli are rapidly 

sequenced across electrodes in a real-time, speech processor context [10]. While speech 

recognition in quiet can be achieved by only 3 – 4 channels of spectral information, listening in 

complex acoustic environments can require as much as 30 or more effective channels for an 

equivalent level of performance [12]. Scientific evidence suggests that poor performers generally 

do not have more than four effective channels of stimulation (e.g., Friesen et al. [13], Dorman 

and Spahr [14], Garnham et al. [15], Wilson et al. [16]). To put it in perspective, the number of 

independent auditory filters in normal hearing is about 39, and is about 28 for the frequency 

range important for speech perception [17, 18]. Clinical sound processing strategies either 

stimulate all electrodes or select a subset of electrodes per stimulation cycle (in a time-

interleaved fashion). This subset of electrodes is selected based on speech features. If CI users 

are only able to utilize 8 – 10 channels of stimulation, a channel-selection strategy that optimizes 

which electrodes are picked for activation based on speech features, environment, and spatial 
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location of electrode contacts in the cochlea may help implant users to make better use of 

putative stimulation sites.  

1.2 Dissertation Goals and Contributions 

Up to this point in time, the lack of knowledge with respect to the spatial relationship between 

the electrodes and the neural stimulation sites has resulted in a generic default frequency 

mapping paradigm with the expectation that all CI users will learn to adapt to the clinically-

assigned frequency locations of stimulation. In this dissertation, our primary goal has been to 

optimize some aspects of the presentation issues in present-day cochlear implantation technology 

by devising patient-specific, customized mapping strategies that are unique for each implant 

recipient and are based on the individual’s electrode placements. This is achieved by leveraging 

image-guided procedures to determine the true location of individual electrodes with respect to 

the nerve fibers and designing patient-specific frequency allocation schemes that help to 

minimize sub-optimal frequency-place mapping distortions in CIs. In addition, sound processing 

strategies that aim to optimize the channel selection process on an individual basis are explored. 

The effectiveness of the proposed techniques are evaluated with groups of both normal hearing 

individuals using acoustic simulations of cochlear implants as well as with implant recipients. 

The proposed patient-specific sound coding and fitting schemes, together with findings from the 

studies reported in this dissertation may help with our understanding of adaptation to electric 

hearing with distorted and sparse representation of sound cues. The data may help with advances 

in CI technology. 

 Specifically, this dissertation aims to explore the following four research directions: 
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 Image-guided customization of frequency-place mapping in cochlear implants: This 

is the primary goal of the research conducted in this dissertation. A patient-specific, image-

guided frequency allocation strategy will be proposed that aims to tailor-fit sound processor 

frequency assignments based on the electro-neural characteristics of each individual. The 

proposed frequency fitting strategy will be shown to minimize the frequency-place distortions by 

achieving a balance between frequency matching and frequency compression to provide a better 

representation of the sound signal. 

 Assessment of speech recognition with different configurations of spectral mismatch 

with groups of both normal hearing and cochlear implant users. The acute and semi-chronic 

effects of various frequency-maps on the speech recognition performance are assessed 

systematically using acoustic simulation of cochlear implants with normal hearing individuals. In 

addition, the effectiveness of the proposed customized frequency mapping strategy will be 

evaluated in a semi-chronic study of three months with cochlear implants users. 

 Image-guided customization and optimization of channel selection. An image-guided 

strategy to optimize channel selection in n-of-m sound coding strategies is proposed. The strategy 

leverages the spatial location of electrode contacts to adaptively control the activation of 

electrodes that are most likely to cause channel interaction. Simulation data is provided to 

demonstrate the potential effectiveness of the proposed scheme. 

 Optimization of channel selection based on signal-to-noise characteristics of the 

acoustic environment. A method to optimize the channel selection process of n-of-m sound 

processing strategies in adverse listening conditions is proposed. The proposed scheme selects 

the most-information rich channels in each stimulation cycle based on the location of formant 
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frequencies and the instantaneous signal-to-noise ratio. The data from acute experiments with 

cochlear implant users will indicate the potential benefit of the proposed scheme in adverse 

listening conditions. 

1.3 Dissertation Outline 

While the area of hearing science, hearing impairment, and cochlear prostheses is too vast to 

cover in a single dissertation, we have made every effort to address the relevant aspects in the 

following chapters. Fortunately, there have been a number of excellent quality of prior research 

and publications in this domain. References are provided throughout the text to facilitate 

enthusiastic readers to explore further. The dissertation is outlined as follows:  

 Chapter 2 provides an overview of the background literature review and gives further 

details on the state of the art in cochlear implant technology; factors that lead to variability in 

implant outcomes with special emphasis on some existing challenges including patient specific 

audiological and neuro-physiological reasons that may be responsible for reduced performance 

with the implant are presented.  

 Chapter 3 gives a detailed literature review on frequency-place mismatch in cochlear 

implants, its impact on the listening performance, and the role of perceptual learning.  

 Chapter 4 is the core of the dissertation and discusses an image-guided patient-centric 

approach towards optimization of frequency place function. This is accompanied by listening 

studies and experimental results from normal hearing individuals and cochlear implant users.  

 Chapter 5 provides details on strategies to optimize channel selection criteria in the 

signal processing chain that can help minimize unwanted channel interactions caused by the 
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current spread and attempts to optimize the listening experience in challenging listening 

environments.  

 Chapter 6 concludes the dissertation and summarizes the thesis contributions. It also 

provides limitations of the study and guidelines for advancing future research directions in this 

domain. 

 

Appendices are provided at the end of this dissertation that contain relevant supplementary 

details. 
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CHAPTER 2 

SOUND PROCESSING ADVANCEMENTS IN COCHLEAR IMPLANTS 

At the time of this writing (Dec. 2015), there are three manufacturers that have FDA approved 

cochlear implant devices in the United States namely, Cochlear Corporation, Advanced Bionics, 

and Medical Electronics (MED-EL). In addition to the above three, Oticon Medical (formerly 

Neurelec) and Neurotron Biotechnology are emerging as new players but the lack of FDA 

clearance has limited their market shares primarily to France and China, respectively. Despite 

differences in sound processing strategies, number of electrodes, stimulation patterns, and value-

added features, the basic operational principle as well as implant outcomes across vendors 

largely remain the same [8, 19-23]. On average, cochlear implant users are able to obtain 80% 

open-set sentence recognition in quiet and about 50% for word recognition with 10% - 30% 

standard deviation regardless of the device brand [4, 11]. However, there remains a huge 

variability in performance outcomes across implant recipients of each manufacturer, with the 

highest performers gaining speech recognition ability close to 100% while others are at 0% in 

complex listening environments. Wide variability across users has baffled scientists and 

clinicians since the early days of cochlear implantation and continues to present a challenge, 

primarily because there is no fixed formula to predict the outcomes of cochlear implantation 

success prior to surgery. Factors that work in one individual do not necessarily hold equal 

significance in others, and at times it is not possible to trace the cause and effect relationship for 

reasons that are not clearly understood today. This argument not only holds true for recipients 
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who do not receive any speech recognition ability even years after surgery but equally valid for 

the “super-star” performers that continue to amaze those in the field on the remarkable ability of 

implants (given sparse mimicking of the peripheral auditory system). However, scientific studies 

and clinical data collected over the years has provided the community a better understanding of 

likely factors that may contribute to varying performance with implants. 

We can broadly classify the factors that influence variability in performance outcomes 

into four (overlapping) categories, namely technological, neuro-physiological, audiological, and 

cognitive factors. The technological aspects relate to the device technology, mainly sound 

processing strategy, algorithms for speech enhancement in realistic environments, electrode 

design, and electrical stimulation patterns that are generated by the implant technology. Neuro-

physiological factors include neuronal survival, health of auditory pathways, electrode-nerve 

interface, cochlear morphology, and others. Audiological factors refer to the etiology and 

duration of hearing loss, length of deprivation, and experience with the implant. Cognitive 

factors relate to central processing, i.e., the brain’s ability in deciphering the artificial 

stimulation, neural plasticity, cross-modal cortex encroachment, learning, memory, attention, and 

language processing. It was initially thought that poor fitting or loss of auditory neurons was the 

likely cause of poor performance with implants. While this may be true to an extent, 

accumulating and compelling evidence points to audiological and cognitive factors as significant 

contributors to variability in outcomes [24-31]. This is not to say that neurophysiology or 

technological advances are not likely to favor the outcomes. It is the combination of these factors 

that ultimately has a synergistic effect on perception with cochlear implants. In the following 
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sections, we will focus on how sound processing advancements have contributed to implant 

outcomes in light of available data and our experience with cochlear implants. 

Although the basic design of a cochlear implant has not changed since the mid-1990s, 

cochlear implant devices have continued to improve over the years due to technological 

advances in microelectronics, computing, digital signal processing, battery technology, electrode 

designs, stimulation strategies, and better surgical techniques. These improvements at the system 

level have not only enhanced the functionality, usability, and safety of the device but has also led 

to remarkable improvements in performance. Percutaneous to transcutaneous link, body worn to 

behind the ear processors, single to dual microphones – all these system-level upgrades have 

enhanced the usability of the device.  

Single channel to multi-channel cochlear implant was the first paradigm shift that enabled 

speech understanding ability for some recipients. For the larger part, improvements in sound 

processing have been, (and continue to), be responsible for the constant and steady 

improvements in performance outcomes [8]. In a retrospective study, Lenarz and colleagues at 

the Medical University of Hannover, Germany assessed the effect of technological advancements 

on speech perception performance in a cohort of 1005 cochlear implantees that received an 

implant over 5 virtual generations from 1984 to 2008 [32]. They found a positive influence of a 

maturity of the technology, and attributed improvements in electrode designs and speech 

processing strategies, largely responsible for improved speech perception performance. The 

following subsections provide further details with respect to cochlear implant technology 

Sound processing advancements have manifested in two distinct ways: (i) improvement 

in speech processing strategies and sound coding algorithms, and (ii) improvements in digital 
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signal processor hardware. While the first deals with how to effectively and efficiently encode 

the sound information to generate a perceptually meaningful neural stimulation, the latter enables 

implementation of sound coding algorithms to run on an embedded DSP in real-time. For the 

latter part of the discussion, we will focus on sound processing strategies as they relate to 

variability in implant outcomes. Let us start with a brief introduction of the peripheral auditory 

system. 

In the normal auditory system, acoustic waves enter the pinna (outer ear), travel through 

the ear canal and vibrate the tympanic membrane (ear drum). These mechanical vibrations are 

translated by a series of transformations by the three middle ear bones - malleus, incus, and 

stapes. The foot of the stapes vibrates the oval window which creates traveling waves in the fluid 

inside the cochlea and causes the basilar membrane to vibrate. The physiology of the basilar 

membrane (BM) (width, stiffness) makes it akin to a spectrum analyzer (a frequency decoding 

system) with location and magnitude of the displacement along the BM corresponding to the 

frequency and intensity of the input sound respectively. Motion of the BM is sensed by the hair 

cells (located within the organ of corti) which generate electrical signals by the process of ion 

exchange. These electrical signals are sensed by the auditory nerve fibers (spiral ganglion) that 

branch out of the modiolus and group together to form the auditory nerve. The auditory nerve 

finally relays these electrical signals through a network of auditory pathways to the brain for 

subsequent central processing. 

The goal of cochlear implants is to mimic, to the extent possible, the electrical excitation 

patterns at the spiral ganglion. All contemporary multiband sound processing strategies exploit 

the tonotopic map of the cochlea and filter the acoustic signal into different frequency bands in  
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an attempt to mirror the functionality of the cochlea. Figure 2.1classifies popular signal 

processing strategies that have been devised for cochlear implant systems over the years. Sound 

coding strategies can be categorized as waveform (temporal) or feature-based strategies. A 

relatively newer generation of fine-feature strategies that claim to deliver the fine temporal and 

spatial features of sound have also emerged. Explicit feature-based strategies, now obsolete, 

were used in early generations of cochlear implants. F0/F2 was the first strategy developed in the 

early 1980s that explicitly provided formant features (fundamental frequency and the second 

formant) to the appropriate electrodes [33, 34]. This was later refined to include the first formant 

frequency (F1) and was called the F0/F1/F2 sound coding strategy and became available in the 

Nucleus Wearable Speech Processor (WSP) in 1985 [35, 36]. Further improvements to the 

F0/F1/F2 strategy came with the MULTIPEAK (MPEAK) strategy that provided high-frequency 

 

Figure 2.1. Classification of sound processing strategies. 
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information content in addition to formant frequencies [37]. These strategies provided a very 

coarse representation of the formant peaks over time and allowed implant users to obtain open-

set speech recognition for the first time [38-40]. Around the same time, a fundamentally different 

approach was being used in the Ineraid device manufactured in Utah [41]. It used a filtered 

waveform together with automatic compression to deliver simultaneous stimulation to four intra-

cochlear electrodes in an analog form. The approach called the Compressed-Analog (CA) 

provided open set speech recognition to its users and yielded superior performance in 

comparison to single-channel implants [41, 42]. With the advent of pulsatile waveform strategies 

in the early 1990s, analog and feature-based strategies were almost entirely replaced. The 

theoretical basis of waveform or envelope-based strategies is based on Dudley’s VOice CODER 

(VOCODER) [43] (i.e., sound processing is carried out on temporal envelopes of band-passed 

acoustic signal). Continuous Interleaved Sampling (CIS) algorithm formulated by Wilson et al. 

[44] can be considered as the de-facto standard for all multi-channel sequential stimulation sound 

coding strategies that have emerged to date. 

In the CIS strategy, the acoustic signal is first pre-emphasized and passed through a set of 

band-pass filters. The number of band-pass filters ‘m’ is equal to the number of stimulating 

electrodes in the electrode array. The envelope of each band is extracted either by a Hilbert 

transform, or more commonly by rectification followed by low-pass filtering. The extracted 

envelope is then compressed by a logarithmic mapping function to account for relatively low 

dynamic range of electric hearing (5 – 15 dB) as compared to the acoustic dynamic range which 

is on the order of 100 dB. The mapping is patient-specific and accounts for the lowest and most 

comfortable levels of perceivable sound at each stimulation site. The implant receiver modulates 
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biphasic electric pulses with the compressed envelopes and delivers modulated pulses to the 

corresponding electrodes in a time-interleaved fashion. The time-interleaved approach allows 

accurate and minimally interfering representation and delivery of band-limited envelope cues to 

the auditory nerve. The signal flow in the CIS algorithm is depicted in Figure 2.2. This elegant 

and yet effective approach addresses a broad range of issues from front-end processing (e.g., 

spectral weighting, filtering, and envelope extraction) to back-end processing (e.g., amplitude 

compression, mapping, and constant high-rate, interleaved, sequential pulsatile stimulation), to 

engineering implementation and device fitting. All these factors eventually led to a high level of 

speech understanding ability with cochlear implants and are the reasons that CIS continues to be 

used in almost all major implant systems. 

 

 

Figure 2.2. Signal flow in Continuous Interleaved Sampling (CIS) algorithm. 
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The n-of-m strategies [45] are a variant of the CIS strategy and are typically used in 

implant systems that have a larger number of electrodes (though CIS is not limited to number of 

electrodes). The basic signal pipeline remains the same – band-pass filtering followed by 

envelope extraction, however there are two major differences. The first difference is that 

processing is carried out on temporal frames that are typically 2 – 8 ms in duration. The second 

difference is in channel selection, (i.e., in each processing frame, only n out of possible m 

electrodes are selected for stimulation). Channel selection is based on the bands with the highest 

energy (corresponding to spectral peaks in that stimulation cycle). A typical value of n is 

between 8 – 10, and for Nucleus devices m = 22 corresponding to a 22-electrode scala tympani 

electrode array. One of the earlier flavors of n-of-m strategies was the SPEAK strategy (from 

Spectral Peak) [46] which has evolved into Advanced Combinations Encoder (ACE) strategy 

[47, 48] and is used in most devices by Cochlear Corporation. The major difference between the 

two is the fixed stimulation rate in the former (250 Hz), while the later can be programmed to 

run at higher or equal stimulation rates (990 Hz is seen as a typical stimulation rate in most 

implant systems using the ACE strategy – but this can be changed by the audiologist according 

to user preference). A more recent variant of ACE strategy is called MP3000 (also PACE) 

strategy that uses psychoacoustic masking models to optimize the channel selection process and 

select perceptually relevant channels for stimulation [49]. With its conceptual roots in MP3 

compression, the MP3000 algorithm aims to reduce the spread of excitation by reducing the 

number of clusters (neighboring channels) that are selected in a typical n-of-m approach. It is 

argued that masking functions used in the algorithm are tuned to normal hearing and therefore 

may not equally apply to electrically evoked hearing. However, the performance of MP3000 is 
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demonstrated to be on a par with some of the previous methods [50]. The major advantage of 

MP3000 is in the increased battery performance relative to ACE due to reduced stimuli. The 

MP3000 approach is not currently used in commercial devices. 

Since conventional envelope-based strategies provide limited fine temporal and spectral 

features, there has been a strong push towards better representation of fine features in sound 

coding strategies. Med-El uses a fine-structure processing (FSP) scheme to provide additional 

information about the temporal fine structure of the signal [21, 51-53]. This is achieved by 

delivering bursts of high rate stimulus pulses on the apical-most electrodes that are triggered by 

positive zero-crossings of the band-pass filtered waveform. A significantly different approach 

employed in Advanced Bionics processors aims to enhance the spatial spectral resolution by 

using current steering to invoke virtual channels [54]. The strategy called HiRes120, utilizes 

eight different ratios of currents to create eight virtual channels per adjacent pair of physical 

electrodes which leads to 120 sites in total from an electrode array consisting of 16 electrodes. 

These additional (virtual) pitches claim to improve temporal and spatial resolution of the 

stimulation patterns; however, there is no evidence for improvement in speech understanding 

ability or music perception over other strategies [55, 56]. 

The performance of all of the above sound processing strategies has been evaluated 

extensively and reported in the literature. Figure 2.3 summarizes the sentence recognition scores 

in quiet as a function of time for different speech processing strategies and device models [57]. 

Clearly, with advancements in sound processing, speech recognition performance of implant 

users has consistently improved over the years. However, despite the differences in device types, 

electrodes, and speech processing strategy, there appears to be no significant difference in 
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performance by users of different devices. More importantly, users of the same device and 

similar speech processing strategy show a wide range of outcomes.  

Another aspect that is worth exploring is the role of various speech enhancement 

algorithms in improving speech recognition performance particularly in noise. There have been 

many speech enhancement algorithms reported in the literature over the years [58, 59]. While 

most have been limited to experimental and/or laboratory trials, a few techniques have made 

their way into commercial devices and are used in conjunction with sound processing strategies. 

Notable among these techniques are Adaptive Dynamic Range Optimization (ADRO) [60-62], 

automatic gain adjustment, and ClearVoice [63] that are being used in Cochlear, Med-El, and 

Advanced Bionics devices. All these approaches in conjunction with a sound processing strategy 

claim to provide better speech understanding ability in everyday listening conditions on average. 

 

 

Figure 2.3. Sentence recognition scores in quiet as a function of sound processing strategies and 

cochlear implant devices over the years.Reprinted with permission from [57]. Copyright 2008, 

IEEE. 
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A word of caution when conducting experiments with cochlear implant users is to be careful 

about any possible interactions of these add-on processing schemes, with the experiment in hand 

since these schemes do not necessarily produce equal outcomes for all users. For example, an 

experiment that aims to evaluate the effectiveness of a speech enhancement algorithm may use 

pre-processed audio files that are played in free field during the experiment. The add-on 

processing strategies could have a combined effect that may result in higher individual 

variations. In [64], we investigated the effect of ADRO on speech understanding ability of 

cochlear implant users in adverse listening conditions. We tested speech recognition in anechoic 

quiet, noisy, reverberant, noisy reverberant, and reverberant noisy conditions. Although no 

significant effect of ADRO processing on speech intelligibility was observed, a huge variability 

across subjects in all listening conditions was seen. Seven out of ten subjects had equal or better 

scores without ADRO for speech in the presence of reverberation and noise together. Our results 

indicated that while ADRO is turned on by default in all Nucleus devices, it may have 

detrimental effects for some listeners in some listening conditions, and therefore it may be left as 

an optional setting for the user. Further details about the study are given in Appendix A. 

Contemporary multiband signal processing strategies try to mimic the normal peripheral 

auditory system in an approximate way. The deterministic electrical stimulation patterns that are 

provided by the present scala tympani electrodes do not have the fine temporal resolution; nor 

the spatial resolution needed to provide sharp speech nuances needed to represent speech and 

music with full detail. In the normal auditory system, highly nonlinear filtering, feedback loops, 

level dependent compression mechanisms, and random spontaneous activity in auditory neurons 
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occur. The lack of these factors in CIs may well limit the perceptual abilities of implant 

recipients. 
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CHAPTER 3 

FREQUENCY-PLACE MISMATCH 

Auditory nerve fibers have intrinsic “characteristic frequencies” (CFs) and are tonotopically 

organized in the cochlea, (e.g., nerve fibers located at deeper sites along the length of the cochlea 

have lower CFs and thus when they are simulated, lower pitched sounds are perceived). CIs 

exploit this phenomenon by providing electrical stimulation along the length of the cochlea via 

an electrode array, which is threaded into the cochlear bony labyrinth during surgery. Insertion 

depth of the electrode array, number of electrodes, electrode configuration, degree of neuronal 

survival, positioning and proximity of electrodes to the auditory nerve fibers, largely determine 

which tonotopically mapped groups of nerve fibers are stimulated by each electrode. Deeper 

electrode insertions generally favor improved speech recognition in CIs [4-9]. This is due to 

accessibility of the apical regions of the cochlea which correspond to lower frequencies and 

hence theoretically more low-frequency speech information (e.g., location of F0 and the first 

formant frequency) which can be provided without spectral distortion. However, a deeper 

electrode insertion has challenges of its own, including, insertion trauma and optimal electrode 

placement (electrode array migrating to neighboring cochlear canals during the surgery). 

Variations in electrode insertion depth result in differences in the accessible tonotopic range 

among implant recipients, (i.e., range of CF stimulated at the corresponding electrode locations). 

For example, as noted in Chapter 2, with insertion depth of 30 mm from the round window, the 

most apical electrode would correspond to CF of approximately 185 Hz, while a shallower 
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insertion of 20 mm will correspond to 1170 Hz. This offset/mismatch requires user adaptation 

for effective human decoding of speech through the CI. Despite the variations in electrode 

insertion depth and the fact that the final positions of the electrodes in relation to nerve fibers are 

generally unknown and unique for each patient, contemporary CI sound processors use a 

standard mapping strategy. Each electrode is programmed by the CI processor to stimulate nerve 

fibers corresponding to a predefined frequency-bandwidth. The standard mapping assigns default 

frequency allocation to all implantees and maps the full acoustic range of speech (approximately 

100 - 200 up to 8500 Hz) to the tonotopic location of the electrode array with the expectation that 

CI users will learn to adapt to the modified map over time. Such a mismatch between frequency 

analysis bands of the CI sound processor and the CF of the nerve fibers that are stimulated can 

result in frequency-place shifting (frequency offset), frequency compression, expansion, 

warping, or a combination of the above. These factors not only deteriorate spectral 

characteristics of the perceived sound but may degrade human decoding performance. 

This chapter starts with the differences in the tonotopic map of the organ of corti and 

spiral ganglion followed by discussion on the effects of frequency-place mismatch on speech 

recognition performance of cochlear implant users. A detailed literature review is provided and 

findings from prominent studies conducted with cochlear implant recipients and normal hearing 

individuals in this regard are discussed. 

3.1 Cochlear morphology and frequency map of the human cochlear spiral ganglion 

The frequency map of the cochlea is calculated based on the trajectories of the peripheral 

processes (dendrites) of the spiral ganglion cells. In normal hearing, the site of electric spike 

initiation is governed by the hair cells that depolarize at the organ of corti and the innervating 
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nerve fibers. Thus, for normal hearing, spatial locations along the organ of corti could serve as 

possible frequency coordinates, given that the true length of the organ of corti is known. Until 

very recently, the Greenwood frequency-position function [65, 66] served as the benchmark 

standard to estimate the tonotopic frequencies represented by neurons along the organ of corti. 

The Greenwood function is an empirically derived logarithmic relationship between frequency 

and its place of representation along the basilar membrane that has been shown to be consistent 

for many mammalian species (when scaled to appropriate cochlear length and audible frequency 

range). While the Greenwood function may provide a good estimate of the frequency map for 

normal hearing (at the level of organ of corti), it may not be accurate at the level of spiral 

ganglion, particularly for a compromised peripheral auditory system. The anatomy and 

physiology of the cochlea limits applicability of Greenwood function for electrical stimulation 

provided by scala tympani implants, primarily because the site of the electric spike initiation is 

not determined by the organ of corti, but by the neural elements that are stimulated by the 

electrodes. In addition, orientation of the hair cells, and the trajectories of the nerve fibers play a 

significant role. In the basal cochlear coil, the nerve bundles form radial projections from the 

modiolus to the organ of corti. In the middle and apical turns, the trajectory of the fibers deviates 

significantly because Rosenthal’s canal does not extend all the way to the apical turn [67], but 

terminates in a bulge in the middle turn in which the spiral ganglion cells are densely packed 

wall to wall [68]. Cell projections beyond the middle turn follow vertical trajectories. In a 

compromised cochlea, dendrites soon start to degenerate with the onset of impairment at the 

periphery [69]. Although, spiral ganglion cell somata may survive in larger populations long 

after deafness and CI use [70], the effective tonotopic map at the spiral ganglion may be 
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significantly different from the organ of corti map. Furthermore, the estimates computed by the 

Greenwood function are only as accurate as the exact length of the organ of corti, which cannot 

be determined in most temporal bone and imaging studies. Estimates of frequency based upon 

the average OC length could be inaccurate due to significant individual variations [71, 72]. These 

factors have serious implications for scala tympani cochlear implants that rely on a 

valid/accurate cochlear tonotopic map to assign bandlimited sound signals to their corresponding 

electrodes. More importantly, different electrode array types may establish varying frequency-to-

electrode relationships with similar insertion depth within the same implantee if positioning of 

the electrode array differs (i.e., if the distance of the electrodes to the modiolor wall is 

significantly different). 

 Kawano et al. [71] utilized computer-aided three-dimensional reconstruction of eight 

adult cochleae to measure the lengths of organ of corti (mean ± SD, 35.58 ± 1.41 mm), 

Rosenthal’s canal (15.98 ± 1.33 mm), outer (40.81 ± 1.97) and inner (18.29 ± 1.47 mm) walls of 

scala tympani. They found that Rosenthal’s canal did not appear to be linearly related to the 

length of the organ of corti, and ranged from 1.75 to 2 turns in all specimens. As a comparison, 

the number of cochlear turns range from 2.5 – 3 turns (with a majority having between 2.5 to 

2.75 turns [73]). These results indicate that the frequency map of the spiral ganglion may well be 

different than that at the organ of corti. 

Stakhovskaya and colleagues at the University of California at San Francisco studied 

cadaver cocheae with precise imaging techniques to devise the frequency map of the dendrites of 

the SG neurons as they enter the Rosenthal’s canal [74]. They also formulated an empirical 

relationship between the tonotopic maps of the organ of corti and the spiral ganglion. Their data 
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indicated length of spiral ganglion to be significantly shorter than that of organ of corti, with an 

average OC length equal to 33.13 mm and an average SG length equal to 13.69 mm in their 

specimen. They found strong correlation between the diameter of the basal coil and the length of 

organ of corti, and they suggested using the basal coil diameter to better predict the length of OC 

in preoperative imaging to estimate the insertion angles needed to cover a specific cochlear 

extent. An apparent example of clinical implication of these findings directly relates to the 

design of electrode arrays. The length of perimodiolar (modiolus hugging) electrodes, for 

example, would need to be shorter than that of the standard electrode arrays (which are 

positioned along the lateral wall of the scala tympani) to cover the same cochlear extent 

(frequency range). For implant recipients with residual hearing, a pre-calculated insertion angle 

based on the frequency map of spiral ganglion would result in a more accurate frequency range 

needed to be covered with electrical stimulation.  

Figure 3.1 illustrates the mean characteristic frequencies along the cochlear spiral at the 

organ of corti and spiral ganglion measured by Kawano et al. [71] and Stakhovskaya et al. [74]. 

In comparison to the Greenwood frequency function, the model provided by Stakhovskaya et al. 

[74], seems to provide a relatively better approximation of the frequency map of the human 

cochlear spiral ganglion which is why it is gaining popularity with the cochlear implant research 

community. In the present work, we use the same model – the frequency map of the spiral 

ganglion to estimate the “place” of electrical stimulation. 
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Figure 3.1. Mean frequencies along the organ of corti and spiral ganglion at different angles of 

rotation in cochlea. Numbers printed in purple (lower-most) represent mean tonotopic frequencies 

along the organ of corti measured by Kawano et al. [71]. Numbers printed in green (middle) and 

red (upper-most) represent the tonotopic frequencies at the organ of corti and the spiral ganglion 

level, respectively, computed by Stakhovskaya et al. [74]. Rotational angles are marked (over the 

spiral) in blue and represent angles from the base of cochlea. 
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3.2 Speech recognition as a function of altered spectral distribution 

Speech recognition is a robust process that can be accomplished under conditions of 

severe distortions in the original signal, possibly because speech itself is a robust signal. Under 

ideal listening conditions, the central pattern recognition and linguistic access mechanisms have 

a rich and redundant set of peripheral cues. As listening conditions deteriorate, or under 

conditions of peripheral pathology, the central pattern recognition must work with a reduced or 

distorted set of cues from the periphery, which may introduce ambiguity or additional cognitive 

load for human speech recognition.  

Mismatch between the frequency bands of the CI sound processor and the characteristic 

frequencies of the nerve fibers that are stimulated by the scala tympani implants can manifest 

into several kinds of spectral distortions in the perceived sound. As previously noted in Chapter 

2, these include frequency-place shifting (frequency offset), frequency compression, frequency 

expansion, frequency warping, or a combination of the above. These distortions occur primarily 

due to the variability observed in the insertion depth that may result in stimulating groups of 

nerve fibers that are not tonotopically matched to the frequency bands assigned by the sound 

processor. In addition, dead regions in the neural population can create spectral holes. On the 

other hand, there is evidence that electric fields inside the cochlea may stimulate spiral ganglion 

located in the adjacent turns as well. Such a phenomenon may exacerbate the spectral warping 

challenge. Figure 3.2 - Figure 3.7 illustrate the above spectral distortions as they may appear in a 

cochlear implant system. Figure 3.2 demonstrates an ideal scenario, in which analysis filters of 

the sound processor are matched exactly with the tonotopic place of stimulation. Figure 3.2 

shows frequency matching with shallow electrode array insertion. Figure 3.2 illustrates a linear 
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shift in frequency-to-place mapping. The frequency compression and frequency expansion 

phenomena are shown in Figure 3.2 and Figure 3.2 respectively. Finally, the combination of 

above spectral distortions, as they may appear in an actual CI system is illustrated in Figure 3.2 

 

 

 

Perfect frequency-place alignment 

 

Figure 3.2. Perfect alignment (matching) of analysis filters with the tonotopic place covering full 

extent (frequency range) of cochlea. This and the following figures provide a conceptual 

representation of different frequency-place scenarios. Acoustic analysis filters represent the 

frequency bands of a sound processor. Cochlea is stretched open, and the tonotopic place of 

stimulation represents the characteristic frequencies of the auditory nerve fibers. 
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Shallow insertion with frequency-place alignment 

 

Figure 3.3. Shallow insertion in which analysis filters are matched with the tonotopic place. The 

lower-most frequencies are truncated.  

Linear frequency shift 

 

Figure 3.4. Linear shift/Frequency offset.  
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Frequency compression 

 

Figure 3.5. Frequency Compression: Full acoustic range is compressed and mapped to a relatively 

smaller cochlear place.  

Frequency expansion 

 

Figure 3.6. Frequency Expansion: Narrow acoustic range is spread out to a larger cochlear place.  
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Speech recognition as a function of altered spectral distribution has been widely studied 

in both CI recipients, as well as with acoustic simulations using normal hearing listeners [49-77]. 

The findings suggest that peak performance is achieved when the full acoustic range is mapped 

to the tonotopic map in a matched scenario (i.e., analysis bands correspond to the tonotopic map 

of the cochlea in a 1-to-1 manner, see Figure 3.2); however, minor mismatch does not account 

for the significant reduction in human listener performance. There are two opinions regarding 

frequency-place mismatch in cochlear implants. Some research groups are of the opinion that 

frequency mismatch could potentially account for differences in performance among the 

recipients, and that such mismatch can only be accommodated to a limited degree; therefore, 

these distortions should be minimized. On the other end of the spectrum, some groups argue that 

Combination of frequency-place mismatch 

 

Figure 3.7. Illustration of an example scenario depicting the frequency place mismatch observed 

in an actual cochlear implant with insertion depth of 22 mm. The spectral distortions include 

frequency shift, frequency compression, and frequency warping. Frequencies are based on the 

Greenwood function. 
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these mismatches can be compensated for over time and that neural plasticity of the cortex will 

eventually create a modified frequency map in the auditory cortex, therefore it is important to 

deliver full information via the sound processor and let the brain work its reorganizational magic. 

In the following sections, findings from the literature in this context will be discussed. 

Some classical studies that investigated the effect of spectral and temporal distortions on 

the intelligibility of speech signal include those conducted by Tiffany and Bennet (1961) [75], 

Daniloff et al. (1968) [76], Nagafucci et al. (1976) [77], and Reed et al. (1983) [78], amongst 

others. Daniloff et al. [76], for example, studied various degrees of time and frequency 

compression on vowel recognition. They found that spectral degradation impacted the 

intelligibility of vowels more than the temporal distortions, and that the second formant 

frequency (F2) played a more critical role in vowel perception than the first formant frequency 

(F1). Also, relative or proportionate shifts of up to 40% in formant structure could be tolerated 

without significantly impacting phonemic quality; however, frequency compression ratio beyond 

fifty percent could severely impact vowel recognition. Nagafucci et al. [77] demonstrated that 

vowel recognition decreased sharply with frequency compression and expansion in comparison 

to temporal changes. The performance reduced to half for frequency distortions caused by 50% 

frequency compression or 200% frequency expansion (frequency compression had a relatively 

more deleterious effect than frequency expansion). While vowel discrimination was relatively 

unaffected by time expansion, performance decreased significantly beyond 50% time 

compression (a similar trend was demonstrated by Tiffany and Bennet [75]). Beasley et al. [79] 

demonstrated that with 15 days of training with 35% frequency-shifted/time-compressed speech, 

hearing impaired children accommodated to the altered pattern of speech cues and showed 
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improvements relative to the baseline performance measured on the first day. Braida et al. (1979) 

[80], in a review of past research on linear amplification, amplitude compression, and frequency 

lowering schemes for hearing aids, concluded that frequency lowering, (for example, to match 

the hearing range of a hearing impaired individual) did not improve speech recognition, and 

often decreased performance compared to simple amplification schemes. Later, Reed et al. 

(1983) [78] systematically studied the effects of frequency lowering with linear and nonlinear 

spectral warping on consonant recognition ability by normal hearing listeners. Their results 

indicated that the best performance achieved on any of the frequency-lowering schemes was 

roughly equivalent to the performance achieved by low-pass filtering to an equivalent 

bandwidth. These results confirmed that frequency lowering did not improve consonant 

recognition and that linear frequency compression (compressing the whole frequency range) was 

more detrimental than frequency warping-compression (i.e., only higher frequencies are 

compressed and lowered). 

The findings from these above-mentioned classical studies serve as a foundation for 

research on speech degradation and its impact on cochlear implants. Some of the earlier studies 

that investigated the effects of spectral distortions in cochlear implants were conducted by Drs. 

Dorman, Loizou, Shannon, Zeng, and Fu in the late 90s [81-83]. In one of these preliminary 

studies, Dorman et al. studied the effect of cochlear implant insertion depth with normal hearing 

(NH) individuals using five channel acoustic simulations of cochlear implants [81]. They found 

that simulated insertion depth had a significant effect on the identification accuracy of 

consonants, vowels, and sentences presented in quite (without learning). Vowels, in particular, 

were more susceptible to frequency shifts. Although performance was significantly poorer at 22- 
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and 23-mm simulated insertion depths, performance at 25-mm simulated insertion depth was, 

comparable to normal. Their results indicated that insertion depth of 25mm should be sufficient 

to allow for an effective level of speech understanding which may be achieved with deeper 

insertions. (see Figure 3.8)  

Shannon et al. [83] reported similar findings with vocoder-based simulations in a series 

of experiments using a 4-channel vocoder that preserved temporal cues and systematically 

distorted spectral cues by shifting and non-linear warping. By manipulating the frequency extent 

of the individual analysis and synthesis bands  to  create a warping in the  spectral  distribution of  

 

 

Figure 3.8. Average test scores as a function of simulated insertion depth from Dorman et al. [81]. 

Reprinted with permission from [81]. Copyright 1997, Acoustical Society of America. 
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envelope cues, they demonstrated a dramatic decrease in performance to the point that speech 

was completely unintelligible. They also observed large deficits in speech recognition 

performance when the synthesis bands were linearly shifted in frequency, mimicking the 

tonotopic shifts that may occur due to the basal position of electrodes in a cochlear implant. In 

line with previous studies, their results demonstrated that vowel recognition and consonant place 

of articulation required more spectral detail for high levels of recognition, indicating that vowel 

recognition1 depended more on spectral cues than on temporal cues. Their results indicated that 

the central pattern recognition mechanisms are not robust to linear translations of the pattern 

along the neural array, at least acutely. 

In another study conducted at the House Ear Institute with normal hearing and cochlear 

implant listeners, Fu and Shannon [82] assessed the recognition of spectrally degraded and 

frequency-shifted vowels. Spectral degradation was achieved by simulating 4-band, 8-band, and 

16-band vocoders, and frequency shifting was achieved by systematically varying the frequency 

extent of the analysis and synthesis filters. Their results showed that vowel recognition was 

sensitive to both spectral resolution and frequency mismatch and more interestingly, both factors 

were orthogonal to each other in terms of intelligibility (i.e., each had a separate and independent 

effect on speech recognition). One consequence of this result is that greater spectral resolution 

(e.g., by increasing the number of independently perceptual bands/electrodes) would not 

compensate for or provide additional robustness against the deleterious effect of tonotopic shift 

and mismatch. In their acute study (i.e., without any learning), the best performance was 

observed with frequency matched maps, but a relative shift of up to 3 mm (basal or apical) could 

                                                 

1 Vowels contribute little to overall speech intelligibility. 
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be tolerated without any significant loss in performance. However, performance dropped 

significantly beyond a 3 mm shift in either direction. A 3 mm basal shift corresponds to the 

insertion depth of 25 mm from the base (or lowest corner frequency of 513 Hz) based on the 

Greenwood function (assuming 28 mm as full insertion from the round window).  

Başkent and Shannon studied the frequency place mismatch and their effects on speech 

recognition performance of cochlear implant recipients in a series of experiments conducted at 

University of Southern California and House Ear Institute [84-87]. In [84], they explored the 

effects of frequency compression and frequency expansion on speech intelligibility in a vocoder-

based simulation study with 6 normal hearing listeners. They simulated two commonly observed 

electrode insertion depths, 25 mm and 20 mm from the round window. The frequency ranges of 

the carrier filters were kept constant and those of the analysis filters were varied to simulate the 

frequency-place mismatch condition, which varied from -5 mm to +5 mm relative shifts (extreme 

expansion to extreme compression). All testing was done acutely (i.e., without any training). The 

best speech recognition (for consonants, vowels, and TIMIT sentences) was always observed in 

the matched condition and both frequency compressed or expanded maps produced poorer 

performance. Generally, frequency expanded maps produced poorer performance than frequency 

compressed maps, indicating that spreading of the critical speech spectral region to a larger range 

in the cochlea (like an acoustic fovea) has detrimental effects on human speech recognition 

performance. The frequency compression phenomenon is similar to the typical mapping 

approach used in cochlear implant processors, in which an acoustic frequency range of 150 – 

10,000 Hz is generally mapped on to tonotopic locations that range from 500 – 6000 Hz (for 5 

mm basal shift with16 mm electrode array length, resulting in a compression of approximately 2 
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octaves (based on the Greenwood function)). This simulated condition resulted in at least 20 

percent deficit in sentence recognition as compared to the matched condition. The data from their 

acute experiments indicated that without learning, speech patterns in the central nervous system 

can tolerate only a relatively small amount of distortion (2 – 3 mm) in tonotopic space. Beyond a 

2 - 3mm shift, speech understanding was severely impacted. This study was later repeated with 

the 6 Med-El Combi 40+2 cochlear implant recipients in [85]. Despite the uncertainties in true 

frequencies of nerve fibers at the stimulation sites, there results showed a similar trend to the 

above-mentioned simulations study conducted with normal hearing listeners [84]. The best 

performance was obtained with maps that were matched and had the least amount of spectral 

distortion. Both frequency compression and frequency expansion schemes reduced performance. 

This effect was more pronounced for vowels, which are more susceptible to spectral distortions. 

Again, the study measured only the acute effects of using different frequency maps and the 

results may not hold equally valid for any accommodation that may occur after long term use of 

the maps. However, their data indicated that the choice of the frequency-place map had a 

significant effect on speech recognition, and if a recipient was initially fitted with an optimum 

map that had a minimum overall frequency-place distortion, any further accommodation could 

start from this highest level of performance. 

In a later study [86], Başkent and Shannon investigated the effect of electrode insertion 

depth on speech recognition abilities of 4 Med-El Combi 40+ cochlear implant users. They 

simulated 10 different insertion depths that varied from shallow insertion of 7.2 mm (with single 

                                                 

2 Combi 40+ is a relatively long electrode array from Med-El that may achieve insertion depth of up to 31 
mm. 
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electrode) to deeper insertion of 28.8 mm (10 active electrodes) by systematically switching off 

the apical-most electrodes within the same subject. For each simulated insertion depth, a 

frequency-matched map and a frequency-compressed map was tested for speech recognition of 

vowels, consonants, and sentences. Their results indicated that for insertions deeper than 20 mm 

from the round window, the frequency matched map produced better results than the clinically 

assigned frequency compressed map. Here, 20 mm corresponds to 1168 Hz on the Greenwood 

scale. This implies that providing more spectral information (by performing compression) was 

actually detrimental for speech understanding in these subjects. For insertion depths less than 20 

mm, they found that a mild amount of frequency-place compression was better than truncating 

the lower frequencies. For example, for insertion depths of 19.2 mm and 16.8 mm, the peak 

performance was observed with compressions of +2 to +3 mm and +3 to +4.5 mm respectively 

(see Figure 3.9). These compressions equate to cut-off frequencies of 643 Hz and 715 Hz (center 

frequencies = 821 Hz and 948 Hz) for the lowest most frequency band respectively. However, 

that study only considered the acute effects of frequency-place maps and completely ignored the 

role of long-term adaptation. While CI recipients may be able to accommodate to distorted 

pattern of tonotopic activity, they probably cannot overcome the loss of information caused by 

truncating the frequency range. It is for these reasons that despite individual variations in 

electrode insertion depths, clinical implant systems continue to provide the full acoustic range 

through their sound processors. However, the data from these studies indicate that severe 

frequency-place mismatch (due to extremely compressed frequency maps) can be a 

disadvantage. It should be noted that the exact amount of time for full adaptation to various 

degrees  of  frequency-place  mismatch  in  most subjects is not known,   and  further  research  is 
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needed in this regard. 

The above-mentioned studies investigated the effects of frequency shifting, compression, 

and expansion separately; however, in cochlear implants these distortions may occur in 

combination. In their later work, Başkent and Shannon [87] explored the combined acute effects 

of frequency shift and compression-expansion on speech recognition using acoustic simulations 

of cochlear implants with five normal-hearing subjects. Similar to the findings of previous 

studies, they found that the matched map generally produced the best results, and applying either 

of the three spectral distortions independently resulted in reduced performance. However, they 

noticed a compensatory effect for some conditions when the two degradations were applied 

simultaneously. For all apical shifts of -5 mm (and some conditions of -3 mm), the shifted and 

 

Figure 3.9. Average test scores as a function of simulated insertion depth in Combi 40+ implant 

users from Başkent and Shannon [86]. The open circles indicate a frequency compressed map with 

full acoustic range. Filled circles show the scores from the matched map (lower frequencies were 

truncated). Reprinted with permission from [86]. Copyright 2005, Acoustical Society of America. 
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compressed map produced better performance than the frequency-shifted map alone. Also, the 

performance was higher for maps, where low frequencies were better matched as compared to 

the maps where higher frequencies were matched. Their analysis showed that this compensatory 

effect was more commonly observed for maps where the combination of the shift and 

compression resulted in alignment of low-frequencies, particularly within the 1000 – 2000 Hz 

range, even when the remaining frequencies did not necessarily match. These findings are 

consistent with studies on speech perception. The Speech Intelligibility Index (SII) which 

predicts speech recognition performance from the amount of information available, weights 

frequency information form 1 – 3 kHz as the most critical [88]. Başkent and Shannon concluded 

that for shallow insertions (19 mm or less), a mild amount of compression was better than 

matching the complete frequency range to avoid over-truncation, and that matching the 

frequency range between 1000 – 2000 Hz, which contains the most critical speech information, 

can be more beneficial for speech recognition than matching the entire frequency range in certain 

conditions. In the next chapter of this dissertation, we will explore how we utilize these 

experimental data to devise user-customized frequency assignment strategies. 

In contrast to the aforementioned studies that varied the lower frequency boundaries to 

create frequency mismatch conditions, Goupell et al. [89] investigated the effects of upper-

frequency boundary and warping on (German) sentence recognition of seven Med-El CI users 

and the effects of adaptation with six normal hearing individuals. They tested eighteen different 

variations of processing schemes that varied in frequency- place mapping, stimulation range, and 

upper boundary of the frequency. They found that spectrally unwarped conditions often 

produced the best performance, but variations of up to 0.77 octave for the most basal electrode 
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could be tolerated without impacting human listener performance. For the unwarped conditions, 

only eight to ten frequency matched channels were sufficient for equivalent performance to the 

normal 12-electrode sound processing. In their second experiment, they found that frequency 

matched and frequency expanded maps showed improvement with feedback training in acoustic 

simulations of the cochlear implant with NH listeners; however, no improvement was observed 

for the frequency compressed maps. 

3.2.1 The role of adaptation 

To this point, we have explored the acute effects of spectral distortion on speech 

recognition. Contrary to the aforementioned studies, some research groups argue that results 

from acute studies underestimate the effect and/or benefit of learning/adaptation, and that neural 

plasticity can help facilitate and thereby create an acceptable “adapted electric map” over time, 

(i.e. the listener gradually learns to live with the current configuration and adapts to the altered 

pattern of stimulation) 

 Rosen et al. investigated the adaptation to upward spectral shifts of speech in a 

simulation study with four normal hearing listeners [90]. They simulated a 6.5 mm basalward 

shift (1.3 – 2.9 octaves, depending on the frequency) using a 4 band noise vocoder and tested 

consonant, vowel, and sentence recognition acutely and with connected-discourse tracking 

(CDT) [91]. Consistent with other studies, they found that without any auditory training, 

matched conditions led to the best performance, and the spectrally shifted condition resulted in 

negligible speech recognition. However, after about 3 hours of experience (nine 20-minute CDT 

sessions), performance increased from near zero to about one-half the performance in the 

matched conditions (30% of words). Their results suggested that listeners could learn to adapt to 
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spectral shifts that arise due to frequency-place mismatch in cochlear implants (e.g., due to 

shallow insertions). Although, the final level of performance with spectrally shifted maps was 

significantly lower than the matched condition even after the extremely short training period, it 

was clear that acute-experiments with acoustic simulations of cochlear implants seriously 

underestimate the effect of learning. This study concluded with many unanswered questions, 

(e.g., what degree of spectral mismatch could be accommodated to? Duration of time required 

for adaptation? Is full accommodation to spectrally degraded maps even possible?) Rosen et al. 

[90] suggested that speech perception difficulties which implant users experience as a result of 

frequency-place mismatch may be a short-term limitation that could be overcome with 

experience. 

Harnsberger et al. [92] demonstrated adaptation to an upward spectral shift in 

experienced cochlear implant listeners. In this study, the implant users were asked to indicate 

their perception of synthetic vowels generated by varying F1 and F2 characteristics, in an 

attempt to create “perceptual vowel” spaces in hopes to find their true frequency space. Their 

idea was that if recipients had not adapted to upward spectral shifts, the perceived vowels will 

most likely have lower first and second formants than natural vowels. However, there was no 

evidence of such effects, instead, the vowel spaces differed from one another in the relative size 

of their vowel categories. Their findings suggest that perpetual (frequency) map may be altered 

with experience and that differences in format frequency discrimination may account of 

individual differences in vowel perception in cochlear implant users.  

Fu et al. [93] investigated the perceptual learning patterns following changes in the 

frequency-to-electrode assignments with 3 Nucleus CI users. In their study, the participants used 
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an experimental map that was shifted apically by 2 – 4 mm (1 – 0.68 octave) relative to their 

clinical (normal) map over a period of three months. Their results showed that although 

performance with the frequency shifted maps dropped drastically immediately upon activation, 

their performance continued to improve over the course of three months, indicating adaptation to 

the altered speech patterns. However, none of the subjects could exhibit full accommodation in 

the three month time frame. Consonant and HINT sentence recognition scores gradually 

approached a performance level that was comparable to, but still below, baseline performance 

(with the clinical map). On the other hand, vowel and TIMIT sentence recognition remained 

significantly lower even at the end of the study. This indicates that long-time exposure may not 

compensate for the deficit in performance caused by a 2 – 4 mm shift in tonotopic location of 

stimulation, at least not within a 3 month time period. Interestingly, the clinical map resulted in 

the same performance both at the start and the end of the study, indicating that the central 

representation of frequency space (spectral patterns) had not been reshaped after 3-months of 

experience with the frequency shifted map (i.e., the users retained both frequency 

representations). This result is quite surprising, as it indicates that at some level multiple maps 

may co-exist, perhaps with differing saliencies. It should be noted that Fu et al. considered an 

apical shift and had only a vague knowledge of electrode array insertion depth (from the rings on 

the array that resided outside the cochlea, as indicated by the surgical report). The exact 

tonotopic-place map (that was being stimulated) was unknown. If most apical nerve fibers 

(representative of low frequencies) were not being stimulated (which is quite likely for normal 

insertions), a basal-ward frequency shift would be observed. In such a case, creating an apical 
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shift in the map would further increase the frequency-place mismatch, which might reduce 

overall performance (and adaptation trends as well). 

 Faulkner et al. [94] simulated tonotopically mapped frequency-maps that varied in 

insertion depth in a group of eight normal hearing individuals using noise-excited vocoders. 

They simulated five insertion depths ranging from 25 mm to 17 mm, a range that is commonly 

observed in recipients depicting normal to relatively shallow insertion. In all five simulated 

conditions, analysis filters were matched to the synthesis filters to create matched frequency-

place conditions. The center-frequency of the analysis filter ranged from 502 Hz (25 mm) to 

1851 Hz (17 mm). All participants were given 20 minutes of CDT training with each frequency 

map prior to testing. The results were as follows. Speech recognition was found to be 

proportional to the electrode array insertion depth. Identification of consonants and sentences 

remained at an asymptotic level for insertion depths of 25 mm, 23 mm and 21 mm, below which 

(21 mm or less), the performance dropped significantly. Vowel recognition showed a progressive 

decline with a decrease in insertion depth. Mean results from their study are shown in Figure 

3.10. The trend in results seems to follow predictions from the Articulation Index (AI) 

weightings [88]. AI studies show that the loss of information below 1 kHz will significantly 

reduce intelligibility of unprocessed speech, and that additional higher frequency information 

gained from matching will be of slight benefit. Overall, their results indicate that if frequency 

assignments of sound processors were to be matched with the tonotopic place of stimulation, 

users with electrode insertion depths of 19 mm or lower will obtain significantly poorer speech 

recognition performance. 
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Faulkner, Rosen, and colleagues, in their follow-up research [95], compared frequency 

matched maps with upward-shifted frequency maps to simulate shallow insertion depth of 16.9 

mm (insertion depth of 16.9 mm from the round window corresponds to the most apical 

electrode residing at 1851 Hz on tonotopic place according to the Greenwood function). The 

study was conducted using vocoder-based simulations with eight normal hearing individuals who 

were tested with frequency matched and frequency-shifted maps before and after a three hour 

 

Figure 3.10. Summary of test scores as a function of simulated insertion depth over speech 

materials with normal hearing listeners from Faulkner et al.[94]. Three types of speech materials 

were tested, namely BKB sentences, consonants in vowel-consonant-vowel (VCV) context, and 

vowels. The dotted lines represent predictions from the AI weightings for comparable material. 

Reprinted with permission from [94]. Copyright 2003, Acoustical Society of America. 
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training session with each map. Their results showed that training improved performance with 

both maps. Speech recognition of male talker was found to be better with the frequency shifted 

map than with the frequency matched map. On the contrary, for the female talker sentence 

recognition was found to be better with the matched map, and vowel recognition had an equal 

level of performance for both maps. In general, higher adaptation to frequency-shifted maps was 

observed. They concluded that full acoustic information may matter more than frequency-place 

alignment for shallow insertion depths (at least at 16.9 mm simulated condition) in the long run, 

assuming that individuals will continue to adapt to the frequency shifted maps. The results from 

this study, however, should be interpreted with caution. First, the authors simulated insertion 

depth of 16.9 mm from the round window and tested a frequency shifted map that would mimic a 

6 mm basalward shift. The center frequency of the most apical filter for 6 mm equates to 715 Hz. 

All frequencies below the cutoff (601 Hz) were truncated. Assuming a full insertion of 28 mm 

from the round window, the most apical electrode for the frequency matched map is located (28-

16.9) ~11 mm from the apex (i.e., 11 mm shift from the optimum place). On the other hand, the 

frequency shifted map has a (28 – 23) 5 mm relative shift for the most apical band from the 

optimum place. Generally, a CI sound processor will provide a full acoustic range to the 

electrodes regardless of the insertion depth. For such a case, a clinical processor will allocate 250 

Hz to the most apical electrode (Cochlear Corp. frequency table) that would result in a relative 

shift of 11 mm. The frequency allocation scheme used by Faulkner et al in [94] underestimates 

the frequency mismatch that would be caused by an actual CI processor and therefore these 

results may not be applied to patients who have shallow insertions. Furthermore, the results from 

the study are reported independently for the male and female talker. 
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Table 3.1. Center frequencies (CFs) of analysis filters used in the study by Faulkner et al. in [95]. 

CFs of freq-matched filters (Hz) 1851 2492 3338 4453 5923 7861 10416 13783 

CFs of freq-shifted filters (Hz) 715 995 1364 1851 2492 3338 4453 5923 

 

In a relatively recent work, Faulkner and colleagues assessed the effect of unilateral 

spectral shift in binaural hearing in a study lead by Siciliano [96]. Their hypothesis was that 

given sufficient training, listeners would receive a binaural advantage for speech information that 

had a unilateral shift but was matched contralaterally. The speech recognition performance with 

the binaurally mismatched processor was always significantly lower than the processor that had 

just three unshifted bands. Despite 10 hours of training, the subjects did not show a binaural 

advantage for the binaurally mismatched frequency-place map. This resistance to learning, they 

concluded, could indicate a constraint on speech perceptual neural plasticity to instances where 

the relative frequency order is preserved. These findings raise thought-provoking clinical 

implications for bilateral cochlear implants. Their data suggest that it may be important to 

minimize frequency place mismatches not only in the same ear, but also minimize mismatches 

across both ears. Optimization of bilateral cochlear implants, therefore, may be achieved by 

minimizing distortions across ears. This is not surprising as projections of the auditory pathways 

from each ear are bilateral. The pathways from both ears cross paths at the cochlear nuclei, 

superior olives, and inferior colliculus before reaching the primary cortex. See Figure 3.11. 

Since, signals from each ear are combined so early in the process, and sent to both sides of the 

brain, the complexity of these pathways makes frequency-place mismatch across the ears 

intricate and difficult to study. 
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Li, Galvin and Fu [98] studied the interactions between unsupervised learning and the 

degree of spectral mismatch on short term perceptual adaptation in normal hearing listeners to 

spectrally shifted vowels with acoustic simulations of cochlear implants. In their first 

experiment, they simulated three insertion depths with shifts of 3.6 mm, 6 mm, and 8.3 mm 

towards the base, indicating slight, moderate, and severe mismatch respectively. The center 

 

Figure 3.11. Projections of the auditory pathways from ear to the cortex. Reprinted with 

permission from Pinel, J. P. J., Biopsychology, 9/E [97]. Copyright 2014, Pearson. 
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frequencies of the analysis filters and synthesis filters are given in Table 3.2 (synthesis filters 

reflect tonotopic frequencies at the cochlea, Greenwood assumed). Listeners were repeatedly 

tested for vowel recognition over a 5-day study period without any explicit training or feedback. 

Subjects showed complete adaptation to the 3.6 mm shift, achieving scores equal to the matched 

condition and at least partial adaptation to 6 mm shift. No improvement was seen for the severely 

shifted condition, indicating 8.3 mm spectral shift could not be accommodated for over a period 

of 5 days. In the second experiment, two groups (4 participants per group) were tested with a 

severe shift (8.3 mm) over a period of five days. The first group was tested exclusively with the 

8.3 mm shifted map, while the second group followed a mixed exposure protocol that involved 

alternating exposure to the moderate and severe shifts with 8 and 16 channels of processing. By 

the end of the 5th day, they found no adaptation to the severe mismatched map in the first group 

which was given exclusive exposure to the 8.3 mm severe shift. On the contrary, the second 

group (which was given mixed exposure), showed significant adaptation to the severely shifted 

speech with 8-channels and even greater adaptation with 16-channels. The asymptotic level of 

performance with severe mismatch was still significantly lower than that with moderately shifted 

 

Table 3.2. Center frequencies (CFs) of synthesis filters for different simulated insertion depths 

used in the study by Li et al. in [98]. 

Matched filters – 0 mm shift (Hz) 272 464 744 1155 1754 2629 3905 5769 

Slight shift – 3 mm shift (Hz) 544 763 1052 1433 1936 2598 3471 4622 

Moderate shift – 6 mm shift (Hz) 805 1108 1507 2033 2726 3640 4845 6433 

Severe shift – 8 mm shift (Hz) 1168 1584 2136 2863 3821 5084 6748 8942 
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maps, indicating only a partial adaptation. The results from both experiments are shown in 

Figure 3.12 and indicate that listeners are able to adapt completely to shifts of up to 3 mm and 

exhibit at least partial adaptation to spectral shifts equivalent to 6 mm with passive learning. For 

shifts beyond 6 mm, some passive adaptation could be observed given gradual or mixed 

exposures to a smaller spectral shift. These findings are in line with studies conducted by Fu and 

Galvin [99], and Svirisky et al. [100] that suggest gradual or mixed exposure to shifted maps 

may be more beneficial that an abrupt exposure to a severely shifted map. Although the findings 

from this study are quite interesting, it is unclear if these adaptation trends would equally hold 

for other speech materials, listening conditions, and for actual cochlear implant users. For 

example, Faulkner et al. demonstrated that results in the patterns of phonetic training did not 

(a) (b) 

Figure 3.12. Mean vowel recognition scores as a function of test session reported by Li et al. [98] 

(a) Experiment 1: Different simulated insertion depths. (b) Experiment 2: Severe spectral shift (8.3 

mm) with different training protocols. Error bars indicate one standard deviation. Reprinted with 

permission from [98]. Copyright 2009, Ear and Hearing. 
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necessarily generalize to speech recognition. Also, Parikh and Loizou [101] showed that speech 

perception in noisy listening conditions may well be quite different than that in quiet. While F2 

cues are more important in vowel recognition in quiet, F1 cues together with the F2 envelope 

play a more dominant role in noise. Furthermore, the number of perceptually discriminable 

channels in the cochlear implant recipients is generally very limited (at most about 8). As 

discussed in the previous chapter, there is evidence from many studies that vowel recognition 

plateaus at 4 - 6 frequency bands [13-15]. Therefore, the availability of 16 perceptually 

independent stimulation sites for vowel recognition may well be beyond the capacity of current 

cochlear implants. Although Fu et al. [82] in their previous study demonstrated that the number 

of channels and frequency shifts are completely independent processes, the results from this 

study indicate that this might not hold equally true for accommodation to 16-channels. Further 

research on adaptation to severely distorted speech cues with different speech materials with 

varying complexities and noise conditions is warranted to make any reasonable arguments on 

“real-world” implications with cochlear implant users. 

 Studies conducted by Reiss et al. provide evidence to changes in the perceived pitch with 

long-term use of hybrid cochlear implants [102-104]. In [102], they measured electric pitch 

sensations in hybrid cochlear implant users at various stages of implant use to examine the effect 

of experience to perceived pitch. They found that electric pitch perception often shifted in 

frequency, sometimes by as much as two octaves, during the first few years of implant use. They 

observed that this change in perception could be attributed to two adaptation trends, namely, 

short-term changes, and slow systematic changes. Short-term or early pitch sensations may more 

closely reflect peripheral innervation patterns, while later pitch sensations may be due to higher-
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level, experience dependent changes. In a study conducted on 20 hybrid CI users over a period of 

24 months, they found that pitch perception at individual electrode locations more closely 

resembled the frequency map assigned by the processor than place-frequency predicted from the 

cochlear place [103]. A very interesting case study about electric pitch perception of a bilateral 

cochlear implant user who used a standard electrode (24 mm) in one ear and a short (hybrid) 

electrode array (10 mm) in the contralateral ear was reported by Reiss et al. in [104]. The 

standard electrode array had 20 active electrodes, while the short array had only 6 electrodes. 

Despite the significant variation in array types and putative insertion depths, the recipient 

preferred the full acoustic range (188 – 7938 Hz) in both ears and thus both processors were 

programmed to allocate same (full) frequency range. After 2 years of continuous use, the 

researchers used psychophysical methods to pitch match the electrode pairs in both ears and 

surprisingly found that pitch-matched electrode pairs between the CIs were aligned closer to the 

processor-provided frequencies rather than the actual cochlear place. This result suggests that 

pitch perception may have adapted over 2 years to reduce the perceived spectral discrepancies 

between the two ears, despite the 2 – 3 octave difference in tonotopic mapping. The evidence 

from these above-mentioned studies suggests that the brain may adapt to spectral mismatches by 

remapping pitch over long-term use of cochlear implants. 

3.3 Summary and Conclusion 

The findings from the afore mentioned studies suggest that spectral distortions that occur due to 

frequency-place mismatch in cochlear implants may have a detrimental effect on speech 

reception depending upon the degree of mismatch and distortion. Shifts of up to 3 mm can be 

tolerated without having a significant impact on speech perception. Although, mismatches from 



56 

 

3 – 6 mm show worse performance acutely, listeners may show at least some partial adaptation 

over time. Continued exposure and auditory training may lead to better results. The results from 

most studies indicate that shifts beyond 7 mm may not be accommodated to, at least within a 

short span of time. The degree of accommodation and time to adapt to severe mismatch may be 

variable across listeners, and it is not yet clear as to what extent neural plasticity can continue to 

facilitate reception of severely distorted speech. Also, there is no evidence to explain if 

adaptation trends observed with moderate to severe frequency mismatch will extrapolate to 

complex listening situations, such as music perception, speech recognition in the presence of 

noise, and reverberation. 

The results from these studies at least hold some implications for cochlear implant fitting. 

For minor mismatches (up to 25 mm insertion depth) compressing the full acoustic range to the 

electrode array will generally result in equal performance to the matched conditions over time. 

For moderate to severe mismatches, clinical frequency maps (that compress the full acoustic 

range) may be detrimental for speech reception at least acutely. For such cases, a balanced 

approach that compresses the lowest acoustic frequencies and matches intermediate frequencies, 

may result in a better performance, at least acutely. Listeners may be able to adapt to moderate to 

severe mismatches, at least partially; however, intermediate balanced maps during the 

accommodation period may facilitate accommodation [100]. Also, it is fair to acknowledge that 

the neural plasticity may be unique for each recipient, and therefore, the final level of adaptation 

and the time to adapt to the frequency-mismatch may vary from individual to individual. A 

frequency map that minimizes the mismatch, but at the same time is able to represent sound 



57 

 

frequencies without a significant loss of speech cues that are important for understanding, may 

lead to quicker adaptation or improve outcomes or both. 
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CHAPTER 4 

USER-SPECIFIC FREQUENCY-PLACE MAPPING 

In the previous chapter, effects of frequency-place mapping on speech recognition were 

explored. Scientific studies conducted with normal hearing and cochlear implant users suggest 

that if the spatial relationship between electrodes and the auditory nerve fibers (that they 

stimulate) could be known, a more effective frequency-place mapping could be devised. The 

goal of these mapping schemes would be to maximize delivery of the full acoustic information, 

but at the same time keep frequency-place mismatch to a minimum. A mapping scheme that 

could also better mimic the normal peripheral frequency map would be desirable. Unfortunately, 

these two goals tend to be incompatible with each other for electric hearing via current cochlear 

implants. The exact placement and insertion depth of scala tympani electrode arrays relative to 

the tonotopic place in the cochlea is generally unknown. For moderate to shallow insertions, for 

example, matching the sound processor’s analysis frequency bands with the tonotopic place of 

stimulation, may result in a considerable loss of the low-frequency information (that could be 

vital for speech recognition). Similarly, extremely compressive maps may be less than optimum 

and reduce perception. There is evidence that a compromise between the two may result in an 

overall optimum configuration (i.e., a map that is not drastically different from the frequency 

map of the auditory cortex). Unfortunately, until very recently, positioning of the electrodes and 

their relationship with the spiral ganglion cells could not be known. Although radiograms (e.g., 

x-rays) can capture the electrode array image in the cochlea, they lack the ability to visualize the 



59 

 

fine nerve fibers. Similarly computer tomography (CT) imaging could be used, but nerve fibers 

here are too fine to be visible on CT images and the lack of contrast for the SG cells makes it 

extremely hard to delineate directly. 

 Noble et al. at Vanderbilt University have devised a new image-processing technique 

based on weighted active shape modeling which determines the location of electrode contacts 

and their spatial relationship to the peripheral neural processes, from both pre and post 

implantation CT scans of recipients’ cochlea [105-107]. In the present work, we have 

collaborated with their group to utilize image-guided procedures to determine electrode-nerve 

spatial-relationship in each CI recipient’s cochlea. We use these image maps to customize 

frequency-place functions on an individual basis. In the following section, details about the 

image-processing technique are provided. 

4.1 Image processing technique 

External cochlear boundaries are registered relatively clearer in CT images and are easier to 

segment, but due to a lack of contrast of the SG, delineation of the fine nerve fibers is not 

possible by human vision or conventional image processing segmentation algorithms. Noble et 

al. [105] overcame this problem by first identifying external cochlear features that are sharply 

registered in CT images and can be segmented easily (i.e., identifying landmarks which are 

reliable). Subsequently, a binary point distribution model (PDM) was created that represents the 

visibility of cochlear points (landmarks) on the CT image. PDM was used to create a reference 

template or statistical-shaped model (SSM) of the cochlea. SSM was derived from µCT images 

of six cadaveric cochleae specimen in vitro, and includes the spiral ganglion (SG). The tonotopic 

mapping of the spiral ganglion or “active region” was computed using SG models from 
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Stakhoskaya et al [74]. The basis of the approach is to iteratively fit the model on the target CT 

image that has visible external cochlear features. Thus, by utilizing a segmented external 

cochlear image in conjunction with SSM, approximations to the intracochlear anatomy and the 

position of spiral ganglion are made. Upon segmentation, the tonotopic map from the model is 

finally transferred to the target image (see Figure 4.1 for an example of the processing sequence). 

The overall approach works by taking two CT scans. The first scan is taken prior to the surgery 

for an accurate SG segmentation without having to address issues concerning metallic artifacts in 

the image. Second scan is taken after surgery to determine exact electrode locations. The 

electrode array is generally well contrasted in the CT.    The electrode contacts with spacing 

 

 

Figure 4.1. Slice of (a) µCT and (b) CT images of human cochlea. Same slices are segmented to 

delineate scala vestibule (blue), scala tympani (red), and spiral ganglion (green). Reprinted with 

permission from [106]. Copyright 2013, IEEE. 
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 greater than or equal to 1 mm (for example Advanced Bioncis, and Med-El arrrays) are easy to 

identify. Closely spaced electrode contacts (for example, Cochlear Ltd. arrays) can be identified 

by  superimposing  electrode  models  on  the  target  image.     Finally,  image  reconstruction  is 

 

(a) (c) 

 

(b) 

 

 
(d) 

 

Figure 4.2. Spatial analysis of a cochlear implant recipient’s cochlea. Shown in (a) – (c) are scala 

tympani in red and scala vesitbuli in blue. Rendering of the auditory nerves is shown in (b) in 

green. Tonotopic place of stimulation is color coded to represent the characteristic frequencies of 

the SG in (c) and (d). Rendering of implanted electrodes and the illustration of current spread is 

shown in (d). Blue and red colors are used to represent alternative electrode pairs. Reprinted with 

permission from [106]. Copyright 2013, IEEE. 
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completed by a transformation that correctly merges both pre- and post-operative scans to create 

a spatial representation of the electrode contacts with respect to the putative locations of the 

spiral ganglion. An example sequence is shown in Figure 4.2. 

In order to facilitate a visualization of the programming-relevant information, these 

images are transformed to a 2-dimensional plot of distance-vs-frequency curves, an example of 

which is shown in Figure 4.3. Each blue or red DVF curve in the plot corresponds to an electrode 

in the array. A DVF curve defines the Euclidean distance from the corresponding electrode to the 

closest tonotopically mapped neural stimulation site. Distance is shown on the y-axis and the 

tonotopic frequency of the neural sites is varied on the x-axis. Thus, a DVF curve defines the  

 

 

Figure 4.3. An example of electrode distance-vs.-frequency curves of a random cochlear 

implantee shown as a sequence of blue and red segments. The recipient has a 22-channel electrode 

array from Cochlear Ltd. 
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distance from various neural sites to the corresponding electrode. These curves provide a unique 

insight not only into the CF of each stimulation site, but also the degree of spectral overlap 

potentially caused by the neighboring electrodes (inference on potential level of current spread). 

DVF curves shown in Figure 4.3 indicate that most apical electrode is residing roughly 1 turn 

from the round window and is aligned with cochlear tonotopic frequency of 765 Hz. Conversely, 

the default frequency allocation strategy employed in clinical systems would map 765 Hz to 250 

Hz (for Cochlear Nucleus device). That is at least a difference of 1.5 octaves. Furthermore, a 

comparison of the DVF curve minimas and center frequencies employed in clinical processors, 

as shown in Table 4.1, reveals a high degree of frequency-place mismatch. These frequency-

place mismatch artifacts  manifest into frequency compression,  expansion,  and  warping  across  

 

Table 4.1. Default frequency allocation table for analysis bands in 22-channel ACE sound 

processing strategy. All frequencies are in Hertz (Hz). 

 

Channel Number 1 2 3 4 5 6 7 8 9 10 11 

Lower cut-off frequency 188 313 438 563 688 813 938 1063 1188 1313 1563 

Center frequency 250 375 500 625 750 875 1000 1125 1250 1438 1688 

Higher cut-off frequency 313 438 563 688 813 938 1063 1188 1313 1563 1813 

Bandwidth 125 125 125 125 125 125 125 125 125 250 250 

            

Channel Number 12 13 14 15 16 17 18 19 20 21 22 

Lower cut-off frequency 1813 2063 1313 2688 3063 3563 4063 4688 5313 6063 6938 

Center frequency 1938 2188 2500 2875 3313 3813 4375 5000 5688 6500 7438 

Higher cut-off frequency 2063 1313 2688 3063 3563 4063 4688 5313 6063 6938 7938 

Bandwidth 250 250 375 375 500 500 625 625 750 875 1000 
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the frequency range, and as discussed in the previous chapter, may decrease speech recognition 

performance. Here, we propose a frequency allocation scheme that utilizes the recipients’ 

imaging data, more specifically the DVF curves, and attempts to reduce the frequency-place 

mismatch artifacts in hopes of improving implant performance outcomes. The details concerning 

the proposed custom frequency-allocation scheme are given in the next section. 

4.2 Custom frequency allocation – Matching versus loss of low frequencies 

Before describing the algorithm, we would first take a look at set of principles we utilize 

to create the frequency-allocation scheme. From a signal processing standpoint, an ideal scenario 

would be one in which the electrode contacts were distributed along the entire length of the spiral 

ganglion and were assigned acoustic frequencies in a matched one-to-one scenario, providing the 

full acoustic range to the periphery. Unfortunately, the electrode neural interface is typically less 

than ideal. Results from imaging studies indicate a wide range of insertion depths with Nucleus 

devices, which range from 2 to 26 mm from the round window [108-110]. Results from studies 

described in Chapter 3 suggest that if insertion depth is deep enough, matching acoustic 

frequency bands with the tonotopic place would be better for speech recognition. However, if 

insertion depth is moderate to shallow, both overly-compressed maps and frequency matched 

maps may result in a less than optimum performance. The speech intelligibility index [88] and 

experimental evidence make it quite clear that low frequencies are important for speech 

recognition, particularly for the intelligibility of vowels (although vowels are relatively less 

important for overall speech understanding). In general, better representation of formant 

frequencies, will result in better speech recognition performance. Therefore, over-truncating the 

low frequencies in an attempt to match the remaining frequency range (for example, for shallow 
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insertions) may be detrimental. Although listeners may be able to adapt to the distorted spectral 

representation of speech, they probably cannot overcome the loss of information resulting due to 

truncation of a frequency range. This raises three inter-related key questions: First, to what extent 

could lower-frequencies be truncated without significantly impacting speech recognition 

performance (e.g., in an attempt to match the remaining frequencies)? Secondly, what is the 

range of frequencies that should be matched to the tonotopic place if a compromise between 

truncation and matching is to be achieved? Finally, to what could extent frequency compression 

be tolerable (or adapted to) without degrading performance? 

Fu and Shannon [82] found that vowel recognition was only mildly affected by frequency 

allocation as long as analysis and carrier bands were matched. For simulated insertion depth of 

21.25 mm, that places the corner frequency of most apical frequency band at 960 Hz at the 

Greenwood scale, the loss of intelligibility was only 20% from the best performance (i.e., for 

truncating all frequencies below 960 Hz). Their analysis further revealed that by matching 

analysis and carrier bands up to 25 mm insertion depth (i.e., cut-off frequency of apical most 

band = 513 Hz), would result in a performance level similar to that achieved with full insertion. 

In their experiments, with normal hearing and cochlear implant listeners, 25 mm insertion depth 

(or 3 mm shift in either direction) (i.e., 513 cutoff frequency) was the cross-over point beyond 

which signs of decline in performance started to appear. The findings from Başkent and Shannon 

[86] suggest that for insertions deeper than 26.4 mm, matched and compressed maps produced 

similar results, and for insertion ranges from 24 mm to 19.2 mm, performance was better with 

the matched map than with the frequency compressed map (26.4 mm and 19.2 mm from base 

correspond to cutoff frequencies of the most apical electrode equal to 393 Hz and 1332 Hz, 



66 

 

respectively, see Figure 3.9). Faulkner et al. [94] demonstrated that matching frequencies to the 

tonotopic place up to 21 mm (995 Hz) did not result in any noticeable difference in the 

consonant and sentence recognition performance, and frequency matching for insertions lower 

than 19 mm was detrimental to overall speech recognition. Similar trends were demonstrated by 

Dorman et al. [81] and Li et al. [98], among others. Başkent and Shannon [87] demonstrated that 

a combination of frequency shift and compression that aligned the frequency range between 1 – 

2 kHz resulted in the best performance, even when remaining frequencies did not match. The 

trend in results observed from the aforementioned studies follow predictions from the 

Articulation Index (AI) weightings very closely [88]. AI studies show that the loss of 

information below 1 kHz will significantly reduce intelligibility. The Speech Intelligibility Index 

(SII) weights the frequency range between 1 – 3 kHz as the most critical for overall speech 

understanding. 

Please note that the above mentioned studies do not model the anatomy of the electrically 

stimulated cochlea and assume the Greenwood frequency map for computing frequency 

coordinates along the length of the cochlea. As noted in Section 3.1, the spiral ganglion map is 

different from the organ of corti frequency map, and is more relevant for cochlear implants. 

Overall, the general results from these studies indicate that optimal performance could be 

achieved with a compromise between the two extremes, (i.e., frequency compression and 

matching). In the next section, we would describe a frequency-allocation scheme that attempts to 

reach a compromise for an optimal representation of the speech information by minimizing 

frequency-place artifacts based on results from perceptual studies with normal hearing 

individuals and CI users. 
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4.3 Algorithm 

The proposed frequency allocation scheme derives frequency bandwidths of the analysis filters 

from the DVF curves of each implant recipient uniquely. Each curve in Figure 4.3 corresponds to 

the spatial proximity of an electrode to the individual nerve fibers, where the minimum points on 

the curve represent the center CF stimulated by that electrode. We use these CFs of the 

stimulation sites as a reference to design the analysis filter-banks. The frequency space is first 

divided into the following four broad sub-bands: B0, B1, B2, and B3, with frequency ranges of 

ω0= [0.2–0.5] kHz, ω1= [0.5–1.0] kHz, ω2= [1.0–3.0] kHz, and ω3= [3.0–8.0] kHz respectively. 

From the DVF curves, we first determine the number of electrodes, ni, whose CFs lie in each of 

the i = 0, 1, 2, 3 sub-bands, and perform the following set of procedures: 

Step#1: If n0>0 (i.e., deep insertion which enables access to the place frequencies lower 

than 500 Hz), n0 filter(s) with center-frequencies is set equal to the CFs of the n0 electrode(s) are 

assigned to create the perfect matching conditions.  

If n1≥2, n1 filters with center-frequencies is set equal to the CFs of the electrodes are 

assigned to create the perfect matching conditions.  

Similarly, n2 filters in B2 space ([1.0–3.0] kHz) are allocated by perfectly matching the 

center frequencies of the filters with the corresponding CFs of the curves.  

Step#2: If n1<2, borrow (2- n1) filters from the B2 frequency space and map them on to 

the B1 space. Introduce a mild frequency compression in the lower-most bands of the B2 space 

(to compensate for the filters allocated to B1), while maximizing the frequency matching of the 

remaining filters in the B2 space with the CFs of the curves.  

Step#3: Design n3 filters in the B3 frequency space by using a logarithmic filter spacing. 
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The aim of this simple 3 step rule-set is to maximize frequency matching at lower 

frequencies (less than 3 kHz) while ensuring that the lowest frequencies are not truncated (see 

Figure 4.4). For shallow insertion depths, instead of matching frequencies and thus truncating the 

lower frequencies, a mild frequency compression is used, while maximizing the frequency match 

between 1 - 3 kHz. In order to avoid loss of the low frequencies in case of shallow insertions, a 

minimum of 2 filters are always allotted in the B1 space (500 Hz – 1 kHz). Although frequencies 

below 500 Hz could be useful, this limit was selected as a compromise to achieve matching in 

the B2 frequency space (1 kHz – 3 kHz). This decision was based on experimental results from 

perceptual studies reported in [82, 86, 94] (see Section 4.2 for details). For deeper insertions, 

which provide tonotopically accurate access to frequencies  lower than  500 Hz,  filter-banks  are  

 

 

Figure 4.4. Custom Frequency allocation algorithm.The figure shows how DVF curves are 

mapped on four frequency spaces described in the algorithm to maximize matching at low 

frequencies, without excessively truncating the low frequencies. 
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matched according to the DVF curves. These rules are based on evidence from previous research 

studies as discussed earlier in this section, and aim to achieve a balanced frequency map with 

minimum frequency distortions and adequate representation of lower frequencies. In addition, 

bandwidth continuity constraints are imposed to avoid abnormally broad bandwidth filters. The 

use of an implant recipient’s own imaging data, results in a unique frequency table that may 

provide a better match to the electrode neural frequency characteristics of that recipient. Thus, 

each recipient would have a custom, and typically different, frequency allocation table. 

Figure 4.6 shows an example of relationship between the electrode locations in the 

cochlea, their tonotopic frequencies, and frequency-to-place mapping in (b) the standard/default 

fitting technique and (c) the user-customized mapping technique proposed here. The tonotopic 

map is derived from the DVF curves of an implant user and varies across CI recipients. Figure 

4.6c shows a reduction in spectral shift and frequency-compression in the customized map as 

compared to the standard map; however, it is achieved at a cost of both decreasing the number of 

analysis bands in low frequencies, as well as some  truncation of the lowest-most frequencies. 

The proposed algorithm could optionally be combined with the electrode deactivation 

scheme as discussed in [106]. DVF curves that highly overlap with each other, indicate that 

neighboring electrodes are likely to cause channel interaction. Absence of curve minimas, high 

degree of overlap from the adjacent electrodes, and frequency bandwidths less than 125 Hz3 on 

the DVF curves could be considered as likely indicators to deactivate electrodes to reduce 

spectral overlap. However, care must be taken not to switch off excessive number of electrodes, 

particularly the apical electrodes - the ones delivering the low frequency information, to avoid 

                                                 

3 125 Hz is the frequency bandwidth of each frequency bin in the Nucleus processors. 
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significantly reducing the spectral resolution. In an ideal CI sound coding scheme, the number of 

perceptually discriminable frequency channels should be as high as possible. This is typically 

achieved by designing narrow-band filters for lower frequencies to deliver better spectral 

resolution. Excessively switching off electrodes at lower frequencies may potentially be 

detrimental than the benefits achieved from reducing spectral overlap. Further research is needed 

to systematically evaluate the relationship between the number of electrodes at lower frequencies 

and the associated current spread. 

4.4 Evaluation 

The proposed custom frequency assignment scheme was evaluated in the following three 

listening studies: 

i) Study 1: Acoustic simulations of cochlear implants with normal hearing listeners, 

ii) Study 2: Simulating the effect of adaptation to frequency-place functions in normal 

hearing listeners, and 

iii) Study 3: Evaluation with cochlear implant recipients. 

In the following subsections, details about each of the experiment are provided. 

4.4.1 Study 1: Acute simulations with normal hearing listeners 

Acoustic simulations of cochlear implants (using noise-band vocoder) were conducted with 

normal hearing listeners to assess the efficacy of the proposed frequency assignment scheme and 

compare it against the clinical mapping strategy acutely. 

 

 



71 

 

Subjects 

Forty-two normal-hearing (NH) listeners between the ages of 18 to 24 years participated in this 

study. All participants were native speakers of American English language, and had pure tone 

audiometric thresholds equal or better than 20 dB HL at octave frequencies from 250 to 8000 Hz. 

All subjects were paid for their participation and the study protocol was approved by the 

Institutional Review Board (IRB) of the University of Texas at Dallas. Each subject was tested 

with a single unique frequency-place map which was determined from the imaging data (DVF 

curves) of 14 unique CI users (1 map/subject). Each image map was tested with three different 

subjects.  

Stimuli and Procedure 

Speech recognition was assessed with four sets of test materials, namely vowels, consonants, 

sentences in quiet, and sentences in noise presented at +10 dB signal-to-noise ratio (SNR). 

Recorded IEEE sentences [111] were used as the stimuli for testing speech understanding in 

quiet and noise. Each listener was presented with 20 sentences per test condition. The root mean 

square level of all sentences was equalized and the acoustic stimuli were presented at 65 dB 

sound pressure level (SPL) in the free field from a single loudspeaker in a double-wall sound 

booth. Speech-shaped noise (SSN) with the same average long-term spectrum as the IEEE 

corpus was used to generate the noisy signals at 10 dB SNR. Vowel stimuli consisted of 12 

medial vowels presented in /h/-vowel-/d/ context (had, hod, hawed, head, hayed, heard, hid, 

heed, hoed, hood, hud, who’d) [112]. Consonant stimuli consisted of 20 medial consonants 

presented in /a/-consonant-/a/ context (aba, acha, ada, afa, aga, aja, aka, ala, ama, ana, apa, ara, 

asa, asha, ata, atha, ava, awa, aya, aza) [113]. Both vowel and consonant stimuli were acquired 
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from [113]. Each test material was presented in both male and female voices, with the test 

material order for all the test conditions randomized across subjects.  

The performance was measured acutely without any training; however, participants were 

given glimpses of generic vocoder-processed stimuli for five minutes before the start of the 

experiment. In order to avoid any learning effects, no repetitions were allowed in any test 

condition. Subjects were asked to repeat back sentences presented in quiet and noise. All words 

were marked for correctness, and percent correct scores were computed by dividing the number 

of correct responses by the total number of words in that list. Consonant and vowels tests were 

conducted using a custom-developed MATLAB GUI4 application, which had a grid of buttons 

(20 for consonants and 12 for vowels) each marked with one of the possible responses. Stimuli 

tokens were presented in a random order, and subjects were asked to respond by pressing the 

appropriate button. Subjects were instructed to make an educated guess or choose not to respond, 

if they were not sure. For each processing condition, 40 consonant tokens (20 male and 20 

female) were presented, separately for both speakers. Similarly for vowels, 12 tokens were 

presented twice, once in a male and once in a female voice. The order of speakers was 

randomized across the trials. Percent correct scores were computed by dividing the number of 

correct responses by the total number of tokens presented. Subjects were given regular breaks 

and each test took approximately 3 hours per subject. 

Signal Processing 

In order to simulate the CI sound processing, a noise-band vocoder was implemented as shown 

in Figure 4.5.   The input signal was first pre-emphasized using a second order Butterworth  filter  

                                                 

4 GUI stands for Graphical User Interface. 
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with a cut-off frequency of 1 kHz. The pre-emphasized signal was then passed through a set of 

bandpass analysis filters (3rd order Butterworth). The number of filters were typically 22, 

corresponding to the number of electrodes in implant systems manufactured by Cochlear Corp5. 

Next, envelopes from each frequency channel were extracted via rectification and low-pass 

filtering (2nd order Butterworth with a cutoff frequency equal to 400 Hz). The envelope of each 

band modulated white noise and the resulting multiband signal was passed through a set of 

                                                 

5 For some maps, fewer than 22 channels were used depending on the DVF curves. Some electrodes were 
simulated as de-activated to decrease the cross-channel interference as in [106, 107]. For each map and 
condition, the number of active channels are provided in the next section. 

 

Figure 4.5. Vocoder to simulate cochlear implant sound processing. Analysis filters determine the 

acoustic frequency ranges assigned to each CI electrode, whereas synthesis filters simulate the 

perceived sound when the corresponding CI electrodes are activated and stimulate groups of 

auditory nerve fibers. 
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bandpass synthesis (carrier) filters (3rd-order Butterworth). The signals were finally summed 

across all the bands to produce a single vocoder-processed acoustic signal. The RMS value of the 

vocoded (vocoder-processed) signal was equalized to match the original signal.  

The frequency characteristics (cutoffs, bandwidths, center frequencies) of analysis filters 

determine the acoustic frequency ranges assigned to the corresponding CI electrodes. Each 

synthesis filter simulates the frequency space on the cochlear place that is stimulated with the 

activation of the corresponding CI electrode. The frequency characteristics of analysis and 

synthesis filters were manipulated to simulate the following four mapping conditions: 

Condition#1: Default frequency allocation with ideal electrode position: In this condition, same 

set of analysis and synthesis filters were used to simulate an ideal scenario in which the acoustic 

frequencies were matched to the cochlear place in a matched one-to-one scenario. This condition 

used the default frequency allocation table which is used in ACE coding strategy. The frequency 

characteristics of the filters used in this condition are given in Table 4.1. 

Condition#2: Default frequency allocation with true electrode position: In this condition, we 

tried mimicking the actual listening perception experienced by CI users. This is achieved by 

using the default ACE filterbanks at the analysis stage, and filterbanks derived from the DVF 

curves at the synthesis stage. The resulting signal typically has frequency-place mismatches.  

Condition#3: Custom frequency allocation with true electrode position: In this condition, custom 

frequency allocation was used at the analysis stage and filterbanks derived from the DVF curves 

were used as synthesis filters to simulate the perceived sound. Custom filter-banks were designed 

according to each individual’s DVF curve data using the methods described in Section 4.3.  
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Condition#4: Frequency allocation matched with true electrode position: The analysis and 

synthesis filter-banks were chosen identically from the DVF curves. This condition corresponds 

to perfect matching of the acoustic filterbanks with the cochlear tonotopic locations of the 

electrode contacts. 

The four conditions are summarized in the Table 4.2 and are depicted graphically in 

Figure 4.6. Details about each of the frequency allocation map are given in Appendix B. The 

characteristic frequencies of nerve bundles stimulated by the most apical electrode in each image 

map are given in Table 4.3. Other than condition 3, all other conditions were always simulated 

with 22 frequency bands. In condition 3, some electrodes were simulated to be switched-off to 

decrease cross-channel interference. The number of frequency bands ranged from 14 to 22.  

 

Table 4.2. Summary of frequency mapping conditions for experiment 1. 

 

Condition Analysis Filters Synthesis Filters Number of bands 

1. Default Frequency allocation, with 

ideal electrode positioning 

Default ACE Default ACE 22 

2. Default Frequency allocation, with 

true electrode positioning 

Default ACE Image-based 22 

3. Custom frequency allocation, with 

true electrode positioning 

Custom Image-based Variable (14 -22) 

4.. Frequency allocation matched 

with true electrode positioning 

Image-based Image-based 22 
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Figure 4.6. An example of graphical depiction of frequency mapping conditions for experiment 1. 

Conditions 2 – 4 use a randomly selected image map (DVF) of a CI user. Figure not to scale. 



77 

 

Table 4.3. Characteristic frequencies of the nerve bundles stimulated by the most apical electrode 

for each image map based on SG map. 

 

MAP ID 
M1 M2 M3 M4 M5 M6 M7 

CF of most apical electrode (Hz) 291 337 656 702 733 765 797 

MAP ID 
M8 M9 M10 M11 M12 M13 M14 

CF of most apical electrode (Hz) 847 847 864 864 934 1101 1201 

 

Subjects were tested with all four frequency mapping conditions. The order of conditions was 

randomized across the subjects. Each image map was tested with three individual subjects and 

the scores were averaged. 

Results 

Figure 4.7 shows mean speech understanding scores for each of the four mapping conditions as a 

function of test material. Consistent with findings from the previous studies, the results here 

indicate peak performance with ideally matched condition (Cond#1) (i.e., full range of acoustic 

information is matched exactly across analysis and synthesis filter banks). However, since 

Cond#1 is generally not achievable in real life, the aim of the study was to compare the 

performance of Conds #3 and #4 against Cond#2, which simulates the mapping conditions that 

could be achievable with frequency-place configurations of the clinical systems. Results indicate 

Cond#3 generally performed equal or better with all test material as compared to Conds #2 and 

#4, with largest improvement observed for speech (sentences) presented in quiet (+15% 

improvement), followed by speech in noise (+12% improvement), and vowel identification (+8% 

improvement). 
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Repeated-measures analysis of variance (ANOVA) was performed to assess the effects of 

mapping conditions and speech material on the speech understanding scores with an α factor set 

to 0.05. Subjects were considered a random factor, while mapping conditions and speech 

material were used as the main analysis factors. ANOVA revealed a significant main effect of 

mapping condition (F[3,123]=168.59, p<0.001) and test material (F[3,123]=310.92, p<0.001) on 

speech understanding scores. The interactions between mapping conditions and test material 

were statistically significant (F[9,369]=43.57, p<0.001). A Post-hoc Bonferroni test for pairwise 

 

Figure 4.7. Average speech recognition scores of 42 participants from Study 1. Percentage correct 

scores for recognition of consonants, vowels, speech in quiet, and speech in noise (SNR = 10 dB) 

with respect to four frequency mapping conditions. Condition 1: Default Frequency allocation, 

with ideal electrode positioning. Condition 2: Default Frequency allocation, with true electrode 

positioning. Condition 3: Custom frequency allocation, with true electrode positioning. Condition 

4. Frequency allocation matched with true electrode positioning. Error bars represent standard 

errors of means. 
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comparisons between the four mapping conditions found all conditions to be statistically 

different from each other (p<0.001). The comparisons between the speech material indicated that 

all test material significantly differed from each other, except for vowels and sentences presented 

in noise (p = 1.000). Post-hoc Bonferroni-corrected comparisons for each test material indicated 

that with the exception of following two, 1) consonant understanding in conditions 2 and 4 (p = 

0.276), and 2) vowel identification in conditions 3 and 4 (p = 0.414), all test speech 

material/conditions were significantly different from each other. All other test conditions were 

found to be significantly different from each other for the four tested speech materials. 

Figure 4.8 shows mean sentence recognition scores presented in quiet for 14 different 

image maps with conditions 2 and 3. The figure shows one-to-one comparison of performance 

levels achieved with the clinical and custom frequency mapping. Individual maps are depicted on 

the horizontal axis and are ordered with decreasing electrode insertion depth. The characteristic 

frequencies of nerve bundles stimulated by the most apical electrode in each image map are 

given in Table 4.3. For all the image maps tested, the proposed frequency allocation produced 

better performance than the clinically assigned frequency allocation table for sentence 

recognition in quiet. On average, the proposed solution resulted in 15% improvement as 

compared to the clinical map. A 1-way repeated measures ANOVA was conducted to compare 

the effect of two mapping conditions on overall sentence recognition scores (in quiet). A 

statistically significant effect of frequency allocation scheme was found (F[1,41]=42.05, 

p<0.001). A 1-way repeated-measures ANOVA was recomputed with 14 image maps as 

between-subject factors to investigate if frequency allocation scheme had a consistent effect 

across all image maps.  The ANOVA revealed a significant main effect of the mapping condition 
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(F[1,28]=89.52, p<0.001), as before. The interactions between frequency allocation and image 

maps were also statistically significant (F[13, 28]=4.56, p<0.001). This was followed by pairwise 

comparisons for each image map. The performance levels for the maps which were found to be 

significantly different (p values < 0.05) for the two frequency allocation schemes are marked by 

asterisk on Figure 4.8.  

Figure 4.9 shows average sentence recognition scores in the presence of noise (at 10 dB 

SNR) for the two frequency allocation schemes with 14 image maps. On average, sentence 

recognition scores were 12 percentage points better with the custom frequency maps than the 

clinically assigned frequency  allocation  table.   In order to test the statistical significance of  the 

 

Figure 4.8. Average sentence recognition scores in quiet of 42 participants tested with 14 unique 

maps (3 subjects/map) from Study 1.Scores from condition 2 and condition 3 are shown. Each bar 

represent average scores from 3 participants. Error bars represent standard errors of means. 

Significantly different scores (p values less than 0.05) are marked with asterisk. 
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scores with two frequency allocation schemes, a 1-way repeated measures ANOVA was 

conducted. A statistically significant effect of frequency allocation scheme was found 

(F[1,41]=31.10, p<0.001), indicating that the proposed frequency allocation scheme produced 

statistically better results for sentences presented in noise as compared to the default frequency 

mapping. A 1-way repeated-measures ANOVA was re-performed with 14 image maps as 

between-subject factors to investigate if the frequency allocation scheme had a consistent effect 

across all image maps. A statistically significant effect of frequency mapping was found 

(F[1,28]=35.01, p<0.001). The interactions between frequency allocation and image maps were 

not statistically significant (F[13, 28]=1.38, p=0.22). Differences in the two condition that were 

 

Figure 4.9. Average sentence recognition scores in noise (10 dB SNR) SSN of 42 participants 

tested with 14 unique maps (3 subjects/map) from Study 1. Each bar represent average scores 

from 3 participants. Error bars represent standard errors of means. 
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found to be statistically significant in the individual F-tests for each image map are marked by 

asterisk in Figure 4.9. 

 Consonant identification scores with the two frequency mapping schemes are shown in 

Figure 4.10 for each individual image map. As compared to sentence recognition scores, 

consonant identification showed roughly equal performance level for all image maps. Despite 

little numerical differences in the identification scores between the two mapping conditions, a 1 

way repeated measures ANOVA revealed an overall statistically significant difference between 

the two mapping conditions (F[1,41]=5.49, p=0.024). A 1-way repeated-measures ANOVA 

conducted using image maps as between-subject factors showed a significant effect of the 

frequency allocation scheme (F[1,28]=7.48, p=0.011), as well as significant interactions between 

image maps and the two frequency allocation schemes (F[13, 28]=77.78, p=0.044). Pairwise 

comparisons between the two frequency allocation schemes for each image map revealed that 

only two image maps, namely M10 (p<0.001) and M12 (p=0.025), produced statistically 

significant differences in performance. 

Vowel identification scores with each image map are shown in Figure 4.11. On average, vowel 

recognition was better by 8 % points with the proposed custom frequency assignment strategy as 

compared to condition 2 (default frequency mapping). In order to assess the statistical 

significance of the differences in scores with the two frequency mapping conditions, a 1-way 

repeated measures ANOVA was performed. Results indicated an overall significant effect of 

frequency-mapping condition (F[1,41]=16.387, p<0.001). The analysis was repeated to assess 

the contribution of each map in the observed differences, by keeping image map as between-

subjects factor. Significant effect of frequency-mapping condition was observed (F[1,28]=19.14, 
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p<0.001). However, the interactions between the image maps and the frequency allocation 

schemes were not statistically significant. (F[13, 28]=1.53, p=0.168). Differences in the 

condition that were found to be statistically significant in individual F-tests for each image map 

are marked by asterisk in Figure 4.11. 

The effect of insertion depth on speech recognition performance was evaluated using a 2-

way repeated measures ANOVA by keeping the recognition scores as blocked factor and CF of 

the most apical electrode as between-subjects test factor. Three frequency allocation schemes 

were evaluated, namely condition 2 (default frequency allocation), condition 3 (custom 

frequency allocation), and condition 4 (matched, i.e., analysis and synthesis filters matched with 

 

Figure 4.10. Average consonant recognition scores in condition 2 and condition 3 of 42 

participants tested with 14 unique maps (3 subjects/map) from Study 1.Each bar represent average 

scores from 3 participants. Error bars represent standard errors of means. 
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Table 4.4. Analysis from 2-way repeated measures ANOVA. Analysis is presented for 3 

frequency allocations conditions, with insertion depth as with in subjects’ factor. Interactions 

refer to interactions between the frequency mapping condition and insertion depth (CF of most 

apical electrode). 

 

 Sentences in Quiet Sentences in Noise Consonants Vowels 

Condition 
F[2, 60] = 39.765 

p<0.001 

F[2, 60] = 16.054 

p<0.001 

F[2, 60]= 2.338 

p=0.105 

F[2, 60] = 7.532 

p<0.001 

Interactions 
F[22, 60] = 4.059 

p<0.001 

F[22, 60] = 1.702 

p=0.054 

F[22, 60]= 1.492 

p<0.112 

F[22, 60] = 1.196 

p=0.286 

 

 

Figure 4.11. Average vowel recognition scores in condition 2 and condition 3 of 42 participants 

tested with 14 unique maps (3 subjects/map) from Study 1.Each bar represent average scores from 

3 participants. Error bars represent standard errors of means. 



85 

 

tonotopic place). The ANOVA results are tabulated in Table 4.4. The results indicated that there 

was a significant effect of insertion depth on the identification of vowels and sentence 

recognition, both in quiet and in noise. For the simulated insertion depths, consonant 

identification performance was not impacted by the simulated insertion depths with either of the 

three frequency allocation schemes. This may be explained by the fact that consonant recognition 

is primarily known to be dependent on temporal details than the spectral details. For sentences 

presented in quiet, a significant interaction was found between the frequency allocation condition 

and the simulated insertion depth. Pairwise comparisons between frequency allocation scheme 

and insertion depth were conducted. The results of the analysis are visually represented in Table 

4.5. The entries marked with asterisk in the table were statistically different. No statistically 

significant interactions were observed for consonants, vowels, and sentences presented in noise. 

Estimated marginal means for all four types of speech stimuli with three frequency allocation 

schemes are plotted in Figure 4.12. 

It is noteworthy to analyze at least two trends in Figure 4.12. First, for all speech 

material, performance decreased with decreasing insertion depth. However, sentence recognition 

and vowel identification was significantly impacted by the loss/mismatch of frequency due to the 

 

Table 4.5. Visual representation of pairwise comparisons between frequency allocation 

conditions and insertion depths for sentences presented in quiet. Boxes shaded in dark represent 

statistically significant interactions (p<0.001) 

 

Apical Frequency (Hz) 291 337 656 702 733 765 797 847 864 934 1101 1201 

Cond2 - Cond3 
     

* *  
 

*  
 

*   * 

Cond2 - Cond4 
      

 * 
 

 * 
 

 * *  

Cond3 - Cond4  *  * 
 

 * 
 

 * 
  

 * * 
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decreasing insertion depth. Consonants were relatively not much impacted by the simulated 

insertion depths. Secondly, the loss in performance was more profound for condition 2 

(clinical/default frequency allocation scheme) as compared to other schemes. The 

proposed/custom frequency allocation scheme (condition 3) generally outperformed condition 2. 

These trends are in line with the statistical analysis presented earlier in this section. 

 

 
(a) Sentences in Quiet 

 
(b) Sentences in Noise 

 
(c) Consonants 

 
(c) Vowels 

Figure 4.12. Estimated marginal means for three frequency allocation conditions as a function of 

insertion depth (CF of nerve fibers stimulated by most apical electrode). Average scores from 42 

subjects who participated in Study 1. 
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Discussion 

Experiment 1 aimed at investigating the acute effects of different combinations of frequency 

place maps on speech recognition. Specifically, four frequency allocation schemes were tested, i) 

ideal frequency-place mapping, which is not usually achieved in a clinical setting, ii) default 

frequency allocation and its acute effects with true electrode positions, iii) custom (proposed) 

frequency allocation scheme with reference to the true electrode positions, and iv) frequency 

allocation matched with the true electrode positions. Electrode locations were derived from 

image maps of 14 implant recipients, and each map was tested with 3 participants. Please note, 

that all the maps had unique place frequencies, and locations of the most apical electrodes across 

the maps ranged from tonotopic frequencies6 of 291 to 1201 Hz (Table 4.3). Condition 1 (ideal), 

as expected, produced best results with all the test materials. In addition to mapping full acoustic 

range (178 – 8000 Hz), which was aligned with the tonotopic place of stimulation, it is 

noteworthy to see that the condition 1 also provided better spectral resolution at lower 

frequencies than any other mapping condition. At least 5 independent frequency bands were 

assigned for frequency range from 178 – 1000 Hz. While the number of perceptually 

discriminable (utilizable) channels in cochlear implants may be less than the total number of 

electrode contacts on the array (perhaps due to current summation), normal hearing listeners are 

able to make use of higher number of frequency bands in complex listening environments.  

Condition 3 generally performed equal or better than condition 2, at least acutely with the 

tested speech material. One of the potential reasons for better performance may be attributed to 

the lower frequency-place mismatch with the proposed solution, and hence lower spectral 

                                                 

6 Spiral ganglion frequencies according to Stakhovskoya et al. [74]. 
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distortion in the perceived sound. Within test materials, the largest difference was observed for 

sentences in presented in quiet (+15%); however the level of performance was significantly 

lower than the ideal condition, indicating that spectral distortions due to the loss of low 

frequencies, loss of spectral resolution (due to wider filter banks), residual frequency-place 

mismatch, and absence of learning effects could account for the remaining gap in the loss of 

performance. The performance may improve with extended exposure to the frequency allocation 

schemes, as can be seen with studies conducted by Rosen et al. [90] and Faulkner et al. [94, 95]. 

Furthermore, adaptation trends and learning patterns (final performance levels and adaptation 

times) may differ for different frequency maps. It would not be surprising to observe easier and 

perhaps complete adaptation to the maps with lower mismatch as compared to the extremely 

distorted maps; the later may only result in partial adaptation. In the next experiment, we will 

explore the effects of training and adaptation to different frequency allocation schemes. 

 

4.4.2 Study 2: Simulating the effect of adaptation to frequency-place mismatch with 

normal hearing listeners 

The effects of auditory training with acoustic simulations of cochlear implants on the speech 

recognition of normal hearing listeners were investigated in this study. The aim of the 

experiments was to study the interactions between the training time and frequency allocation 

schemes, which were presented in the previous sections. 

Subjects 

Ten normal-hearing (NH) listeners between the ages of 18-24 participated in this experiment. All 

participants were native speakers of American English language, and had pure tone audiometric 
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thresholds equal or better than 20 dB HL at the octave frequencies from 250 to 8000 Hz. Five 

image maps, which had shallow insertion and showed relatively low performance in study 1, 

were selected for these experiments. These image maps correspond to maps M5, M10, M12, 

M13 and M14 of study 1. Table 4.6 provides the characteristic frequencies of the nerve fibers 

stimulated by the most apical electrode for each image map. For details on the frequency 

characteristics of each image map, please refer to Appendix B. Half of the participants (N = 5) 

were tested with condition 2 of the previous study (default frequency allocation, with true 

electrode positions), and the other half (N = 5) were exclusively tested with custom frequency 

allocation strategy (condition 3).  

 

Table 4.6. Characteristic frequencies of the nerve bundles stimulated by the most apical electrode 

for each image map used in Study 2. 

 

MAP ID 
M5 M10 M12 M13 M14 

CF of most apical electrode (Hz) 733 864 934 1101 1201 

 

Stimuli and Procedure 

Speech recognition was assessed using the same set of speech stimuli as used in the experiment 

1, namely, 12 medial vowels, 20 medial consonants, IEEE sentences presented in quiet, and in 

noise at +10 dB signal-to-noise ratio (SNR). The order of the test material was randomized 

within subjects and across trials. The testing and grading procedure essentially remained the 

same as that of the first study. However, in this experiment, performance was measured at four 

different time intervals of training as illustrated in  Figure 4.13.   The first testing was  conducted 
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acutely, i.e., with minimum training – about 5 minutes to acquaint listeners with vocoder 

processed sounds and speech material. The participants were then given three audio-video (A/V) 

training sessions, and the performance was measured after each training session. First two 

training sessions were 15 minutes each, and the last session was 30 minutes in duration. A/V 

training consisted of watching and listening to a video embedded with processed audio. The 

material comprised of inspirational (most popular) TED videos to encourage participants to 

listen. The audio was extracted and processed with the test condition (vocoder implemented with 

the frequency allocation scheme) and merged back to the original video to create an A/V training 

material. In total, four videos were used, two from male and two from female talkers. 

In order to be consistent, no repetitions were allowed. Subjects were asked to repeat back 

the words they perceived for sentences presented in quiet and noise. All the words were marked 

for correctness. 40 tokens of consonants (20 in male and 20 in female voice) were presented per 

condition. Similarly, 24 vowel tokens (12 in male and 12 in female voice) were presented per 

condition. Consonants and vowels identification tests were conducted by responding on the 

 

Figure 4.13. Test and training procedure for study 2. Subjects were tested acutely (with minimal 

training) at the start of the test, and then progressively given audio/video (A/V) training sessions 

and tested at intervals 2, 3, and finally at 4.  
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computer screen. After each testing session, participants were given a break of 5 – 10 minutes. 

However, no breaks were given within the training and testing session. Tests took approximately 

4 hours per subject. 

Signal Processing and Conditions 

Noise-band vocoder, similar to the one used in Study 1, was used for these experiments. Two 

frequency allocation schemes were tested: 

Condition#2: Default frequency allocation with true electrode position to mimic the 

actual frequency-place map of the CI recipients. Default ACE filterbanks were used at the 

analysis stage, and filterbanks derived from the DVF curves were used at the synthesis stage. 

Condition#3: Custom frequency allocation with true electrode position to evaluate the 

proposed strategy. A custom frequency allocation table was used at the analysis stage and 

filterbanks with CFs derived from the DVF curves were used as synthesis filters. 

Results 

Figure 4.14 shows mean speech understanding scores at four time intervals for the two mapping 

conditions with different test materials. In general, both conditions showed improvement in 

performance with auditory training, suggesting that listening performance may improve with 

long-term exposure of distorted speech, at least for the range of maps tested in this experiment. 

The greatest improvement was observed for sentences presented in quiet for both conditions, 

17% and 11% points from the baseline acute performance for conditions 2 and 3, respectively. 

On all measures of speech, condition 3 (custom frequency allocation) generally performed 

numerically better than the condition 2 (default frequency allocation scheme). Largest difference 

between the two conditions at the final testing session was observed for sentences presented in 
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quiet (23 %) and in noise (30%), followed by vowels (20%). Consonant recognition remained 

relatively unchanged for both the maps, but there was an overall numeric improvement of 11% 

with condition 3. It is difficult to say if the performance reached at an asymptotic level by the 

last test session; however, trends in Figure 4.14 indicate that most significant improvement was 

observed just after 15 minutes of training, after which listener performance continued to improve 

 

(a) (b) 

(c) (d) 

Figure 4.14. Average test scores measured at four time intervals in study 2. Subjects were tested 

acutely (with minimal training) at the start of the test, and then progressively given audio/video 

(A/V) training sessions and tested at intervals 2, 3, and finally at 4. Condition 2 mimics default 

frequency allocation with true tonotopic place, Condition 3 depicts proposed custom frequency 

allocation scheme with true tonotopic place. 
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at incremental levels (this impression was confirmed by statistical analysis, details are given 

below). 

A mixed-design (split-plot) ANOVA was performed to assess the effects of learning (test 

session) and mapping condition on speech recognition performance. Speech material (4 levels: 

consonants, vowels, sentences in quiet, and sentences in noise) and test sessions (4 levels: T1 

(acute), T2, T3, and T4 (final test session)) were considered as within-subject factors and 

mapping condition was considered as between-subject factor. A significant effect of test session 

(F[3,24]=12.810, p<0.001) and speech material (F[3,24]=66.110, p<0.001) was observed. All 

interactions were insignificant: test session × condition (F[3,24]=1.882, p=0.160), speech 

material × condition (F[3,24]=2.136, p=0.122), test session × speech material (F[9, 72]=0.793, 

p=0.624), test session × speech material x condition (F[9,72]=0.821, p=0.599). Pairwise 

comparisons between the test sessions indicated that acute scores (first test session, T1) were 

significantly different from all subsequent test sessions (p<0.015). However, there were no 

statistically significant differences among the remaining test sessions, indicating that any 

learning occurred just after the first training session. Furthermore, pairwise comparisons between 

each speech material revealed that performance levels measured with consonants and sentences 

in quiet, as well as performance levels measured with vowels and sentences in noise were 

statistically similar (p ≤ 0.001). Other pairs were significantly different. A significant effect of 

the frequency mapping condition was observed (F[1, 8]=7.478, p=0.026). Mean performance 

level on all speech material was 46.57% and 66.82% with conditions 2 and 3, respectively. 

Overall, there was a mean improvement of 20.31 percent points with the custom frequency maps. 

This improvement was statistically significant. 
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A series of separate mixed design ANOVAs were conducted for each test material to assess the 

effect of frequency mapping condition and training on speech recognition. Test sessions were 

considered as within-subject factors and mapping conditions were considered as between-subject 

factor. The results are summarized in Table 4.7. With the exception of vowel identification, a 

significant effect of test session was observed for the other three test materials, indicating that 

training improved the understanding ability of consonants, sentences in quiet, and sentences in 

noise; however, vowel identification was relatively unchanged, at least for the training period 

administered. This trend is also observed in Figure 4.14 (d) which shows that acute and post-test 

vowel identification performance did not significantly change over time. The frequency mapping 

condition had a significant effect only on the sentence recognition performance, both in quiet and 

in noise. The interactions between test session and mapping condition were not significant for 

any tested speech material, indicating that irrespective of frequency mapping condition, the 

training improved listeners’ performance. The post-training mean speech recognition scores as a 

function of test material for the both mapping conditions are shown in Figure 4.14. A summary 

of the pairwise Bonferroni comparisons between conditions 2 and 3 at every test session with the 

four tested types of speech material is given in Table 4.8. Results that were significantly different 

are marked with asterisk. The scores, as noted above, indicate that by the end of the adaptation 

period, the improvements with the custom frequency maps were only statistically significant for 

sentence recognition in quiet and in noise. 

Figure 4.16 and Figure 4.17 provide another perspective towards data visualization. They 

demonstrate average speech recognition performance as a function of electrode insertion depth. 

It is interesting to see that for insertion angle of ~370°  (i.e., location of most apical electrode at  
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Table 4.7. Summary of mixed design ANOVA for study 2. Analysis is presented for 

performance difference over 4 test sessions with two test conditions. 

 

 Sentences in Quiet Sentences in Noise Consonants Vowels 

Test Session 
F[3, 24] = 11.197 

p<0.001 

F[3, 24] = 6.866 

p=0.002 

F[3, 24]= 3.156 

p=0.043 

F[3, 24] = 0.901 

p=0.455 

Condition 
F[1, 8] = 7.672 

p=0.024 

F[1, 8] = 7.312 

p=0.027 

F[1, 8] = 2.823 

p=0.131 

F[1, 8] = 4.910 

p=0.058 

Interactions F[3, 24] = 0.947 

p=0.434 

F[3, 24] = 2.711 

p=0.067 

F[3, 24]= 0.841 

p=0.485 

F[3, 24] = 0.471 

p=0.705 

 

 

 

Figure 4.15. Post-training test scores for conditions 2 and 3 for study 2. 
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6. 

Table 4.8. Bonferroni pairwise comparisons between condition 2 and condition 3 at every test 

session with different test material. Statistical significant results are marked with an asterisk. 

 

Cond2-Cond3 pairwise 

Bonferroni comparisons 
Sentences in quiet Sentences in noise Consonants Vowels 

Test Session 1 *p=0.033 *p=0.005 p=0.124 *p=0.036 

Test Session 2 p=0.071 p=0.244 p=0.077 p=0.277 

Test Session 3 *p=0.017 *p=0.018 p=0.346 p=0.110 

Test Session 4 *p=0.020 *p=0.043 p=0.213 p=0.072 

 

733 Hz), although the speech recognition with the clinical frequency map was 10 percentage 

points lower than the custom maps prior to the training, the scores converged to the same level of 

performance after the training. For shallower insertions, although there was an improvement with 

both maps with training, scores with the custom maps were significantly better than the clinical 

maps. 

Discussion 

Acute studies with vocoder processed speech may grossly underestimate the effect of learning 

and perceptual accommodation to the distorted spectral cues. This study aimed at investigating 

the effects of learning on speech recognition performance and assess if trends observed in acute 

experiments (Study 1) would mirror if listeners were provided with an auditory training to the 

processed sound. In this study, normal hearing listeners were tested at four test sessions, acutely 

and after progressive auditory training.  In general, the performance improved for both frequency 
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Figure 4.16. Pre-training test scores for conditions 2 and 3 as a function of electrode insertion 

depth. 

 

Figure 4.17. Post-training test scores for conditions 2 and 3 as a function of electrode insertion 

depth. 
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mapping schemes, suggesting that listeners show at least partial accommodation to vocoder 

processed speech, irrespective of the mapping condition. On all measures of speech, the custom 

frequency allocation scheme performed better than the default clinical frequency mapping 

scheme. Statistically significant improvements were observed for sentence recognition in quiet 

and in noise. Consonant and vowel identification remained roughly at the same level pre and post 

training for both the maps.  

In this study, we were particularly interested in exploring the differences in asymptotic 

level of performances and the time it would take to accommodate to clinical and custom 

frequency maps, at least over a period of 3 -4 hours. The 4 hour test window is most likely too 

short time to observe full accommodation. It is unclear if listeners will continue to improve with 

long term training and if complete adaptation with either of the frequency mapping schemes 

would ever be possible with these maps. Speech recognition performance with either of the 

frequency allocation schemes was still significantly lower than the ideal frequency/electrode 

placement (Study 1, Condition 1). Although sentence recognition in quiet with condition 3 is 

close to the ideal scores, performance with consonant, vowel and sentence recognition in noise 

was far from ideal. It is difficult to conclude, to what extent, if any, listeners will continue to 

show improvement on difficult speech recognition tasks with training. 

Clinical Implications: The data from this study suggest that shallow insertions that cause 

extreme frequency-place mismatch result in spectral distortions in the perceived sound that are 

difficult to overcome with training, at least within a 4-hour tested window using simulations with 

normal hearing listeners. However, a balanced frequency map, as compared to an extremely 

compressed/distorted map, may help with speech recognition, at least acutely. However, extreme 
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care must be taken to extrapolate these results to cochlear implant listeners. Pre-lingual CI 

recipients, who receive the implant later in their lives (i.e., post critical language acquisition 

period) may not have an equivalent normal tonotopic representation in the auditory cortex (or 

may not have any map to start with). For such a group of recipients (who are starting from a 

blank slate), compressed maps may be a better choice as they may create a higher-level tonotopic 

organization that is matched with the processor assigned frequencies, and provide a full acoustic 

range. Furthermore, some experienced cochlear implant listeners may find the compressed 

frequency maps more intelligible due to re-organization of the higher-level tonotopic 

representation with experience. If complete adaptation to the clinical (compressed) frequency 

maps is observed in an implant user, it may be better to stay with the clinically assigned map. On 

the other hand, implant users, particularly new recipients, with moderate to extreme frequency-

place mismatch, who demonstrate difficulty in adapting to the compressed frequency maps, the 

proposed solution may be a better mapping strategy, at least for the short-run. Evidence from a 

recent study by Svirsky et al. [100] suggests that gradual adaptation with intermediate frequency 

maps may help improve implant outcomes as compared to fitting with an extremely mismatched 

maps.  

4.4.3 Study 3: Evaluation with cochlear implant users 

The simulation experiments reported in Section 4.4.1 and Section 4.4.2 investigated the effects 

of spectral distortions caused by different frequency allocation schemes on speech perception. It 

was generally observed that the custom frequency allocation scheme, which aims to reach a 

balance between frequency matching, frequency compression, and truncation, could potentially 

yield a better speech recognition performance relative to the clinically-used frequency maps, at 
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least acutely with normal hearing listeners. In the following study, we evaluated the custom 

frequency assignment strategy with users of cochlear implants. 

Subjects 

Nine adult post-lingually deafened cochlear implant recipients were recruited for this study. 

Three out of nine subjects were not motivated to try the experimental map for extended use due 

to listening difficulties with the experimental map, and thus were dropped out of the study on the 

first day. Of the remaining six, one subject dropped-out after one month. In total five subjects 

continued their participation for the entire length of the study, three months or beyond. At the 

three months testing session, subject V4 was only available for a few conditions. All subjects 

were native speakers of American English and used devices from Cochlear Corporation or Med-

El. All listeners used their devices routinely and had a minimum of 1 year of experience with 

their implants. Further biographical data for the subjects is presented in Table 4.9. 

Stimuli 

Speech recognition was assessed using eight sets of speech materials, including six open-set 

recognition tasks and two closed set identification tasks. Open-set tasks included administration 

of consonant-nucleus-consonant (CNC) monosyllabic words [114], CNC phonemes, AzBio 

[115] sentences in quiet, AzBio sentences in 10-talker babble noise at 10 dB and 5 dB SNR 

levels, and IEEE sentences in quiet [111]. The closed-set tasks included multi-talker vowel and 

consonant identification.  

In the AzBio corpus, sentences are spoken by multiple male and female talkers using a 

conversational style than a deliberate speaking style, and they have fewer contextual cues than 

other tests of sentence recognition.  There are 15 lists of AzBio sentences,  with 20 sentences per 
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Table 4.9. Details of the study participants. 

 

ID 
Age, 

years 

CI use, 

years 
Implant type Processor 

Number 

of 

electrodes 

SG 

frequency 

of the 

most 

apical 

electrode 

(Hz) 

Sound 

processing 

strategy 

Stimulation 

Rate, Hz 

Contralateral 

ear 

V1 51 2.5 

Med-El 

Concert 

Standard 

Opus2, 

RONDO 
9 257 FSP 2000 

Normal 

(SSD) 

V2 72 1.8 

Med-El 

Concert 

Flex28 

Opus 2, 

RONDO 
11 434 FSP 1186 Hearing-aid 

V3 88 1.8 

Cochlear 

Nucleus 

Freedom 

CI24RE 

N5 22 733 ACE 500 Hearing-aid 

V4 54 4.7 
Cochlear 

CI512 
N5 22 1100 ACE 900 Hearing-aid 

V5 51 1.3 

Cochlear 

Nucleus 

CI24RE (CA) 

N6 22 1461 ACE 900 No hearing 
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list and 4 talkers (2 male and 2 female). Each sentence ranges from 4 – 12 words and all lists are 

equated (i.e., equal intelligibility across lists) [116]. One list (20 sentences) per test condition 

was administered. AzBio sentences are recommended by the new minimum speech test battery 

(MSTB) as an assessment material for adult CI recipients [117]. IEEE sentences, on the other 

hand, are phonetically balanced and are relatively more difficult to understand than the AzBio 

sentences.  

Recorded IEEE sentences were presented in both male and female voice, 2 lists per 

condition (1 list in male, and 1 in female voice).  

CNC word test consists of lists of monosyllabic words with equal (and same as English 

language) phonemic distribution across the lists [114]. There are ten lists, with 50 words per list, 

and each word comprises of three phonemes. One list (50 words) per condition was 

administered, and listeners were assessed for both phoneme and word recognition. 

Vowel recognition was assessed using a 12-alternative identification paradigm for 12 

phonemes, including 10 monophthongs and 2 diphthongs, presented in /h/-vowel-/d/ context 

(had, hod, hawed, head, hayed, heard, hid, heed, hoed, hood, hud, who’d). Consonant stimuli 

comprised of 20 medial consonants presented in /a/-consonant-/a/ context. Both vowels and 

consonants comprised of productions from 5 male and 5 female talkers and were acquired from 

[113]. Closed-set tests were conducted independently for male and female speakers, and all 

tokens were randomly drawn from different talkers. In addition to the speech recognition tasks, 

spectral resolution was assessed via spectral modulation detection (SMD) task. SMD threshold 

for an implanted ear is reported to be highly correlated with speech understanding, and is thus a 
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non-linguistic, psychoacoustic index for speech recognition performance. The quick SMD task 

was drawn from Gifford et al. [118] and included a 3-interval, forced-choice procedure to 

identify spectrally modulated noise from flat-spectrum noises. Spectral modulation was achieved 

using logarithmically spaced, sinusoidally-modulated (125 Hz – 5600 Hz) broadband carrier 

stimulus. Five modulation depths (10, 11, 13, 14, and 16 dB) were tested at frequencies of 0.5 

and 1.0 cycles/octave and with (6 trials for each modulation depth). A total of 60 trials were 

administered and each trial was scored correct or incorrect based on the user response. The 

chance level of performance was 1/3.  

Hearing quality was assessed using the Speech, Spatial, and Qualities of Hearing (SSQ) 

questionnaire [119]. SSQ comprises of three parts, namely speech hearing (14 questions), spatial 

hearing (17 questions), and qualities of hearing (18 questions). It employs a visual analog scale 

(ranging from 0 to 10) to register responses and aims at measuring self-reported auditory 

disability across a wide variety of domains that reflect the reality of hearing in the everyday 

listening environments. These domains include speech in variety of competing contexts, spatial 

hearing associated with direction, distance and movement components, and the overall quality of 

speech such as clarity, fullness, naturalness, and ease of listening. Higher scores represent better 

speech understanding, spatial hearing, and sound quality. 

Signal processing programming strategy 

Frequency allocation scheme for each subject was derived from his/her imaging data. DVF 

curves for each subject were fed as an input to the frequency-place optimization algorithm 

(discussed in section 4.3). Some subjects (V1 and V2) had previously participated in electrode 

deactivation study [106, 107]. For the above two and all other subjects, only those electrodes 
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which were active in the clinical map were used to create the custom frequency maps. Therefore, 

no electrodes were switched on or off, even if it contradicted with the programming principles of 

the algorithm7.This was done to study the effect of only one factor (i.e., changing frequency 

allocation table) in this experiment. 

Procedure/Method 

Experimental (custom) frequency maps were created in advance of the testing day. Subjects were 

tested with a battery of hearing and speech recognition tests, in up to two listening modes: 

electric-only (implant only), and electric + acoustic (implant and hearing aid). An ABA (test/re-

test: Clinical/Proposed/Clinical) study model, as described in the following section, was 

employed. First, baseline measurements were taken with the default clinical map, the map which 

participants walked in with (and were likely accommodated to). For bimodal subjects who used 

                                                 

7 Electrode activation/de-activation schemes could potentially interfere with the algorithm design. Ideally, 
better spectral resolution can be delivered by increasing the number of perceptually discriminable 
stimulation sites (electrodes). (Although, scientific evidence suggests that CI users are not able to 
utilize greater than 10 electrodes.) Electrode deactivation schemes, e.g., by Noble et al. [106, 107], aim 
to reduce the channel interference caused by the electrodes that reside very close to each other spatially, 
and are likely to stimulate the same group of nerve fibers. With such electrode deactivation scheme, 
they demonstrated an improvement in performance by many CI users, despite reducing the number of 
active electrodes. The present frequency-allocation scheme derives its sound analysis filter banks from 
the number of electrodes that are available. Electrode-deactivation strategy, thus, could interfere with 
the algorithm principles in the following ways. In general, low frequencies are represented by multiple 
narrow-band analysis filters, while wide band filters are used to represent higher frequencies. This aids 
in better representation of lower frequencies that are generally more critical for speech understanding 
and also follows logarithmically spaced tonotopic map of the spiral ganglion. For example, frequency 
maps used in the devices by Cochlear Corporation use at least 12 out 22 electrodes to represent 
frequency range of 288 – 1600 Hz. The remaining filters are used to represent frequencies up to 7938 
Hz. Such a scheme provides better representation of lower frequencies and produces better speech 
recognition results than linear spacing. This frequency allocation trend is also consistent with other 
implant manufacturers. Now imagine, a scheme that switches of electrodes on the basis of spatial 
location of electrodes. If a handful of electrodes are deactivated (pruned) in the lower frequencies, this 
may result in a significant reduction in the possibility to represent low frequencies with narrow filter-
banks with the proposed custom frequency allocation strategy. In such cases, representation of low 
frequencies with broad filters can actually be detrimental. Care must be taken when investigating 
similar frequency-allocation schemes, especially for the confounding factors that are known to be 
inversely related to each other. 
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hearing-aid or had good hearing in the contralateral ear, the measurements were repeated in the 

best-aided condition. Following baseline testing, participants’ CI processor was programmed 

with the custom frequency map. Other sound processing parameters, such as timing parameters, 

current levels and environmental settings, were not changed and were kept similar to the original 

clinical map. After fitting with custom maps, the subjects were tested with the same battery of 

speech material in CI-only and under best-aided conditions, when possible. The only auditory 

training provided to the listeners before the acute testing was reading the rainbow passage [120] 

that took about 2 – 5 minutes. The experimental session on the first day took about 4 hours in 

total (baseline + acute testing). After the testing session, the subjects were given the experimental 

map to take home and were encouraged to use it in their normal daily lives, as they would 

normally use their clinical processor. Their processors were configured with only one map, with 

volume and sensitivity settings equivalent to their original clinical maps. This was done to ensure 

that they only used the experimental map throughout the length of the study. Five subjects 

returned back for a follow-up session a week after the first programming session, during which 

they were retested with the experimental map, which they had been using in the past one week. 

Finally, five participants returned back after three months for a semi-chronic performance 

evaluation with the experimental map. During the final testing session, participants were first 

tested with the custom frequency map in electric-alone and best-aided conditions, after which the 

participants’ processors were reprogrammed with their original clinical map (which they have 

been using before the start of the study). The performance was quantified on several measures, 

including adaptation trend observed with the experimental map acutely, 1-week, and 3-months 

post-activation, as well as quantitative comparison with the clinical map. Finally, to measure the 
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performance differences qualitatively, participants completed SSQ questionnaire before the start 

of the study and at the end of the 3-month period. 

Results 

Figure 4.18 - Figure 4.22 show mean scores for different test materials with clinical and custom 

frequency maps as a function of the test session. The first and last data points in each chart 

represent scores from the clinical map pre- and post- fitting of the custom frequency map. Scores 

with custom frequency maps were collected acutely on day 1 (without experience), at 1 week, 

and after 3 months of use. Acute performance from the custom maps was considerably lower 

than the clinical map on all measures, except spectral modulation detection (SMD). This is 

expected, because when changes to a map are made, quantitative and qualitative hearing scores 

generally tend to favor the original map   [121].   However,  participants displayed at least partial 

 

 
Figure 4.18. Mean CNC words and phonemes recognition scores of 5 CI users from Study 3. Error 

bars represent standard errors of means. 
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Figure 4.19. Mean consonants and vowels identification scores of 5 CI users from Study 3. Error 

bars represent standard errors of means. 

 
Figure 4.20. Mean sentence recognition scores in quiet of 5 CI users from Study 3. Error bars 

represent standard errors of means. 
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Figure 4.21. Mean sentence recognition scores in noise of 5 CI users from Study 3. Error bars 

represent standard errors of means. 

 
Figure 4.22. Mean spectral modulation detection (SMD) scores of 5 CI users from Study 3. Error 

bars represent standard errors of means. 



109 

 

accommodation to the custom maps during the three month-time window. Statistical analysis of 

the data is provided as follows. 

Repeated measures multi-variate ANOVA (MANOVA) was performed with frequency 

mapping conditions (clinical vs custom), speech materials (10 test measures), and test session (2 

levels: pre and post) as the main analysis factors. No overall statistically significant effect of 

mapping condition (p = 0.152) or test session (p = 0.061) was observed. There was a significant 

effect of speech material (p <0.001). Two-way interaction between speech material and test 

session, as well as 3-way interactions among all three factors were statistically significant. The 

other two-way interactions were non-significant. The statistics are summarized in Table 4.10. 

Please note that for the above analysis only two test sessions were considered. For clinical map, 

this equates to tests conducted with the clinical map prior to the start of study and after 3 months. 

For custom map, acute and 3-months post-activation data points were used. The data from 

subject V4 were excluded from analysis due to missing data points. 

Post-hoc Bonferroni tests showed that phoneme (p=0.020) and consonant recognition (p=0.007) 

scores changed with the test session. In addition, pairwise comparisons (t-tests) revealed that 

performance with the clinical maps at day 1 and at 3 months (re-test condition) was statistically 

equivalent (p = 0.868)8. However, test session had a significant effect on overall performance 

with custom mapping (p = 0.003). This could be explained by the effect of learning/adaptation 

with the custom maps over three months of extended use of the experimental program. The 

analysis on the effects of learning and test session is reported later in this section. 

                                                 

8 This was also confirmed with a separate 2-way repeated measures ANOVA, with test session and speech 
material as the main analysis factors. Analysis revealed no statistically significant difference in scores 
between the test sessions (F[1, 3] = 0.033, p = 0.868]. See Table 4.9 
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Table 4.10. MANOVA statistics for study 3 with cochlear implant users. Test Sessions (pre vs 

post), frequency mapping conditions (clinical vs custom), and speech materials (10 levels) were 

considered main analysis factors. 

 

Factor F statistic Significance 

Test Sessions (pre and post) F[1, 3] = 8.597 p = 0.061 

Mapping Conditions (clinical and custom) F[1, 3] = 3.656 p = 0.152 

Speech Materials (10 levels) F[9,27] = 12.472 p < 0.001 

Mapping Condition × Speech Material F[9, 27] = 1.985 p = 0.082 

Mapping Condition × Test Session F[1, 3] = 4.178 p = 0.134 

Speech Material × Test Session F[9, 27] = 2.362 p = 0.041 

Mapping Condition × Speech Material × Test Session F[9, 27]= 2.337 p = 0.043 

 

 A series of separate 2-way repeated measures ANOVAs were conducted to compare the 

effects of mapping conditions across test sessions. Mapping conditions and speech material were 

considered as the main analysis factors. First, acute performance with the custom frequency 

maps was compared against the clinical maps. Analysis revealed a significant effect of the 

mapping condition (F[1,4] = 15.743, p = 0.017) as well as speech material (F[9,36] = 17.013, p 

<0.001). The interaction between the mapping conditions and speech material was statistically 

significant (F[9,36] = 4.020, p = 0.001). This significant ANOVA was followed with Fisher’s 

Least Significance Difference (LSD) paired t-test, to investigate the effects of mapping 

conditions on each tested speech material. Pairwise comparisons revealed that half of the speech 

material (5 out of 10) was relatively unaffected by the mapping condition. The performance 
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levels with speech materials that were statistically different in either of the mapping condition 

were vowels (p=0.008), AzBio sentences in quiet (p=0.016), AzBio sentence in 10dB SNR 

(p=0.016), AzBio sentence in 5 dB SNR (p=0.034), and IEEE sentences in quiet (p=0.046).  

Next, the effect of experience with the experimental program was analyzed. Performance 

levels across test sessions (acute, 1 week, and 3 months) on all speech measures were evaluated 

using a 2-way repeated measures ANOVA. Results showed a significant effect of test session on 

performance (F[2,8] = 18.950, p = 0.001), as well as a significant effect of speech material 

(F[9,36] = 19.064, p < 0.001). The interactions between test session and speech material were 

also significant (F[18,72] = 2.397, p = 0.005). A post-hoc Bonferroni test showed that 

performance difference with learning was only significant after 3 months of experience with the 

experimental map (p = 0.006). Although performance improved progressively with each test 

session (Session 1, acute: 43.97±5.48), (Session 2, 1 week: 53.43±7.41), (Session 3, 3-months: 

62.50±4.24); sessions 1 and 2 (p =0.086), as well as sessions 2 and 3 (p=0.182) were not 

statistically different from each other. Interestingly, performance levels at 1 week with the 

custom maps were not statistically different from their clinical baseline scores (F[1,4] = 2.952, p 

= 0.161). However, there were statistically significant interactions between mapping conditions 

and speech material (F[9, 36] = 2.945, p = 0.010). A paired t-test showed that performance on 

neither of the speech recognition tasks to be significantly different with the custom or the clinical 

maps. The interactions were most likely of statistical significance due to the individual 

differences in the test materials. 

The final levels of performances at three months with the experimental (custom 

frequency) maps were compared against the baseline performances measured with the clinical 
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maps on day 1 (pre-test). Estimated marginal means (averaged across all speech measures) for 

the two test conditions along with confidence intervals are given in Table 4.12. The two mapping 

conditions produced similar performances. A 2-way repeated measures ANOVA revealed no 

statistically significant difference between the two mapping conditions (F[1,4] = 0.298, p = 

0.614). A significant effect of speech material was observed (F[9,36] = 20.106, p <0.001). 

Interactions between test session and speech material were not significant (F[9,36] = 0.122, p = 

0.122).  

Please note that, excluding subject V4 from analysis, for whom scores for consonants, 

vowels, IEEE Quiet and AzBio 5dB were extrapolated for the custom map at three months, the 

ANOVA revealed an overall better performance with the custom maps as compared to the 

clinical map (F[1,3] = 98.065, p = 0.002). Although mean scores with the custom maps were 

only slightly higher (63.58±5.29) than the clinical map (60.64±5.29), the improvement was 

statistically significant. 

 

Table 4.11. Estimated marginal means for clinical maps on day 1 and after 3 months. Baseline 

scores from the clinical map (measured at Day 1) were compared against acute scores obtained 

from clinical map at 3 months, during which subjects used an experimental program. Data 

excludes scores from V4 who was not available for at 3 months for complete testing. 

 

   95 % Confidence Interval 

Mapping Condition Mean Std. Error Lower Bound Upper Bound 

Clinical Baseline 60.64 5.29 43.81 77.47 

Clinical acute 3 months 59.40 9.93 27.79 91.08 
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Table 4.12. Estimated marginal means for baseline clinical and custom maps. Baseline scores 

from the clinical map (measured at day 1) were compared against 3-months scores with the 

custom frequency allocation scheme. (Scores from subject V4 were extrapolated for four test 

materials with the custom maps.) 

 

   95 % Confidence Interval 

Mapping Condition Mean Std. Error Lower Bound Upper Bound 

Clinical Baseline 61.46 4.18 49.86 73.06 

Custom at 3 months 62.50 4.24 50.72 74.28 

 

Table 4.13. Estimated marginal means for custom and clinical maps at 3-months. Scores from 3-

months post-activation of the experimental maps were compared against acute scores obtained 

from clinical map at 3 months. (V4 excluded from analysis.) 

 

   95 % Confidence Interval 

Mapping Condition Mean Std. Error Lower Bound Upper Bound 

Custom at 3 months 63.58 5.30 46.72 80.43 

Clinical, acute 3 months 59.40 9.93 27.79 91.02 

 

The performance levels measured at 3 months with the experimental (custom frequency) 

maps were also compared against the measurements taken with the clinical map acutely after 3 

months. Estimated marginal means (averaged across all speech measures) for the two test 

conditions along with respective confidence intervals are given in Table 4.13. Although mean 

scores from the custom frequency maps were numerically slightly better that the clinical map 

(mean difference of 4.17%), a 2-way repeated measures ANOVA did not indicate mapping 

conditions to have any statistically significant effect on the performance levels (F[1,3] = 0.397, p 
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= 0.573). However, a significant effect of the speech material was observed (F[9,27] = 8.695, p 

<0.001). The interactions between the test session and speech material were not significant as 

well (F[9,27] = 1.472, p = 0.208). 

 Figure 4.23 shows mean speech recognition performance of five CI subjects with clinical 

and custom frequency maps. Average across all ten speech measures was considered as a mean 

score for each mapping/testing condition. Scores from the clinical map were acquired at the start 

of the study (bar 1), and at 3 months (3rd bar). In order to investigate if individual subjects 

performed significantly different with any of the two mapping conditions, a repeated measures 

ANOVA was performed with subjects and mapping conditions as the main analysis factors. 

Since data for subject V4 were not complete, only 4 subjects were considered for analysis. The 

performance levels with the clinical map at the start of the study, and with the custom map at the 

3-months post-activation session were used as the main analysis factors. Results indicated that 

individual differences between the subjects were statistically significant (F[3,27]=11.273, 

p<0.001). Frequency mapping conditions did not have any statistically significant effect 

(F[1,8]=1.984, p=0.193) on performance. The interactions between subjects and maps were also 

not significant (F[3,27]=0.043, p=0.988). 

 Average qualitative scores obtained from the SSQ questionnaires are shown in Figure 

4.24. SSQ questionnaires were filled at the start of the study with the clinical map and at the end 

of the study (3-months) with the custom maps. Overall, there was no significant perceptual 

differences between the two maps. Average scores from four subjects changed from 4.905±2.14 

(clinical) to 4.503±2.26 with the custom map. 
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To this point, we have presented analysis of mean speech recognition performance across 

all subjects and test material. In the following section, performance levels of each subject on 

individual test material are provided separately to highlight the differences between the subjects 

and the test materials.  

 

 

 

 

 
Figure 4.23. Mean performance of 5 CI subjects on 10 speech recognition tasks with clinical and 

custom frequency maps. Error bars represent standard errors of means. 
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Figure 4.24. Mean SSQ scores of 4 CI subjects with clinical and custom frequency maps. 
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Subject V1: 

The frequency characteristics of the clinical and custom frequency maps along with center 

frequencies of the image filters (curve minimas from the DVF curves) for subject V1 are shown 

in Table 4.14. Speech recognition scores with various test material are presented in Figure 4.25. 

A 2-way repeated measures ANOVA was performed using the clinical and custom 

frequency maps at two testing sessions (pre and post), as the main analysis factors. The results 

indicated a significant effect of mapping condition (F[1, 9] = 5.166, p = 0.049), and test session 

(F[1, 9] = 10.250, p = 0.011).  The interactions between mapping conditions and the test sessions  

 

Table 4.14. Frequency allocation tables for subject V1. All numbers in the table represent 

frequencies in Hz. LF: Low cut-off Frequency, CF: Center Frequency, and UF: Upper cut-off 

Frequency. Channels marked with hyphen were not active. 

 

 
Clinical  Image  Custom 

 
LF CF UF  CF  LF CF UF 

1 100 168 237  257  125 250 375 

2 - - -  410  - - - 

3 237 334 431  627  375 625 875 

4 - - -  797  - - - 

5 431 570 710  1082  875 1082 1290 

6 710 912 1115  1653  1290 1653 2016 

7 1115 1411 1707  2394  2016 2394 2773 

8 1707 2140 2574  3614  2773 3387 4000 

9 2574 3211 3849  5418  4000 4737 5474 

10 3849 4788 5728  6146  5474 6063 6651 

11 5728 7114 8500  12542  6651 7295 7939 

12 - - -  15182  - - - 
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were not significant (F[1, 9] = 0.636, p = 0.446). Pairwise t-tests were conducted between 

different pairs of test sessions and mapping conditions. The results are summarized in Table 

4.15. 

Remarks/Discussion: The trends in the above results are very interesting. The p-values of first 

three pairs indicate that there was no statistically significant difference between the two maps. 

By the end of the three months study period, the custom map was on average 3.5 percentage 

points better than the clinical map. However, when the participant was shifted back to his old 

clinical map, his scores with the clinical maps were significantly improved (14 percentage 

  

  
 

Figure 4.25. CI-only score profile of subject V1 on 10 speech recognition tasks with clinical and 

custom frequency maps. 
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points, on average). Pairwise comparison of scores with the custom map and the clinical map at 3 

months indicated borderline results (p=0.05).  

Possibly, the custom map acted as an intermediate map, which may have boosted the 

performance with the clinical map. By the end of the study, the subject kept both custom and 

clinical frequency maps. 

The subject was a single-side deafened (SSD) adult. His scores in best aided condition 

were at ceiling levels for all test materials with both the maps at all test sessions and with all 

speech material. 

 

Table 4.15. Paired samples t-test for electric-only condition with subject V1. 

 

Pair 
Mean 

Difference 

Std. Error 

Mean 
t p-value 

Clinical_Session1 

Custom_Session1 
7.708 13.235 1.842 0.099 

Clinical_Session1 

Custom_Session2 
0.901 11.658 0.244 0.812 

Clinical_Session1 

Custom_Session3 
-3.518 9.549 -1.165 0.274 

Clinical_Session1 

Clinical_Session3 
-14.219 14.925 -3.013 0.015 

Clinical_Session3 

Custom_Session3 
10.701 4.725 2.265 0.050 

 

  



120 

 

Subject V2: 

The frequency characteristics of the clinical and custom frequency maps along with center 

frequencies of the image filters (curve minimas from the DVF curves) for subject V2 are given in 

Table 4.16. Speech recognition scores with various test material are given in Figure 4.26. A 2-

way repeated measures ANOVA was performed, with performance from the clinical and custom 

frequency maps at two testing sessions (pre and post) as the main analysis factors. Results 

indicated a significant effect of mapping condition (F[1, 9] = 10.196, p = 0.011) and test session 

(F[1, 9] = 12.798, p = 0.006). The interactions between mapping conditions and test sessions 

were statistically significant (F[1, 9] = 9.715, p = 0.012). 

Table 4.16. Frequency allocation tables for subject V2. All numbers in the table represent 

frequencies in Hz. LF: Low cut-off Frequency, CF: Center Frequency, and UF: Upper cut-off 

Frequency. Channels marked with hyphen were not active. 

 

 
Clinical  Image  Custom 

 
LF CF UF  CF  LF CF UF 

1 100 168 208  410  250 375 500 

2 - - -  569  - - - 

3 208 280 352  749  500 625 750 

4 352 448 545  899  750 875 1000 

5 545 675 806  1180  1000 1187 1375 

6 806 983 1160  1484  1375 1550 1725 

7 1160 1402 1643  2205  1725 1975 2225 

8 1643 1973 2303  3071  2225 2538 2850 

9 2303 2756 3208  4546  2850 3275 3700 

10 3208 3829 4450  5805  3700 4250 4800 

11 4450 5302 6155  9173  4800 5500 6200 

12 6155 7328 8500  13370  6200 7100 8000 
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Pairwise t-tests were conducted between different pairs of test sessions and mapping 

conditions. The results are summarized in Table 4.17. The results indicated that acute scores with 

the custom map were significantly lower than the clinical map (day 1) (p=0.005), but after 1 

week of extended use, performance levels with the custom maps was significantly better than the 

clinical map (p=0.028). Interestingly, the performance at 3-months with both maps was not 

significantly different (p=0.151). Comparisons of performance levels observed with the clinical 

map before and after 3-months indicated that there was no significant difference between the two 

(p=0.136) maps. 

 

  

  
 

Figure 4.26. CI-only score profile of subject V2 on 10 speech recognition tasks with clinical and 

custom frequency maps. 
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Table 4.17. Paired samples t-test for electric-only condition with subject V1. 

 

Pair 
Mean 

Difference 

Std. Error 

Mean 
t p-value 

Clinical_Session1 

Custom_Session1 
13.919 3.734 3.728 0.005 

Clinical_Session1 

Custom_Session2 
-5.197 1.985 -2.618 0.028 

Clinical_Session1 

Custom_Session3 
-2.811 1.789 -1.571 0.151 

Clinical_Session1 

Clinical_Session3 
-5.693 3.478 -1.637 0.136 

Clinical_Session3 

Custom_Session3 
2.882 2.483 1.161 0.276 

 

Bimodal (Electric+Acoustic) scores: Figure 4.27 shows the speech recognition 

performance in best aided conditions with an implant in one ear and a hearing-aid in the other of 

subject V2. Due to the lack of time, some conditions were not tested. The results indicated that 

subject’s performance with custom maps was generally comparable (perhaps equivalent) to the 

clinical maps in bimodal condition. A 2-way repeated measures ANOVA revealed no 

statistically significant difference between the two maps by the end of the study 

(Clinical_Session3 and Custom_Session3) (F[1, 7] = 0.048, p = 0.833). 

Remarks/Discussion: The above analysis for the electric-only condition indicates that the 

subject’s performance dropped significantly with the custom map at the first testing session, but 

after 1-week of use, subject accommodated to the custom map and his average scores were better 

than his clinical map. Scores after 3 months,  
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were not significantly better than the clinical map. It appears that the performance had reached 

an asymptotic level after one week. Interestingly, as with subject V1, the performance with the 

clinical map after 1 month was numerically better than that at the start of the study. For the 

bimodal conditions, the subject’s performance was equivalent with the two maps at the start and 

at end of the three month period.  

By the end of the study, the subject chose to keep both clinical and custom frequency 

programs for everyday use.  

  

  
 

Figure 4.27. EAS score profile of subject V2 on 8 speech recognition tasks with clinical and 

custom frequency maps. 
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Subject V3: 

The frequency characteristics of the clinical and custom frequency maps along with center 

frequencies of the image filters (curve minimas from the DVF curves) for subject V3 are given in 

Table 4.18. Speech recognition scores with various test materials are presented in Figure 4.28. A 

2-way repeated measures ANOVA was performed by considering performance with the two 

frequency maps at two test sessions (pre and post) as the main analysis factors. The results 

indicated no significant effect of mapping condition (F[1, 9] = 0.06, p = 0.940), or test session 

(F[1, 9] = 1.507, p = 0.251). However, there was a significant interaction between mapping 

conditions and test session (F[1, 9] = 20.680, p = 0.001). Pairwise t-tests were conducted 

between the different pairs of test sessions and mapping conditions. The results are summarized 

in Table 4.19. The results indicated that acute scores with the custom map were significantly 

lower than the clinical map (day 1) (p=0.024), but after 1 week of daily use, performance with 

the custom maps was equivalent to the clinical map (p=0.067). The performance continued to 

improve numerically over 3 months. At three months, scores with custom maps were equivalent 

to the clinical map (p=0.594); however, the performance with custom maps at this stage was 

significantly better than the performance re-evaluation with the clinical map at 3 months (p = 

0.001). This was due to the decreased performance observed with the clinical map after 3 months 

relative to the measures obtained at day 1 (p=0.003).  
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Table 4.18. Frequency allocation tables for subject V3. All numbers in the table represent 

frequencies in Hz. LF: Low cut-off Frequency, CF: Center Frequency, and UF: Upper cut-off 

Frequency. Channels marked with hyphen were not active. 

 

 
Clinical  Image  Custom 

 
LF CF UF  CF  LF CF UF 

1 188 250 313  733  500 583 667 

2 313 375 438  831  667 750 833 

3 438 500 563  970  833 917 1019 

4 563 625 688  1121  1019 1121 1151 

5 688 750 813  1180  1151 1180 1265 

6 813 875 938  1349  1265 1349 1429 

7 938 1000 1063  1508  1429 1508 1658 

8 1063 1125 1188  1807  1658 1807 2006 

9 1188 1250 1313  2205  2006 2205 2332 

10 1313 1438 1563  2459  2332 2459 2579 

11 1563 1688 1813  2698  2579 2698 3049 

12 1813 1938 2063  3110  3049 3401 3313 

13 2063 2188 2313  3658  3313 3694 3563 

14 2313 2500 2688  4182  3563 4011 3938 

15 2688 2875 3063  4766  3938 4354 4313 

16 3063 3313 3563  5418  4313 4726 4688 

17 3563 3813 4063  6007  4688 5127 5063 

18 4063 4375 4688  8130  5063 5562 5563 

19 4688 5000 5313  10678  5563 6033 6063 

20 5313 5688 6063  12542  6063 6542 6688 

21 6063 6500 6938  13950  6688 7094 7313 

22 6938 7438 7938  14865  7313 7690 7938 
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Bimodal (Electric+Acoustic) scores: Figure 4.29 shows speech recognition performance 

in best aided conditions, with an implant in one ear and a hearing-aid in the other. A 2-way 

repeated measures ANOVA revealed no statistically significant difference between the two maps 

(F[1, 7] = 2.846, p = 0.135), or performance differences between the test sessions (pre vs post) 

(F[1, 7] = 3.301, p = 0.112). The interactions between the mapping conditions and the test 

sessions were statistically significant. Pairwise t-tests (Table 4.20) indicated that performance 

with the custom map was significantly lower than the clinical map acutely and at 1-week test 

session; however, performance was equivalent to the baseline clinical map by 3 months. No 

statistical difference between pre- and post- evaluation with the clinical maps was observed. 

  

  
 

Figure 4.28. CI-only score profile of subject V3 on 10 speech recognition tasks with clinical and 

custom frequency maps. 
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Table 4.19. Paired samples t-test for electric-only condition with subject V3. 

 

Pair 
Mean 

Difference 

Std. Error 

Mean 
t p-value 

Clinical_Session1 

Custom_Session1 
18.459 6.823 2.705 0.024 

Clinical_Session1 

Custom_Session2 
13.815 6.6278 2.084 0.067 

Clinical_Session1 

Custom_Session3 
-2.162 3.917 -0.552 0.594 

Clinical_Session1 

Clinical_Session3 
15.738 4.003 3.931 0.003 

Clinical_Session3 

Custom_Session3 
-17.90 3.447 -5.193 0.001 

 

Table 4.20. Paired samples t-test for electric+acoustic condition with subject V3. 

 

Pair 
Mean 

Difference 

Std. Error 

Mean 
t p-value 

Clinical_Session1 

Custom_Session1 
13.750 4.395 3.129 0.017 

Clinical_Session1 

Custom_Session2 
7.774 3.156 2.463 0.043 

Clinical_Session1 

Custom_Session3 
1.511 2.968 0.509 0.626 

Clinical_Session1 

Clinical_Session3 
7.540 4.084 1.846 0.107 

Clinical_Session3 

Custom_Session3 
-6.029 3.105 -1.941 0.093 
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Remarks/Discussion: The above analyses for electric-only and bimodal conditions indicate that 

the subject’s performance dropped significantly with the custom map acutely, but after 1-week of 

daily use, the subject accommodated to the custom map and his performance levels were 

comparable or equivalent to the clinical map. Scores continued to improve during the three 

months period. At the three months test session, scores from both maps were equivalent for both 

electric-only and electric+acoustic stimulation.  

By the end of the study, the subject chose to keep the custom frequency map exclusively 

for extended use. 

  

  
 

Figure 4.29. EAS score profile of subject V3 on 8 speech recognition tasks with clinical and 

custom frequency maps. 
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Subject V5: 

Subject V5 was a unilateral implant user. He had no hearing in his contralateral ear. Frequency 

characteristics of the clinical and custom frequency maps along with the center frequencies 

obtained from the image filters (curve minimas from DVF curves) for subject V5 are given in 

Table 4.21. Speech recognition scores with various test material for subject V5 are shown in 

Figure 4.30. A 2-way repeated measures ANOVA was performed to assess performance with the 

clinical and custom frequency maps at two test sessions (pre and post). Mapping conditions and 

test sessions were the main analysis factors. The analysis of scores indicated no significant effect 

of mapping condition (F[1, 9] = 0.039, p = 0.847). A significant effect of test session was 

observed (F[1, 9] = 5.362, p = 0.046), and there was a significant interaction between the 

mapping condition and the test session (F[1, 9] = 81.187, p < 0.001). Pairwise t-tests were 

conducted between the different pairs of test sessions and mapping conditions. The results are 

summarized in Table 4.22. The results indicated that performance levels with the custom 

frequency maps on day 1 and at 1-week were significantly lower than the clinical map, but after 

three months the performance with custom maps was equivalent to the clinical map (p=0.414). 

For this subject, the performance with his old clinical program at 3-months was significantly 

worse than the baseline performance with the same map at day 1 (p<0.001). Pairwise comparison 

of speech performance with the custom and clinical maps at three months indicated significantly 

better performance with the custom maps (p = 0.004). 
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Table 4.21. Frequency allocation tables for subject V5. All numbers in the table represent 

frequencies in Hz. LF: Low cut-off Frequency, CF: Center Frequency, and UF: Upper cut-off 

Frequency. Channels marked with hyphen were not active. 

 

 
Clinical  Image  Custom 

 
LF CF UF  CF  LF CF UF 

1 188 250 313  1438  500 625 750 

2 313 375 438  1604  750 875 1000 

3 438 500 563  1861  1000 1188 1375 

4 563 625 688  2057  1375 1563 1750 

5 688 750 813  2298  1750 1938 2125 

6 813 875 938  2459  2125 2313 2500 

7 938 1000 1063  2698  2500 2688 2875 

8 1063 1125 1188  3190  2875 3063 3250 

9 1188 1250 1313  3354  3250 3375 3500 

10 1313 1438 1563  3704  3500 3625 3750 

11 1563 1688 1813  4082  3750 3875 4000 

12 1813 1938 2063  4710  4000 4125 4250 

13 2063 2188 2313  5294  4250 4438 4625 

14 2313 2500 2688  5872  4625 4813 5000 

15 2688 2875 3063  7116  5000 5188 5375 

16 3063 3313 3563  9376  5375 5563 5750 

17 3563 3813 4063  11029  5750 5938 6125 

18 4063 4375 4688  12542  6125 6313 6500 

19 4688 5000 5313  13803  6500 6688 6875 

20 5313 5688 6063  14708  6875 7063 7250 

21 6063 6500 6938  15670  7250 7438 7625 

22 6938 7438 7938  16173  7625 7813 8000 
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Remarks/Discussion: Subject V5’s clinical map was 2.5 octaves shifted in frequency for the 

most apical electrode, indicating severe frequency-place mismatch (assuming peripheral 

processes stimulated by the electrodes had CFs equal to the ones computed by the DVF curves). 

The custom frequency map created for this subject was drastically different than the clinical map 

(see Table 4.21). However, despite this difference between the clinical and custom maps, the 

subject showed progressive improvement over three month study period with the custom map. At 

the end of the three month period, his average scores were equivalent to his baseline performance 

with the clinical map. By the end of the study, the subject chose to keep the custom frequency 

map exclusively for extended use.  

  

  
 

Figure 4.30. CI-only score profile of subject V5 on 10 speech recognition tasks with clinical and 

custom frequency maps. 
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Table 4.22. Paired samples t-test for electric-only condition with subject V5. 

 

Pair 
Mean 

Difference 

Std. Error 

Mean 
t p-value 

Clinical_Session1 

Custom_Session1 
13.606 3.646 3.732 0.005 

Clinical_Session1 

Custom_Session2 
9.336 3.822 2.443 0.037 

Clinical_Session1 

Custom_Session3 
-3.255 3.800 -0.857 0.414 

Clinical_Session1 

Clinical_Session3 
9.122 1.678 5.436 0.000 

Clinical_Session3 

Custom_Session3 
-12.377 3.175 -3.899 0.004 

 

General Discussion 

This study aimed at investigating customized frequency mapping schemes for cochlear implant 

recipients. Five experienced, post-lingually deafened adult users of CIs participated in this semi-

chronic study. Imaging data of the recipients’ cochleae provided relationships between spatial 

locations of the electrode contacts and the characteristic frequencies of the nerve fibers. These 

imaging data were used to optimize and “tailor-fit” frequency-place functions for each 

participant. At the start of the study, participants’ performance was measured on ten speech 

recognition tasks with their clinically assigned frequency map, after which their processors were 

configured with the custom frequency allocation tables determined by the proposed algorithm. 

Upon fitting, speech recognition tests were re-administered in this acute testing condition with 

the custom maps. Subjects continued to use the experimental program exclusively for 3 months 
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in their daily lives. A follow-up session was conducted at 1-week post-activation of the 

experimental programs, and a final assessment was carried out after 3 months. At both of these 

sessions, speech recognition performances were re-measured. 

Consistent with typical clinical observations, performance levels with the experimental 

program dropped significantly lower than the clinical processor for all CI users. However, all 

subjects showed progressive improvement with extended use of the experimental programs on all 

measures of speech recognition. Although the performance levels improved after 1-week post-

activation, scores were not significantly different from acute scores with the custom maps 

measured at day 1. Interestingly, the levels of performance at 1 week were not significantly 

different than the baseline scores with the clinical maps. At three months, performance levels 

with the experimental programs were significantly better than the acute scores, and also not 

statistically different than the clinical program. Overall the progressive improvement with the 

experimental programs indicate effects of learning, and at least partial adaptation to the custom 

frequency maps. All subjects displayed the effects of learning with varying degrees. It is 

impossible to say if performance levels reached an asymptotic level at 3 months. Perceptual 

studies with CIs suggest that performance levels continue to improve at least up to 24 months 

post-activation of new maps. However, most significant improvement occurs in the first few 

months.  

In this study, we made significant changes to the frequency allocation tables of CI 

processors. In some cases, the modifications were extreme relative to their clinical, default 

frequency allocation schemes. It is surprising that despite these extreme modifications, 

performance levels were similar to the clinical maps just after 1 week of daily use. Fu et al. [93] 
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demonstrated with three CI users that the deficit in the performance caused by a spectral shifts of 

2 – 4 mm in the tonotopic location of stimulation cannot be compensated with at least 3 months 

of exposure to the new patterns of stimulation. The data from the current study suggest that, if 

information is delivered with minimum distortion relative to the normal acoustic frequency map, 

listeners may not only accommodate, but may show improved performance over time.  

 

Comparison with Simulations 

The image maps of CI subjects recruited in this study were not the same as that of study 1 

(section 4.4.1) or study 2 (section 4.4.2). In order to make equivalent comparisons with 

simulation data, the same image maps were retested using acoustic simulations of cochlear 

implants. Similar to study 1 and 2, a noise band vocoder was implemented. Frequency 

characteristics of the analysis and synthesis filters were varied to reflect the following mapping 

conditions, i) ideal matched, ii) clinically assigned frequency map in relation to the true 

tonotopic map, iii) custom frequency map in relation to the true tonotopic place, and iv) analysis 

filters exactly matched with the tonotopic frequencies of electrode locations. A total of ten 

subjects participated in this experiment. Five unique frequency maps (of CI subjects who 

participated in the 3-month clinical study) were used, and each map was tested with 2 subjects. 

The following set of speech stimuli was used for testing: i) AzBio sentences in quiet, ii) AzBio 

sentences in 10-talker babble noise at 10 dB SNR, iii) 20 medial-consonants, and iv) 12-medial 

vowels presented in both male and female voices at 65 dB SPL in a double-walled sound booth. 

Figure 4.31 shows mean speech understanding scores of the ten subjects who were tested 

acutely with the four frequency mapping conditions. Similar to the findings of study 1, condition 
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1 (ideal) performed significantly better than the other three conditions. A 2-way repeated 

measures ANOVA was performed to assess the effects of mapping conditions and speech 

material on speech recognition performance. Mapping conditions (4 levels) and speech material 

(4 levels) were considered as the main analysis factors in the design. The results showed a 

significant effect  of  mapping  condition     (F[3, 21] = 24.432, p<0.001),    and  speech  material 

 

 

Figure 4.31. Average speech recognition scores of 10 participants from simulation study 

conducted with image maps of study 3 (CI participants). Percentage correct scores for recognition 

of consonants, vowels, AzBio sentences in quiet, and AzBio sentences in noise (SNR = 10 dB) 

with respect to four frequency mapping conditions. Condition 1: Default Frequency allocation, 

with ideal electrode positioning. Condition 2: Default Frequency allocation, with true electrode 

positioning. Condition 3: Custom frequency allocation, with true electrode positioning. Condition 

4. Frequency allocation matched with true electrode positioning. Error bars represent standard 

errors of means. 
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(F[3, 21] =73.996, p<0.001). The interactions between mapping condition and speech material 

were statistically significant (F[9, 63] = 5.633, p<0.001). This was followed by a post-hoc 

Bonferroni test. Results indicated that on all measures of speech tests, condition 1 (ideal) was 

significantly better than all other mapping conditions (p<0.05). Other comparisons had mixed 

outcomes. A chart showing all pairwise comparisons is presented in Table 4.23. To summarize, 

the proposed custom frequency allocation scheme (condition 3) was significantly better than the 

clinical mapping scheme (condition 2) on all measures of speech material, except vowel 

identification. However, on neither speech recognition task, the proposed solution could reach 

the level of performance obtained with the ideal mapping. Condition 4 (the matched condition) 

was not significantly different than conditions 2 and 3 on all speech tests. 

Following the acute testing, half of the participants were given 20 minutes of audio-visual 

auditory training with clinically assigned frequency maps (condition 2), while the other half was 

provided training with the custom frequency maps (condition 3). A/V training followed the 

structure similar to that administered in study 2. Participants listened to an audio/video session 

from 2 talkers, male and female, 10 minutes each talker. Twenty minutes training session was 

chosen on the basis of data obtained from study 2, which indicated that in comparison to four 

hours of auditory training, greatest difference occurs just after first 15 minutes of auditory 

training. Although the performance may not reach the maximum asymptotic level, the 

performance after 15 minutes is significantly improved in comparison to the acute testing. Such a 

scheme allowed us to perform quick evaluation with some auditory training, and hence complete 

the experiments within the same test session. In this way, each image map was tested with both 

frequency maps (clinical and custom),  and performance after  20  minutes  of  auditory  training 
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Table 4.23. Pairwise Bonferroni comparisons of mapping conditions for each test material. 
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were measured and compared against each other. Figure 4.32 shows mean speech understanding 

results for condition 2 and condition 3 before and after the training session. The level of 

improvement with training varied by mapping condition and test material. The largest 

improvement was observed for sentences presented in quiet. 

A mixed design multi-variate repeated-measures ANOVA (MANOVA) was conducted 

with speech material and test session (pre and post training) as within subject factors, and 

mapping condition as between-subject factors. The analysis revealed a significant effect of 

speech material (F[3,18]=97.732, p<0.001). The effect of test session was on borderline 

(F[1,6]=5.937, p = 0.051), and was thus considered statistically not significant. The following 

interactions between the test session, speech material and mapping condition were not 

statistically significant: (test session × mapping condition), (speech material × test session), 

(speech material × test session × mapping condition). A significant interaction was observed 

between speech material and mapping conditions (F[3,18]=5.039, p=0.010). Post-hoc Bonferroni 

pairwise comparisons of mapping conditions were conducted for each speech material. The 

results are summarized in Table 4.24. No statistically significant differences between the two 

mapping conditions were found after auditory training. 

Discussion 

In this study, with 10 normal hearing individuals, we simulated the same set of maps that 

were used by CI users who participated in study 3. The aim of the experiments was to investigate 

if simulation scores could be compared with actual speech performance observed with CI users. 

In reality, these comparisons are often difficult to make. It is generally not possible to draw exact 

conclusions,    because   the  mechanics   of   normal   hearing  are  significantly  different    from  
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(a) 

 
(b) 

Figure 4.32. Average speech recognition scores for default (condition 2) and custom (condition 3) 

frequency maps. (a) Acute results (b) with auditory training from simulation study conducted with 

image maps of study 3 (CI participants). 
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Table 4.24. Summary of statistics from mixed design MANOVA 

 

Speech Material Mapping Condition Mean Std. Error p value 

Consonants 
Condition 2 59.30 

7.39 0.441 
Condition 3 67.93 

Vowels 
Condition 2 23.44 

4.61 0.592 
Condition 3 27.13 

AzBio Quiet 
Condition 2 47.98 

9.24 0.087 
Condition 3 74.67 

AzBio 10 dB 

SNR 

Condition 2 18.40 

8.53 0.383 
Condition 3 29.76 

 

electrically evoked hearing by cochlear implants. A number of factors that are responsible for 

speech perception with CIs, for example, audiological, cognitive, and neuro-physiological 

aspects, cannot be simulated with vocoder-based studies. The main objective behind this study 

was to evaluate if proposed frequency assignment strategy would provide equal or better speech 

recognition in comparison to the clinical frequency maps. In line with data from Study 1, the 

results from this experiment indicated that speech recognition performance with the custom 

frequency assignment scheme was generally better than the clinical mapping strategy, at least 

acutely. With 15 minutes of auditory training, the speech understanding increased for both maps. 

However, after training the difference was no longer statistically significance. One possible 

reason for this could be the small sample size. This could be a likely factor, because standard 

deviations in the scores were significantly higher than the previous vocoder-based experiments. 
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As opposed to study 1, where we tested each map with 3 listeners, in this study each map was 

tested with only two listeners acutely. The training data were collected from one listener per 

map. Increasing the sample size may help reduce standard deviations. 

4.5 Summary and Discussion 

The electrode-neural interface for cochlear implant (CI) recipients is generally far less than ideal. 

The placement of electrodes relative to the spiral ganglion not only determines the spatial 

specificity of neural excitation, but also the characteristic frequencies of neural clusters. Large 

variation in electrode insertion depths across recipients generally results in a unique frequency-

place relationship for each CI user. Despite this mismatch, contemporary CI sound processors 

are usually programmed to assign a generic, pre-defined frequency allocation to the electrode 

contacts across all users, with the expectation that CI users will accommodate to the frequency-

place distortion with experience. The degree of spectral mismatch and an individual’s ability to 

accommodate to the distorted spectral representation of the perceived sound may at least be 

partially responsible for degraded performance or slower accommodation to electrically-evoked 

hearing with CIs. 

In this chapter, we proposed a user-specific frequency assignment strategy that aims to 

minimize sub-optimal frequency-place mapping distortions in CIs. The algorithm leverages 

image-guided procedures to determine the true location of individual electrode contacts with 

respect to the nerve fibers that may survive, and tailor-fits a frequency place function based on 

an individuals’ electrode-neural interface. The proposed custom frequency mapping strategy was 

evaluated in three studies. i) acute simulations with normal hearing individuals, ii) simulation of 

the effect of learning and adaptation to the clinical and proposed frequency maps with normal 
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hearing listeners, and iii) evaluation with cochlear implant listeners in a semi-chronic 

experiment. 

The first study conducted with 42 normal hearing listeners using acute acoustic 

simulations of cochlear implants, indicated significantly better speech recognition scores than the 

default clinical mapping scheme on all measures of speech material. Since acute simulation 

scores may underestimate the potential effects of learning and a user’s adaptation to spectrally 

shifted speech, we investigated the proposed technique in a semi-chronic paradigm. Ten normal-

hearing listeners were provided with approximately four hours of auditory training and tested at 

different intervals with both the default frequency mapping scheme and the proposed custom 

mapping strategy. For all measures of speech reception, all participants showed significantly 

better performance with the proposed custom mapping strategy, at least within the four hour test 

period. The data indicated that listeners adapt to both schemes, but the overall final level of 

performance with the proposed scheme was still significantly better than the default clinical 

strategy. 

The above two simulation studies with normal hearing subjects served as a viable proof-

of-concept for the follow-on investigation with cochlear implant users. Five adult post-lingually 

deafened CI users participated in a semi-chronic study that lasted three months. Electrode 

placements were derived from patients’ cochlear CT scans, which were used to create custom 

frequency-analysis tables for each individual. Patients were fitted with these experimental 

programs and their listening performance on various open-set and closed-set speech recognition 

tasks was evaluated i) acutely, ii) after 1 week, and iii) after 3 months. Results indicated that 

acute performance with the custom frequency allocation scheme was significantly lower than 



143 

 

their clinical programs, but over the course of three months all subjects displayed improvement 

with the experimental program. By the end of the three months, the average speech recognition 

with the custom maps reached to the same level of performance as of their original clinical map, 

indicating adaptation to the customized frequency maps. 

By the end of the study, all participants chose to keep the experimental program either 

exclusively, or with their old clinical programs. Perceptual studies with CIs suggest that 

performance levels continue to improve at least up to two years post-activation of new maps. The 

data from this study indicate that patient-centric optimization of frequency fitting may hold 

potential for improving implant outcomes, particularly for recipients with moderate to high 

degree of frequency-place mismatch. Pitch percepts elicited by cochlear implants that are aligned 

or not drastically different from normal cortical acoustic map could improve the bottom-up 

presentation of acoustic cues that may potentially lead to overall better speech perception. 

 

4.6 Limitations 

The limitations of the proposed custom frequency allocation strategy are discussed as follows: 

First, it was assumed that electrode locations computed by the image processing algorithm 

provided an accurate spatial relationship of the electrode contacts to the spiral ganglion cells. 

The frequency-place relationship could be compromised if there were any inaccuracies in the 

image processing technique (Noble et al. [106]) or the frequency map of the spiral ganglion 

(Stakhovskaya et al. [74]) used in this study. The image processing technique assumed pristine 

survival and radial projections of the peripheral processes (nerve fibers) throughout the length of 

the cochlea. In reality, the dendrites in a compromised cochlea, soon start to degenerate with the 
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onset of impairment at the periphery [69]. Dead regions (due to the absence of neurites) may 

create spectral gaps (spectral holes) that could introduce spectral deterioration. Furthermore, the 

projections of the auditory nerve fibers beyond the middle turn follow vertical trajectories, which 

create additional challenges in the electrical stimulation of the apical regions of the cochlea, 

which is assumed vital for the delivery of low frequency information in this dissertation.  

The experiments with various configurations of frequency-mapping assume that 

peripheral processes stimulated by the electrode contacts have the same intrinsic characteristic 

frequencies that are computed by the DVF curves. The spread of excitation, distance of 

electrodes to the putative stimulation sites, and the trajectories of nerve fibers may not result in a 

one-to-one relationship between spatial location of electrodes and the tonotopic place of 

stimulation. The physiology of electric hearing was not completely simulated in either of the 

simulation studies presented in Sections 4.4.1 and 4.4.2. Study 2 only considered four hours of 

training, which is a very short time duration to observe full adaptation to spectral distortion. 

Extensive training and longer experience times should be administered to observe learning 

effects and the extent of accommodation to frequency mismatched speech. Study 3 with cochlear 

implant users employed an ABA (test/re-test: Clinical/Proposed/Clinical) study model. The retest 

session with the clinical map after 3 months was an acute measure. For a true one-to-one 

comparison, subjects should be given experience with the clinical map for a three-month period, 

after which they should be retested. Finally, the three-month time frame considered in this study 

may be too short to see the full effect of learning and accommodation. The study period should 

ideally be extended to 12 – 24 months for a reliable analysis. 
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CHAPTER 5 

CHANNEL SELECTION OPTIMIZATION 

A multi-channel cochlear implant system provides electrical stimulation at multiple sites in 

cochlea via an intracochlear electrode array. These electrodes activate (i.e., provide electrical 

stimulation to) auditory nerve fibers that are tonotopically organized. Nerve fibers at the base of 

the cochlea have higher characteristic frequencies, and those at the apex are associated with low 

pitch percepts. Cochlear implants exploit this tonotopic arrangement of nerve fibers to deliver 

sound information encoded in multiple acoustic frequency bands to the nerve fibers via an 

electrode array. The symphony of electrical stimulation patterns elicits sound sensation at the 

periphery. In principle, cochlear implant sound processor essentially acts as a discrete-time 

spectrum analyzer which decomposes sounds in multiple frequency bands, performs sound 

coding operations on each band and relays the processed frequency bands to the corresponding 

electrodes in a sequential pulse by pulse basis. Theoretically, any sound frequency range can be 

mapped to any electrode contact. Also, timing of pulses and stimulation levels can be controlled 

quite precisely. These complex temporal and spectral stimulation patterns are largely responsible 

for sound sensation and speech recognition.  
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5.1 Overview on the significance of spectral and temporal cues for speech 

understanding 

The speech signal can be represented by its time and frequency components, and speech 

intelligibility is largely determined by the availability of these spectral and temporal cues to the 

listener. Cochlear implant sound processing strategies, thus, aim at optimizing the temporal and 

spectral encoding of sound characteristics. However, the design of scala tympani implants very 

much limits the delivery of “high-resolution” temporal-spectral acoustic components. First, the 

limited number of electrode contacts (12 – 22 electrodes in commercial systems) is virtually 

incomparable to approximately 20,000 hair cells tuned to different pitches. This is further 

aggravated by the current spread in cochlea that further limits the number of perceptually 

independent stimulation sites to no more than ten, even in the best performers. The result is 

severe degradation of spectral resolution with scala tympani implants, the effects of which are 

easy to observe (e.g., CI users’ ability to listen in noisy environments). Although cochlear 

implant listeners, in general, obtain high level of speech recognition in quiet, their performance 

is significantly worse even in moderate amounts of noise. Poor music perception with CIs is also 

another aspect that is primarily related to poor spectral encoding. Research indicates that good 

level of speech recognition in quiet can be achieved by as low as 3 – 4 channels of spectral 

information. However, listening in complex environments requires significantly higher spectral 

resolution. For example, Shannon et al. [12] demonstrated that recognition of complex speech 

materials can require up to 30 or more independent spectral channels for an equivalent level of 

performance, a feat, at least, not possible with current systems.  
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On the other hand, the temporal encoding in CIs is also far less than ideal. Temporal 

information is commonly classified as 1) speech envelope (low frequency 

modulations/fluctuations), 2) low frequency harmonics related to the fundamental frequency of 

speech (F0), and 3) temporal fine structure (TFS) [122]. While speech envelope can be conveyed 

more robustly than the latter two, it also has its limitations, and may not always be correctly 

coded by the sound processing strategies. In theory, a high stimulation rate can provide better 

timing resolution to deliver fluctuations in the temporal envelope more accurately; however, in 

practice, high stimulation rates can have both positive and negative effects. Research indicates 

that at high stimulation rates, similar to natural response patterns, the neuronal discharge patterns 

are more stochastic rather than deterministic [16, 123, 124]. On the contrary, the refractory 

period of the auditory nerve fibers puts a limit on the maximum stimulation rate that can convey 

high resolution temporal envelope without affecting other confounding factors, such as spectral 

smearing [125]. Research studies are divided on this argument, some groups reporting benefit 

with higher stimulation rate, while others not a significant difference. On average, perceptual 

studies do not indicate statistically significant benefit with high stimulation rates [19, 126]. 

Temporal fine structure, on the other hand, relates to the variations (fast fluctuations) in acoustic 

waveform within the same period of periodic sounds. TFS helps with pitch perception, sound 

localization, and binaural segregation of competing sound sources. Pitch perception with CIs is 

generally very poor, and this is in part due to minimal or complete absence of TFS representation 

in sound coding schemes, or due to poor availability of periodicity cues, and to some extent the 

presence of frequency-place mismatch (incorrect place of stimulation). The limited availability 

of temporal cues in turn connects with the dilemma of poor spectral resolution with the implants 
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– limited number of perceptually discriminable stimulation sites hinder the ability to provide 

precise accurate spectral location of pitch and harmonics to the right place. 

To summarize, cochlear implants provide only a very sparse representation of acoustic 

cues. Robustness of the speech signal against spectral and temporal distortions has actually 

resulted in impressive outcomes with CIs. However, factors such as complex listening situations, 

tonal/foreign languages, and accents, for example, severely impact the listening performance 

with CIs. With current implant technology, the solution to this conundrum seems to rely heavily 

on effectiveness of the sound coding strategies. Throughout the history of CIs, sound processing 

strategies have been largely responsible for most significant advances in CI performance 

outcomes. CI processing schemes aim to maximize the encoding of temporal and spectral cues 

for delivery with the present-day implants. A review of the existing CI processing strategies was 

presented in Chapter 2. The strengths of clinical and experimental sound processing strategies in 

improving various aspects of information coding were explored. FSP strategy employed in 

devices from Med-EL, for example, uses variable rate encoding across electrodes to provide 

better temporal fine structure. Advanced Bionics processors use HiRes120 strategy that aims to 

improve fine spectral features by employing current steering techniques to create virtual 

channels. Spectral maxima sound coding algorithms, for example n-of-m strategies [45], used in 

numerous commercial CI systems, utilize a channel picking strategy to activate a subset of 

information-rich channels per stimulation cycle to avoid unnecessary stimulation on channels 

that are likely to hold extra or ‘unwanted’ details. Advanced Combination Encoder (ACE) is a 

prime example of n-of-m sound coding scheme and is the most widely used clinical strategy in 

commercial systems [47]. In the remainder of this chapter, we will expand our discussion on n-
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of-m strategies, their benefits, drawbacks, and techniques for further enhancements that may 

result in improved performance. 

5.2 Channel selection process in n-of-m strategies 

The n-of-m strategies are a variant of the CIS strategy, and are typically used in implant systems 

that have a larger number of electrodes (though CIS is not limited to the number of electrodes). 

The basic signal pipeline remains the same – band-pass filtering followed by envelope 

extraction, however there are two major differences. The first difference is that the processing is 

carried out on temporal frames that are typically 2 – 8 ms in duration. The second difference is in 

channel selection, (i.e., in each processing frame, only n out of possible m electrodes are selected 

for stimulation). Typically, channel selection is based on the bands with highest energy 

(corresponding to spectral peaks in that stimulation cycle). A typical value of n ranges from 8 to 

10, and for Nucleus devices m = 22 corresponding to a 22-electrode scala tympani electrode 

array. One of the earlier flavors of n-of-m strategies was the SPEAK strategy (from Spectral 

Peak) [46] which has evolved into Advanced Combinations Encoder (ACE) strategy [47] and is 

used in most devices by Cochlear Corporation.  

Channel selection is the most critical aspect of n-of-m strategies. The efficacy of this 

technique relies on how efficiently meaningful channels are picked for stimulation. In one 

aspect, the channel selection strategies work to our advantage, as they could ideally pick only 

those channels for stimulation that contain meaningful information, and discard the frequency 

bands that are dominated by noise. This can be a very useful noise reduction strategy, only if it 

correctly discards the noise-dominant channels. On the contrary, if channel picking strategy is 

not robust against noise, for example, it could be picking up noise dominant channels, that could 
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result in a performance that could be far worse than stimulating all channels. In the later sections, 

we would see how spectral maxima channel selection works in different environment types. 

Furthermore, channel selection can have a significant effect on overall current fields inside the 

cochlea, and thus, could mitigate or exacerbate channel interference issues. Electrode contacts 

that are distributed evenly within cochlea generally benefit from interleaved stimulation patterns 

from the CIS-like n-of-m strategies. On the contrary, consider a case of two electrode contacts 

that are physically very close to each other (for example, due to array curling up), and are 

stimulating the same group of nerve fibers. If channel selection strategy picks such electrode pair 

for stimulation, the same group would be stimulated twice, thus causing excessive ‘unwanted’ 

stimulation, which may have negative effects on performance. Traditionally, if such an electrode 

pair could be identified, one of the electrodes would be de-activated to reduce the channel 

interference with the neighboring electrodes. Scientific evidence suggests that such a scheme 

could improve outcomes [106, 107, 127-129]. Unfortunately, knowledge of such electrode pairs 

(or groups) is generally not known clinically. Psychophysical assessment may provide some 

indication about the problematic electrodes, true estimate is not possible without imaging 

techniques. Also, de-activating a handful of electrodes, particularly at the low-frequencies may 

be detrimental than helpful as it may increase the frequency-place distortions. 

In the next sections, we present two schemes to optimize the channel selection process. In 

the first scheme, we have aimed to enhance channel selection process by adaptively assigning 

weights to each time-frequency unit based on the formant locations of the speech signal and 

instantaneous signal to noise ratio. The performance of the proposed technique was evaluated 

acutely with three cochlear implant users in different noise scenarios. In the second scheme, we 
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utilize image-guided procedures to customize channel selection processes based on individual 

electro-neural characteristics. The details of the proposed techniques are given next. 

 

5.3 Channel selection optimization based on spectral features and signal to noise ratio 

©2014 IEEE. Reprinted with permission from Ali, Hussnain.; Feng Hong; Hansen, John H.L.; 

Tobey, Emily, "Improving channel selection of sound coding algorithms in cochlear implants," 

Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal 

Processing (ICASSP), Florence, Italy, pp.905-909, 4-9 May 2014. 

 

The goal of n-of-m strategies is to represent the meaningful sound features in a limited number of 

channels, and this is typically achieved by selecting frequency bands with highest energy in each 

stimulation cycle. This technique works well in quiet, but is inherently problematic in noisy 

conditions when noise dominates the target, and noise-dominant channels may mistakenly be 

selected for stimulation. This could potentially be one of the reasons that CI users are unable to 

tease apart meaningful features of the target speech from noise because the target-dominant 

channels may not get activated. Therefore, an intelligent channel-selection strategy, which is able 

to classify and select channels with the highest amount of target-dominant speech, (and not 

necessarily just energy) could be useful in adverse listening situations. 

A number of noise reduction algorithms for cochlear implants have been proposed over 

the years which are either based on signal pre-processing (e.g., [130-133]) or signal conditioning 

integrated with sound coding (e.g., [134, 135]). While the former approach can work well in 

hearing aids, it is potentially susceptible to unwanted signal distortion which may easily be 
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enhanced by CI processing (e.g., compression function emphasizes low energy sounds 

logarithmically, musical noise is a prime example), or it may be computationally intensive, thus 

making it unfavorable for CI processors. The later approach generally relies on spectral 

modification or modifying channel-selection based on the signal to noise ratio (SNR). Hu and 

Loizou [134], for example, used a sigmoidal-shaped function that applies attenuation to the noisy 

envelopes (computed by CIS strategy) inversely proportional to the estimated SNR in each 

channel. In their later work [135], they reported restoration of speech intelligibility to the level 

attained in quiet by discarding channels with SNR levels less than 0 dB (binary masking), and 

varying the number of active channels when the channel SNR was known (ideal condition). 

While this approach can work well in ideal conditions, one clear disadvantage is that binary 

masking would completely discard channels containing speech components that are essential for 

speech intelligibility, but are either unfortunately dominated by noise or wrongly classified by 

the noise estimation algorithm. The technique here takes its inspiration from the former two 

approaches, and shapes the weighting functions used in the ACE processing based on the 

instantaneous SNR of each time frequency (TF) unit. In addition, priority is assigned to channels 

containing the three speech formants, F1, F2, and F3. 

5.3.1 Method 

In the clinical/standard ACE (STD_ACE) strategy (Figure 5.1, inside the dotted block), the 

acoustic signal is sampled at 16 kHz, pre-emphasized, and buffered using a Blackman window 

into 8 ms (128 samples) analysis frames. Frame overlapping (or analysis rate) typically depends 

on the channel stimulation rate. For each analysis frame, 128-point FFT and magnitude squared 

spectrum is computed; thereby, giving 64 frequency bins, with each bin having a frequency 
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resolution of 125 Hz. These bins are passed through 22 weighting filters (Figure 5.2), which 

essentially compute the envelopes of each channel. Next, 8 - 12 channels with the highest 

amplitudes are selected and compressed to the current levels using a loudness growth function 

(LGF) and the patient’s clinical MAP, which maps the acoustic amplitudes to the patient’s 

electrical dynamic range. 

 Figure 5.1 shows the block diagram of the proposed technique (in conjunction with the 

STD_ACE routine). The proposed technique operates based on two principles, 1) by assigning 

priority to the formant bands and 2) by assigning weights to each TF unit based on the 

instantaneous SNR. 

Assigning priority to the formant bands 

The frequencies of the first three speech formant (F1 – F3) peaks as well as their trajectory over 

time provide valuable cues to listeners for vowels, glides and stop-consonant perception [133]. 

This is the reason that feature-extraction strategies [33, 34, 37, 136] have been popular in earlier 

generation CI processors of 1980s and 1990s. F0/F2 [33, 34] and F0/F1/F2 [136] strategies 

extract formant locations (F1 and F2) and stimulate the corresponding electrodes at a rate of F0 

pulses/sec (pps) for voiced segments and an average rate of 100 pps for unvoiced segments. The  

MULTIPEAK (MPEAK) strategy [37] stimulates four electrodes at a time and always activates 

electrode numbers 4 and 7 for F1 and F2 respectively, and then selects the remaining two based 

on the spectral content of the speech signal.  

Spectral maxima-based sound strategies were later adapted to encode the entire spectrum 

of the speech signal, of whom ACE is the prime example. The shortcoming in spectral maxima 

algorithms,   as noted earlier,   comes from the fact that channel selection is based on the largest 
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filter amplitudes which may not necessarily be the spectral (formant) peaks, and hence may not 

encode the major formant frequencies. Several maxima may come from a single spectral peak 

[137]. This can be problematic in noise, which tends to reduce the dynamic range of the 

spectrum as well as the spectral contrast (peak-to-valley ratio on LPC spectrum). Thus, 

preference may be given to noise dominant channels irrespective of the presence/absence of 

spectral peaks. In fairness, the F1 spectral peak is preserved to a certain degree in noise which 

works to the advantage of ACE. Although, the location of peaks of higher formants may not be 

affected as much in noise, spectral smearing and reduced spectral contrast could give preference 

to the noise dominant channels.  

The proposed technique continuously computes the first three formant peaks (F1 – F3) in 

each analysis cycle and assigns priority to the channels corresponding to the formant frequencies 

during the channel selection process. Formant frequencies are computed by solving the roots of 

the linear prediction coefficients (LPC). Formant continuity constraints are imposed to avoid 

unwanted distortion. 

 

Figure 5.1. Signal flow in the standard ACE strategy (shown inside the dotted block). Processing 

blocks for the proposed technique are shown in the darker tone. Numbers on connecting arrows 

represent the frame size in number of samples at each step. 
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Assigning attenuation factor based on the SNR 

Hu and Loizou [134, 135] applied binary and soft masking techniques to channels with low 

SNR. Given that a channel can comprise of as many as 8 frequency bins, (filters with broader 

bandwidth would have higher number of bins), channel classification would be compromised for 

bin-widths of 2 or more. (If the number of bands are less than 20, the number of bins per 

frequency band will increase). The proposed technique estimates the SNR for each TF unit, 

𝑋(𝑖, 𝑗), where 𝑋 is the magnitude squared spectrum of the 𝑖𝑡ℎ analysis frame and jth frequency 

bin. This yields a total of 64 SNR values for each analysis frame (stimulation cycle). Based on 

the computed SNR, an attenuation factor is generated. In the present study, we analyzed both 

binary and soft masking techniques. In binary masking, a weight of 0 was assigned to the  

 

Figure 5.2. Weighting filters used in the ACE strategy plotted in solid line. Spectrum shaping by 

soft-masking technique shapes the spectrum based on SNR of each TF unit as shown by the color-

filled plots. 
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𝑆𝑁𝑅(𝑖, 𝑗)  <  0 𝑑𝐵, and for the rest, (i.e., 𝑆𝑁𝑅(𝑖, 𝑗)  ≥  0 𝑑𝐵), a binary value of 1 was assigned. 

In the soft masking approach, a sigmoidal-shaped function was considered which plateaus for 

𝑆𝑁𝑅𝑠 >  15 𝑑𝐵 and floors to 0 for 𝑆𝑁𝑅𝑠 <  −15𝑑𝐵. Both weighting functions are shown in 

Figure 5.3. The 64 weighting values generated for each TF unit are then used to shape the gain of 

weighting functions. This is illustrated in Figure 5.2 for the soft masking technique.  

5.3.2 Evaluation 

In order to evaluate the effectiveness of the proposed technique, evaluation was first carried out 

with the SNR of each TF unit known a priori. The results from this experiment would validate if 

the proposed technique is effective. In the second phase, the instantaneous SNR of each TF unit 

was estimated using improved minimum controlled recursive average (IMCRA) algorithm [138]. 

While any SNR estimation algorithm could be used, IMCRA utilizes the spectrum components 

of each TF unit, 𝑋(𝑖, 𝑗), which are already computed by ACE, and therefore, no separate 

 

Figure 5.3. Binary weighting (red) and soft-masking (blue) attenuation functions. 
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processing was needed. Furthermore, the advantages of the IMCRA method are particularly 

notable in adverse environments involving non-stationary noise, weak speech components, and 

low SNR conditions. 

Subjects 

A total of 3 CI users participated in this acute experiment. All participants were native speakers 

of American English and were fitted with Nucleus 24 multichannel device manufactured by 

Cochlear Corp. All participants used ACE as their speech processing strategy.  

Test Material and Procedure 

IEEE sentences [111] were used as the speech stimuli for testing. 10 sentences for each test 

condition were used. The algorithms were implemented offline in MATLAB and stimuli were 

presented via UT Dallas’s PDA-based research platform [139].Two sets of experiments were 

conducted. In the first set, the effectiveness of assigning priority to formant channels (F1, F2, 

and F3) was evaluated both in terms of speech intelligibility and perception quality. All words 

were marked for correctness. A total of 6 conditions were tested in experiment 1, namely speech 

in quiet, speech in 10 dB SNR speech shaped noise (SSN), speech in 5 dB SNR SSN, speech in 

10 dB SNR white Gaussian noise (WGN), speech in reverberation with reverberation time T60 = 

600 ms, and finally, speech in reverberation (T60 = 600 ms) and 10 dB noise. 

In the second experiment, four techniques were assessed separately, namely ideal-binary 

(IdBinary), ideal-soft (IdSoft), estimated-binary (EsBinary), and estimated-soft (EsSoft). Ideal 

conditions represent when the SNR was known a priori, while the estimated conditions represent 

when the SNR was estimated using IMCRA. Binary conditions correspond to the output of the 

attenuation factor to binary values, while the soft conditions represent output from the sigmoidal 
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attenuation function, as described earlier. Speech intelligibility and quality measures were 

assessed for each technique with speech in 10 dB SNR SSN, and speech in 5 dB SNR SSN. The 

results from STD_ACE were used as baseline scores for comparison. 

For the speech quality tests, the same sentences processed with STD_ACE and 

FRMNTS_ACE strategies were streamed back to back and CI users were asked to rate the 

quality of the second sentence as compared to the first in terms of being pleasant, clear and free 

of sound distortions on a scale of -3 to 3, with 0 being ‘about the same’, -3 being much worse, 

and +3 indicating much better.  

Results 

Figure 5.4 shows the mean intelligibility scores for STD_ACE and formant-based ACE 

(FRMNTS_ACE) technique. While there is very little to no significant improvement in 

intelligibility at high SNRs, there was an improvement of 17% for speech at 5 dB SNR SSN, and 

20% when noise was added to the reverberant signal (Rev600+n). Modest improvement was also 

observed for speech in WGN at 10 dB SNR. For speech quality, the user response was between 

+1 and 0, on average, indicating slightly better to no difference in all test conditions. The 

subjects reported that words “popped out” more in the FRMNTS_ACE strategy. 

The mean intelligibility scores for experiment 2 are presented in Figure 5.5. The results 

showed that both IdBinary and IdSoft techniques were able to restore speech intelligibility to the 

level equivalent to speech in quiet. This establishes the effectiveness of the proposed technique 

in masking noise if cues to the SNR are available. Figure 5.5 also presents the intelligibility 

scores when the noise was estimated. There was no significant improvement at 10 dB SNR level. 

However, at 5 dB SNR, improvement was observed with both EsBinary and EsSoft, but the later  
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Figure 5.4. Mean speech intelligibility scores of 3 CI users in Experiment 1. Error bars represent 

standard errors of the means. 

 

Figure 5.5. Mean speech intelligibility scores of 3 CI users in Experiment 2. Comparison of the 

proposed technique using IdBinary, IdSoftm, EsBinary, and EsSoft approaches with STD_ACE 

strategy. Error bars represent standard errors of the means. 
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resulted in relatively more significant gains in intelligibility (>20 percent). The results indicate 

that the proposed technique can potentially improve speech intelligibility in low-SNR conditions.  

Quality tests for Experiment 2 indicated an average score of “Much Better” as compared 

to the STD_ACE (unprocessed) for both ideal conditions. For the estimated SNR at 10 dB and 5 

dB SNR levels, the average score was (+2) corresponding to “Better” as compared to the 

STD_ACE. The quality scores between binary and soft masking approaches indicated slight 

preference for the soft masking approach, with an average score of +0.5. 

5.3.3 Summary and Discussion 

This study considered two approaches for improving the channel selection process of spectral 

maxima sound coding algorithms for cochlear implant systems. The first approach assigned 

priority to the channels containing the formant frequencies, while the second approach 

adaptively assigned weights to each time-frequency (TF) unit based on the estimated SNR in 

each stimulation cycle. Two types of maskers, binary and soft, were used to assign attenuation 

factor to each TF unit based on SNR. Both approaches were evaluated independently and 

synergistically on 3 CI users. The intelligibility scores indicated significant improvement at low 

SNR levels, with speech at 5 dB SNR and speech masked by reverberation and noise. The 

quality scores revealed very little preference to the formants-based approach over the standard 

ACE, and soft-masking over the binary masking. However, the noise masking approach was 

greatly preferred over standard ACE strategy. The speech recognition scores with the two 

approaches revealed some benefit with the formants-based technique over the standard ACE, and 

soft masking over binary masking at low SNR levels. 
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The proposed technique is inherently limited by the accuracy of formant locations and 

SNR estimation. Speech intelligibility reached to the level obtained in quiet when SNR was 

known a priori. The proposed technique could potentially be used to improve speech 

understanding performance of CI users in adverse listening environments. 

5.4 Image-guided customization of channel selection 

A Distance-Vs-Frequency (DVF) curve profile derived from an implant recipient’s CT scan, an 

example of which was shown in Figure 4.3, provide insight not only into the characteristic 

frequency of each stimulation site, but also the degree of spectral overlap caused by the 

neighboring electrodes (inference on potential level of current spread and spatial specificity of 

the neural excitation). The spatial location of electrode contacts could be used to determine 

which electrodes are likely to cause channel interaction. Consider a case of two electrode 

contacts that are physically very close to each other (for example, due to array curling up), and 

are stimulating the same group of nerve fibers. If channel selection strategy picks such electrode 

pair for stimulation, the electrode group would stimulate the same neural population, thus 

causing excessive current summation, which may have negative effects on performance. As 

noted previously, electrode deactivation strategies for such problematic electrodes could 

potentially improve outcomes [106, 107, 127-129]. In the proposed approach, we use patients’ 

imaging data to identify the problematic electrodes and rather than switching off these 

electrodes, we activate electrodes in such a fashion that electrodes that are likely to cause 

channel interaction are not selected in the same stimulation cycle. This approach aims to 

preserve the fine spectral structure to a greater degree than electrode de-activation strategies. 
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Figure 5.6 illustrates two different scenarios of spatial locations of electrodes. Column 1 

depicts ideal electrode placement (i.e., neighboring electrodes are well spaced, and thus not 

causing channel interaction issues), whereas column 2 depicts electrode 3 (E3) spatially close to 

the electrodes 2 (E2) and 4 (E4) and thus, it may result in possibly higher channel interaction. A 

depiction of their DVF curves is also shown in the same figure. In the conventional electrode de-

activation strategy, electrode 3 could be turned off to overcome the channel interaction problem. 

While this is a decent approach; however, it results in completely switching-off electrodes. Some 

of the consequences of electrode deactivation are modifications to the filter frequency 

assignments (frequency-place distortion) and broadening of the filter-bandwidths, both of which 

may alter the spectral cues. The ability to provide fine spectral structure, is thus, further 

compromised due to the decrease in attainable frequency resolution. This may become more 

challenging if a handful of electrodes are switched off (see example 2 below). 

One way to make use of the electrode(s) that are likely to cause channel interaction, is by 

optimizing the channel selection process. Figure 5.7 shows the electrode selection process for 

three different scenarios – i) conventional channel selection when all 4 electrodes are ON; ii) 

channel selection in standard electrode-deactivation approach (electrode 3 is switched off); and 

iii) proposed channel selection (for this particular example). Each column in Figure 5.7 

represents one stimulation cycle, and each box represents one time-frequency unit. A filled 

(black) box represents an active electrode in that particular stimulation cycle. Figure 5.7 (c) 

shows the proposed approach, in which we alternate activation between electrodes 2 and 3, (i.e., 

E2 and E3 cannot be active in the same stimulation cycle). By time-interleaving the activation of 

channels (much like the CIS approach),   we can make use of the frequency spaces of  E2  and  E3 
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tonotopic place without turning off any electrode completely. We call this approach image-

guided Time-Interleaved Channel Selection (TICS) strategy. 

Figure 5.8 shows electrodograms of a chirp signal obtained from ACE processing 

strategy with three approaches. The proposed approach can be extended to more complicated 

scenarios when one or more electrodes are interacting with each other. The following section 

gives details of the proposed algorithm. 

 

 

Ideal electrode placement 

 

Non-ideal electrode array placement 

 

  

 

Figure 5.6. Depiction of ideal and non-ideal electrode placement scenarios, along with the 

corresponding DVF curves. 
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5.4.1 Image-guided Time-Interleaved Channel Selection (TICS) - Algorithm 

In the ACE processing strategy, n-of-m electrodes (channels/bands) are selected. Typical value of 

m=22 for Cochlear Corp. electrode arrays, and n=8. Each of the m bands are sorted in descending 

order at the channel selection process. 

   

(a) Standard (b) Electrode-deactivation (c) Proposed TICS 

Figure 5.7. Channel Selection process depicted for 3 scenarios for the example shown in Figure 

5.6. Each shaded box represents an active time-frequency unit. (a) Standard approach which keeps 

all electrodes on. (b) Electrode-deactivation strategy. Electrode likely to cause channel interaction 

is switched off. (c) the proposed Time-Interleaved Channel Selection (TICS) approach. 

   

(a) Standard (b) Electrode-deactivation (c) Proposed TICS 

Figure 5.8. Electrodograms of a chirp signal for the three scenarios for the example shown in 

Figure 5.6. In (c), E20 and E21 (representative of bands # 3 and 3) are stimulated on alternative 

cycles, (thus stimulation rates of E20 and E21 are half of the other electrodes) 
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Say, the sorted channels are represented by: 𝑐1, 𝑐2, 𝑐3, … , 𝑐𝑚 ,  m= 22 

and 𝜆𝑐𝑖,𝑐𝑗
represents the proximity index of channels 𝑐𝑖 and 𝑐𝑗 with each other. For simplicity, 

let’s assume 𝜆𝑐𝑖,𝑐𝑗
 is binary9 and can either be 1 or 0. A value of 1 indicating that channel 𝑐𝑖  is 

likely to cause channel interaction with electrode 𝑐𝑗, and a value of 0 indicating that electrodes 

are not likely to cause channel interaction. Thus for each channel 𝑐𝑖, proximity indices can be 

written as: 

𝛬𝑐1
= [𝜆𝑐𝑖,𝑐1

, 𝜆𝑐𝑖,𝑐2
, 𝜆𝑐𝑖,𝑐3

,⋯ , 𝜆𝑐𝑖,𝑐𝑚
]  

The proximity indices for all 𝑚 electrodes can be written as 𝑚 × 𝑚 matrix: 

𝚲 = [

𝛬𝑐1

𝛬𝑐2

⋮
𝛬𝑐𝑚

] =  

[
 
 
 
 
𝜆𝑐1,𝑐1

𝜆𝑐1,𝑐2
⋯ 𝜆𝑐1,𝑐𝑚

𝜆𝑐2,𝑐1

⋮

𝜆𝑐2,𝑐2
⋯

⋮          ⋱

𝜆𝑐2,𝑐𝑚

⋮
𝜆𝑐𝑚,𝑐1

𝜆𝑐𝑚,𝑐2
⋯ 𝜆𝑐𝑚,𝑐𝑚]

 
 
 
 

 

where 𝚲 is a binary symmetric matrix, i.e., 𝜆𝑐𝑖,𝑐𝑗
= 𝜆𝑐𝑗,𝑐𝑖

 and 𝑠𝑢𝑚(𝛬𝑐𝑖
) gives number of 

interactions = 𝑛𝑐𝑖
 of each channel. If 𝑛𝑐𝑖

= 0 , it implies that channel 𝑖 (𝑐𝑖) has no known channel 

interactions with other electrodes. If 𝑛𝑐𝑖
> 0, it implies that channel 𝑐𝑖 has channel interactions 

with other electrodes. In order to alternate activation/selection of channels with 𝑛𝑐𝑖
> 0, we keep 

channel selection history , which is given by: 

 =  [

𝑐1,𝑡𝜏

𝑐2,𝑡𝜏

⋮
𝑐3,𝑡𝜏

] =  

[
 
 
 
𝑐1,𝑡1 𝑐1,𝑡2

𝑐2,𝑡1 𝑐2,𝑡2
    

⋯ 𝑐1,𝑡𝑚

⋯ 𝑐2,𝑡𝑚

⋮ ⋮
𝑐𝑚,𝑡1 𝑐𝑚,𝑡2

    
⋱ ⋮
⋯ 𝑐𝑚,𝑡𝑚]

 
 
 

 

                                                 

9 Instead of the binary weights, a soft-masking strategy may also be considered. A soft-masking strategy 
would assign a value between 0 and 1 based on the proximity index. 
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Here, 𝑐𝑖,𝑡𝜏
 represents history of channel i at time  (in the previous  cycle of stimulation) and 

holds a binary value – 1 corresponding to active and 0 corresponding to not-active condition. For 

each 𝑐𝑖,𝑡𝜏
, history of at least 𝑛𝑖 cycles is required for that channel. 

Let ∅𝑐𝑖
 represent decision to activate the channel 𝑐𝑖 at the current stimulation cycle. A value of 1 

represents that channel will be selected for stimulation, whereas a value of 0 represents that 

channel will not be selected for stimulation. 

∅𝑐𝑖
= {

1, 𝑖𝑓 (𝑛𝑐𝑖
= 0) 𝑜𝑟 (𝜑𝑐𝑖

= 0)  

0,                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 

The following rule is used for channel selection. If 𝑛𝑐𝑖
> 0, 𝜑𝑐𝑖

will be ‘0’ if and only if 

𝑐𝑖,𝑡𝑛𝑐𝑖
= 0 (i.e., there is no history of activation of channel 𝑐𝑖 in the last 𝑛𝑐𝑖

 cycles) AND the 

channels that are likely to interact with 𝑐𝑖 are not active in the current stimulation cycle. 

 

In the following section, we will explore two example DVF maps of actual CI users, and 

the resulting electrodogram profiles from different channel-selection schemes using the ACE 

processing strategy. 
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5.4.2 Example 1: Low level of channel interaction 

 

 

Figure 5.9. Example of a DVF curves profile of a CI. Curves in the red are likely to cause channel 

interaction. 

 

Figure 5.10. Electrodograms of (a) – (c) chirp signal; and (d) – (f) IEEE speech sentence obtained 

from three channel selection schemes. Column 1: standard – all electrodes are on; Column 2: 

electrode de-activation strategy – switch off electrodes that are likely to cause channel interaction; 

and Column 3: Proposed Time-Interleaved Channel Selection (TICS) scheme for the DVF curves 

shown in Figure 5.9, Example 1. 
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5.4.3 Example 2: High-level of channel interaction 

The following example demonstrates a scenario with higher level of spatial channel interaction 

from neighboring electrodes. Comparisons of the electrodograms generated from the proposed 

TICS strategy with the electrode de-activation scheme shows better preservation of spectral 

detail. 

 

 

 

 

Figure 5.11. Example of a DVF curves profile of a CI with high level of spatial electrode 

interactions. Curves in the red are likely to cause channel interaction. 
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Figure 5.12. Electrodograms of (a) – (c) chirp signal; (d) – (f) consonant “ASA”; and (g) – (i) 

IEEE speech sentence obtained from three channel selection schemes. Column 1: standard – all 

electrodes are on; Column 2: electrode de-activation strategy – switch off electrodes that are likely 

to cause channel interaction; and Column 3: Proposed Time-Interleaved Channel Selection (TICS) 

scheme for the DVF curves shown in Figure 5.11, Example 2. 
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5.4.4 Summary/Discussion 

Image-guided procedures were employed in a new customized channel selection processes based 

on the individual electro-neural interface on a subject-by-subject basis. An image-guided time-

interleaved channel selection algorithm was proposed. This technique identified electrode pairs 

that were likely to cause channel interaction with neighboring electrodes from patients’ CT 

scans, and channel selection scheme was customized in a way to ensure that the pair (or set of 

adjacent electrodes) were not activated in the same stimulation cycle. The channel selection 

scheme was successfully modified to accomplish time-interleaved activation of problematic 

electrodes. In theory, the algorithm works in a similar way to the standard CIS approach [44] 

(sequential stimulation), but here we utilized image-guided procedures to further optimize the 

channel selection process to stimulate only those electrodes that are presenting independent and 

non-overlapping information. It is also quite similar to the MP3000 strategy [49], which uses 

psychoacoustic masking models to optimize the channel selection process, and selects 

perceptually relevant channels for stimulation. While MP3000 algorithm aims to reduce the 

spread of excitation by reducing the number of clusters (neighboring channels) that are selected 

in a typical n-of-m approach, it does not account for spatial location of electrodes and their 

interaction in the physical space on individual to individual basis. The techniques proposed in 

this chapter could potentially be used as a user-specific channel selection strategy that could 

potentially work in conjunction with customized frequency mapping scheme discussed in the 

Chapter 4 to overall improve sound processing for implant users. 
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CHAPTER 6 

SUMMARY AND CONCLUSIONS 

The scope of cochlear implant research has expanded significantly over recent years, which is 

revealing newer insights and better understanding of hearing mechanics and the auditory system, 

as a whole. Although research is advancing at a high pace, performance levels with implants 

have only made incremental advancements in the last decade. Large variability in outcomes, 

limitations inherent in the design of current generation of multi-channel scala tympani implants, 

and exceeding evidence on the dominant role of higher level cortical functions in implant 

outcomes, raises a critical thoughtful question: “Have we done enough at the periphery?” This 

dissertation has been aimed at exploring customized processing and fitting paradigms for 

cochlear implants which may serve as a better interface between bottom-up and top-down 

processing. By devising image-guided patient-specific frequency-place functions, and channel 

activation strategies, we have attempted to minimize the mismatch between stimulation patterns 

generated by implants and those that occur naturally at the spiral ganglion, with the hope that the 

central pattern recognition will have “less of a cognitive effort” in the decoding of artificial 

stimuli. Therefore, this dissertation could potentially serve as a first step in this direction. 

6.1 Key Contributions 

Specifically, the thesis contributions stemming from this study may be divided into two main 

areas. 1) image-guided patient specific frequency mapping for cochlear implants, and 2) 
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optimization of channel selection schemes for cochlear implant sound processing. A summary 

from both aspects are presented in the next sections, followed by suggestions for future work.  

6.1.1 Image-guided customization of frequency-place functions 

A lack of knowledge on the spatial relationship between electrode locations and the 

corresponding stimulation sites has resulted in a generic one-size-fits-all frequency mapping 

paradigm with the hope that CI users will learn to adapt to the incorrect frequency locations of 

stimulation. Suboptimal electrode array placement, variations in insertion depth, and exact 

positioning and proximity of electrodes to nerve fibers can all, and do, result in mismatch 

between intended and actual pitch perception. This frequency mismatch holds potential for 

reducing the efficacy of coded speech information to the auditory cortex and, consequently, 

limits speech recognition. In this dissertation, we have proposed a patient-specific frequency 

assignment strategy which helps to minimize sub-optimal frequency-place mapping distortions in 

CIs. The algorithm leverages image-guided procedures to determine the true location of 

individual electrodes with respect to the nerve fibers and tailor-fits a frequency place function 

based on an individuals’ electrode-neuro interface. 

Algorithm 

The proposed strategy developed in Chapter 4, was shown to utilize pre and post implantation 

CT scans of the recipients’ cochleae to determine the precise spatial location of electrode 

contacts and their corresponding neural stimulation sites and thus generate an optimal user-

customized frequency-place function which is used to derive frequency characteristics of the 

filterbanks. This is achieved by maximizing the frequency match at lower frequencies (frequency 

range of first three formants), and introduced a mild compression as needed to avoid truncation 
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(e.g., due to shallow insertion). Mid and high frequency bands were assigned along a 

conventional logarithmic filter spacing. 

Simulation Study with normal hearing listeners 

Performance of the proposed strategy was evaluated with 42 normal hearing (NH) listeners using 

acute acoustic simulations of a cochlear implant with actual electro-neuro image maps of CI 

users. The simulation data indicated significantly better speech recognitions scores as compared 

to the default clinical mapping scheme on all measures of speech. Although the improvements 

were observed for all image maps that had various degrees of frequency mismatch, the proposed 

strategy produced significant improvements in moderate-to-extreme frequency-place mismatch 

conditions. 

Perceptual Adaptation – Simulation study 

Since acute simulation scores may underestimate the true potential effects of learning and user-

adaptation to speech with a reduced and degraded set of spectral cues, we also investigated the 

proposed technique in a semi-chronic paradigm. Ten normal-hearing listeners were provided 

with approximately four hours of auditory training and tested at different intervals with both the 

default frequency mapping scheme and the proposed custom mapping strategy. On all measures 

of speech, all participants showed significantly better performance with the proposed custom 

mapping strategy, at least within the four hour test period. The data indicated that listeners adapt 

to both schemes, but the level of accommodation and final level of performance with the 

proposed scheme was still significantly better than the default clinical strategy. 

The above two simulation studies with normal hearing subjects served as a viable proof-

of-concept for the follow-on investigation with cochlear implant users. 
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Evaluation with cochlear implant listeners. 

 Five experienced, post-lingually deafened adult CI users participated in this semi-chronic study. 

Imaging data of the recipients’ cochleae provided the needed relationships between spatial 

location of electrode contacts and the characteristic frequencies of the nerve fibers. These 

physiological blueprints were used to optimize and “tailor-fit” frequency-place functions for 

each participant.  

Each participant’s performance was measured on ten speech recognition tasks with their 

clinically assigned frequency map, as well as with the proposed custom frequency assignment 

scheme. Participants used the experimental program for three months and their performance 

levels were measured at three stages during the study, i) acutely, ii) after 1 week, and iii) after 3 

months. Consistent with typical clinical observations, performance levels with the experimental 

program dropped significantly lower than the clinical processor for all CI users. However, all 

subjects showed progressive improvement with extended use of the experimental programs on all 

measures of speech recognition. The performance levels improved after 1-week post-activation, 

and were not significantly different than their baseline scores with the clinical maps. At three 

months, performance levels with the experimental programs were significantly better than the 

acute scores and were also not statistically different than their original clinical strategy. Overall 

the progressive improvement with the experimental programs indicated the effects of learning 

and at least partial adaptation to the custom frequency maps. By the end of the study, all 

participants chose to keep the experimental program either exclusively, or with their old clinical 

programs. 
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Perceptual studies with CIs suggest that performance levels continue to improve at least 

up to two years post-activation of new maps. The data from this study indicates that patient-

centric optimization of frequency fitting may hold potential for improving implant outcomes, 

particularly for recipients with moderate to high degree of frequency-place mismatch. Pitch 

percepts elicited by cochlear implants that are aligned or not drastically different from normal 

cortical acoustic map could improve the bottom-up presentation of acoustic cues that may 

potentially lead to overall better speech perception. 

6.1.2 Optimization of channel selection in sound coding strategies 

The next major area for thesis contribution was based on channels selection process in the sound 

processing strategies for cochlear implants. The channel selection process in n-of-m sound 

coding strategies, abundantly used in commercial cochlear implants, plays a critical role in 

overall listening performance. Two schemes were proposed to optimize the channel selection 

process. The first scheme considered instantaneous signal to noise levels to give preference to 

channels that were dominant in speech information rather than noise. In the second scheme, 

image guided procedures were utilized to ensure activation of electrode subsets that could 

potentially minimize channel interaction. 

Strategy 1: Formant and SNR-based channel selection optimization 

This study considered two approaches for improving the channel selection process of existing 

spectral maxima sound coding algorithms for cochlear implant systems. The first approach 

assigns priority to channels containing formant frequencies, while the second approach 

adaptively assigns weights to each time-frequency (TF) unit based on the estimated SNR in each 

stimulation cycle. Two types of maskers, binary and soft, were explored to assign effective 
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attenuation factors to each TF unit based on SNR. Both approaches were evaluated 

independently and synergistically with 3 CI users. Intelligibility scores indicated significant 

improvement at low SNR levels, with speech at 5 dB SNR and speech masked by reverberation 

and noise. Quality scores revealed that the noise masking approach was greatly preferred over 

standard program. The results from this study indicated the potential of the proposed technique 

to improve speech perception of CI users in adverse listening environments. 

Strategy 2: Image-guided customization of electrode activation schemes 

Image-guided procedures were employed in a new customized channel selection processes based 

on the individual electro-neural interface on a subject-by-subject basis. An image-guided time-

interleaved channel selection algorithm was proposed. This technique identified electrode pairs 

that were likely to cause channel interaction with neighboring electrodes from patients’ CT 

scans, and channel selection scheme was customized in a way to ensure that the pair (or set of 

adjacent electrodes) were not activated in the same stimulation cycle. The channel selection 

scheme was successfully modified to accomplish time-interleaved activation of problematic 

electrodes.  

 

6.2 Future Work 

The work presented in this dissertation is a first towards customizing sound processing and 

fitting for implant users. There is a huge potential to expand/improve the current work and to 

further explore research avenues which can help create customized solutions for implant 

recipients. The following directions can be considered for future research activities: 
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Chronic evaluation of customized frequency maps 

The customized frequency fitting strategy discussed in Chapter 4 was evaluated with groups of 

normal hearing and cochlear implant recipients in acute and semi-chronic studies. In order to 

assess the true potential of algorithms and strategies which rely on user-adaptation and 

reorganization of the higher level cortical functions, long-term, chronic evaluations are a 

necessity.  

The simulation study conducted with normal hearing listeners only considered a four 

hour training period. It is very likely that listeners will continue to show further adaptation with 

extensive training. In order to find the asymptotic levels of performances with different 

frequency-place functions, a long-term training protocol should be administered. Both clinical 

and custom frequency strategies should be evaluated with a larger sample size, both to improve 

the statistical significance, as well as make one-to-one comparisons. 

Clinical evaluation of the proposed custom frequency maps was conducted with five CI 

recipients in a three-month semi-chronic study. Perceptual studies with CIs suggest that 

performance levels continue to improve at least up to two years post-activation of new maps. 

Therefore, it is important to assess the long-term adaptation trends with custom frequency 

mapping approach in order evaluate the full potential of the proposed strategy. A minimum study 

period of six to twelve months, and more preferably twenty-four months, should be considered 

for chronic evaluation. A longer-time period is essential because higher level cortical re-

organization requires time to settle and learn to make use of the sparse patterns of neural activity 

provided by the CIs. It may be argued that the proposed approach should be relatively easier to 

accommodate to since it is more close to the normal cortical acoustic map; however, it should be 
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understood that cortical representation of frequency space in the experienced cochlear implant 

listeners recruited in our study most likely had been already reorganized to match the distorted 

representation presented by the clinical maps. For such a case, learning to reinterpret a better 

(undistorted) information is akin to taking a step back and relearning. This re-learning will 

require to time reach full benefit with experienced implant users. Also, the cortical plasticity may 

vary from individual to individual. Some listeners may learn to adapt quicker than others. All 

these factors must be considered when conducting studies with post-lingually deafened and 

experienced implant users. 

Start from a blank slate 

The frequency-fitting strategy proposed in this dissertation was evaluated with experienced 

implant users who had been using the clinical map for at least over a year. It is very likely that 

implant users would have adapted to the distorted spectral representation over time. In order to 

make fair (apples-to-apples) comparisons, a clinical evaluation of the strategy should be 

conducted with new implant recipients, who have no experience with electrical stimulation. Two 

groups of implant users should be considered. The first group should be assigned clinical 

frequency maps, whereas sound processors of the second group should be configured with 

custom frequency map. It would be important to have equal distribution of electrode insertion 

depths, as well as audiological parameters (length of deprivation, age, etiology of hearing loss, 

etc.) in both groups for fair comparisons. Speech recognition performance should be assessed in 

a long-term clinical trial of twelve to twenty-four months.  
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Increase the sample size 

The logistics of running chronic clinical studies with implant recipients are understandably 

demanding. However, a larger sample size is needed not only for increasing the statistical 

significance, also to better understand the trends and factors that may influence outcomes. Huge 

variability observed with implant outcomes makes this even more important. An interesting 

study would be the one which would consider groups of implant recipients with low, moderate 

and extreme tonotopic mismatch, and evaluate the proposed frequency-mapping strategy with 

these groups. 

Systematic evaluation of frequency-place mapping in simulations 

The simulations conducted with frequency-place map using normal hearing listeners considered 

actual image-maps of cochlear implant recipients. While numeric improvements were observed 

for all tested maps (with normal, moderate, and extreme mismatch) with the customized 

frequency maps as opposed to the clinical maps, largest improvements were observed in 

conditions of extreme tonotopic mismatch. It would be interesting to conduct a systematic 

evaluation of the proposed scheme (in simulations, both acutely and semi-chronically) that 

would investigate trends in performance outcomes as a function of insertion depth and make 

comparison with the clinical maps. This data would further elucidate the potential benefit from 

the proposed approach with various degrees of frequency-place mismatch that arise due to 

variations in insertion depth alone. 

Intermediate maps for cochlear implantation 

A recent study conducted by Svirsky et al. [100] found that gradual accommodation to auditory 

mismatch decreased the accommodation time to spectrally-degraded, frequency shifted input. 
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They tested two groups of implant recipients. The first group was exposed to the clinical map 

which had extreme tonotopic mismatch, while the second group was given an intermediate map 

with lower frequency-place mismatch, prior to shifting to the clinical map. By the end of the 

study, they found that the learning process was faster for listeners who were exposed to gradual 

approach. These results suggest that gradual rather than sudden exposure may facilitate 

perceptual learning in the face of a spectrally degraded, frequency-shift input. The evidence from 

this study could reciprocate with customized frequency-mapping paradigm presented in this 

dissertation. The proposed frequency fitting strategy aimed at minimizing the frequency-place 

distortions by achieving a balance between frequency matching and frequency compression to 

provide a better representation of the sound signal. The maps constructed with the proposed 

strategy could be considered as intermediate frequency maps before shifting to clinical maps that 

provide a complete acoustic range compressively. Future research could investigate if 

customized maps could decrease the accommodation time and improve the final level of 

performance with the implants. 

Improvements in the imaging processing techniques 

The image-guided strategies presented in this dissertation rely on image processing techniques 

developed by Noble et al. [106]. This image analysis procedures involve using pre and post 

implantation CT scans to determine the spatial location of electrode array and its proximity to the 

tonotopically mapped modulus. One of the short-comings of this approach is that it assumes a 

healthy distribution of neural population. In reality, the spiral ganglion cells may not be 

distributed evenly along the Rosenthal’s canal, especially in a compromised auditory system. 

Neural atrophy and dead zones may create additional complicacies, such as spectral warping or 
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spectral holes in the perceived sound. Future cochlear imaging research could potentially focus 

on delineating the fine spiral ganglion cells from the imaging data to find the true distribution of 

healthy neurons in an implant recipient. The frequency mapping and channel selection 

procedures mentioned in this dissertation should be modified to address accordingly. 

Furthermore, the imaging technique used in this study requires pre and post implantation 

CT scans. Given that most existing CI users may not have their CT imaging data prior to surgery, 

these techniques may not be extended to the large existing population. An image analysis 

technique that could find electrode-nerve relationships of existing CI users would be extremely 

helpful to expand the benefit of the proposed research to a wider population. 

Evaluation of image-guided channel selection strategy with cochlear implant users 

The image-guide time-interleaved channel selection (TICS) strategy presented in Chapter 5 of 

this dissertation was only evaluated in simulations due to logistical problems. The simulation 

data indicated that TICS approach could potentially be beneficial as opposed to both standard 

clinical, as well as electrode de-activation strategies. A clinical evaluation of the strategy with 

cochlear implant users would help establish if the proposed approach could bring meaningful 

improvements in speech recognition, particularly in adverse listening conditions. The future 

research could be directed towards the evaluation of the proposed approach in a clinical study 

with CI users. 

Evaluation of SNR-based channel selection optimization and formant strategies with 

cochlear implant users 

The strategies presented in Section 5.3 make use of spectral features (formants) and environment 

SNR to improve channel selection process in sound processing for cochlear implants. Due to 
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logistics, the strategy was only evaluated with three CI users. Although the sample size was 

small, the proposed strategy resulted in significant gains in speech recognition performance in 

adverse listening environments. Future research could focus on evaluating the proposed 

strategies with a larger sample size, and in various environment types. Furthermore, the 

strategies could be implemented on a portable real-time sound processor (e.g., UT Dallas 

Cochlear Implant Research Interface [139]) to evaluate the efficacy of the proposed strategy in 

field trials and everyday listening environments. 

As can be seen, there are numerous directions and possibilities to expand the existing 

work. The research work presented in this dissertation offers a foundation and presents 

guidelines for future research directions and advancements in customizing cochlear implant 

sound processors for implant recipients. 

6.3 Concluding Remarks 

With current trends in modern medicine leading to personalized medicine, customization of 

prosthetic devices represents a reasonable and auspicious direction for future advancements to 

help each recipient with customized, user-centric treatments and rehabilitation strategies. Huge 

variability observed in performance outcomes with cochlear implantation has long been a 

challenge for the research community. Patient-specific fitting and sound processing schemes may 

help poor performers to gain better speech understanding abilities in everyday life. In this 

dissertation, we have presented two image-guided patient-specific optimization techniques. The 

first strategy minimized the frequency-place mismatch artifacts that are commonly observed with 

suboptimal electrode array placement. This was achieved by devising unique frequency-to-place 

functions for each recipient that better reflect the electrode-neural interface of the implants. The 
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second approach aimed at customizing and optimizing channel selection in sound coding 

strategies based on environments and spatial electrode interactions. Experimental evidence 

suggests that customized approaches discussed in this dissertation may improve overall 

performance levels and potentially lower adaptation times to electric hearing. 

 The overall aim of the dissertation was to improve the quality of life of cochlear implant 

users by providing them customized solutions, and hence the ability to gain better sound 

perception from their devices. The goal has been to improve CI devices for implant users, rather 

than simply perform a CI procedure and expect implantees to adapt to electrically evoked 

hearing with hope that they will learn to make use of sparsely coded information. Pitch percepts 

elicited by cochlear implants that are aligned or not drastically different from normal cortical 

acoustic map could improve the bottom-up presentation of acoustic cues. The image-guided 

sound processing and fitting strategies developed in this study may help bridge this gap and 

provide possibilities for optimizing CI processing for each individual. 
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APPENDIX A 

SPEECH INTELLIGIBILITY WITH ADAPTIVE DYNAMIC RANGE OPTIMIZATION 

IN ADVERSE LISTENING CONDITIONS 

Reprinted with permission from Ali, Hussnain; Hazrati, Oldooz; Tobey, Emily A.; and Hansen, 

John H. L, “Evaluation of adaptive dynamic range optimization in adverse listening conditions 

for cochlear implants,” The Journal of the Acoustical Society of America, 136, EL242-EL248, 

2014. Copyright 2014, Acoustic Society of America. 

 

The aim of this study was to investigate the effect of Adaptive Dynamic Range Optimization 

(ADRO)10 on speech identification for cochlear implant (CI) users in adverse listening 

conditions. In this study, anechoic quiet, noisy, reverberant, noisy reverberant, and reverberant 

noisy conditions were evaluated. Two scenarios were considered when modeling the combined 

effects of reverberation and noise: (a) noise is added to the reverberant speech, and (b) noisy 

speech is reverberated. CI users were tested in different listening environments using IEEE 

sentences presented at 65 dB sound pressure level. No significant effect of ADRO processing on 

speech intelligibility was observed. 

 

 

                                                 

10 The ADRO pre-processing strategy is available in CI devices manufactured by Cochlear Limited and 
many digital HAs (e.g., HAs manufactured by Interton, Siemens). 
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A.1  Introduction 

Electric hearing possess challenges in terms of mapping the input dynamic range of the acoustic 

signal (∼90 dB) to the limited output electric dynamic range (the range between threshold levels 

and the maximum comfort levels which could be as low as 5 dB). This emphasizes the need to 

perform intelligent compression to optimally place the characteristic features of speech in the 

available limited output range for better intelligibility and quality of coded sounds. Commonly 

used CI coding strategies such as Continuous Interleaved Sampling (CIS) [44] and Advanced 

Combination Encoder (ACE) [47, 48] use a global compression scheme (e.g., logarithmic 

compression) at the output level to compensate for the loudness growth. Adaptive Dynamic 

Range Optimization (ADRO), on the other hand, adaptively adjusts gains in each frequency band 

prior to the global compression to optimally utilize the limited output range based on the signal 

statistics. 

ADRO is a multichannel signal equalization strategy to improve the audibility, comfort, 

and intelligibility of sounds for individuals who use CIs and/or hearing aids (HA) [60, 62]. The 

strategy uses statistical analysis of acoustic signal to select the most information-rich section of 

the input dynamic range in multiple frequency channels, and adaptively adjusts the channel gains 

based on a set of fuzzy logic rules to optimally place the signal in the users' available hearing 

range. Thus, ADRO aims to make soft sounds more audible and loud sounds more comfortable, 

and is used in conjunction with sound processing in clinical HA and CI processors as a pre-

processing strategy. Clinical studies indicate preference for ADRO over alternative amplification 

strategies in quiet and various noisy conditions with HA and CI subjects (e.g., see Martin et al., 

2001 [140]; James et al., 2002 [141]; Dawson et al., 2004 [61]; Iwaki et al., 2008 [142]). 
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James et al. [141] tested 9 adult cochlear implantees using ACE/SPEAK speech 

processing strategies (with and without ADRO) in quiet and in noise (multi-talker babble, 

SNR = 10 and 15 dB). Although significant speech perception improvement (16%) was observed 

using ADRO for low input level [50 dB sound pressure level (SPL)] in quiet, no significant 

improvement was seen in noise. Moreover, the environmental sound loudness tests indicated a 

59% quality preference for the ADRO program in a majority of the conditions, where only 10% 

of the time the program without ADRO was preferred (31% of the time, sounds with and without 

ADRO programs were judged to have the same loudness level). 

In a later study by Dawson et al. [61], children with CIs (mean age: 10.6 yr) were tested 

with and without ADRO to establish if young implantees benefit from ADRO preprocessing in 

the same way as adults. A smaller mean group improvement was observed when testing children 

with CIs in quiet (50 dB SPL) compared to adults studied by James et al. [141]. They concluded 

that differences in microphone sensitivities for the two groups could be a contributing factor for 

this observed difference. Although speech perception scores for sentences in noise were not 

significantly different with and without ADRO for adults [141], the speech perception scores of 

children improved significantly (single-digit percentage improvement) when using ADRO in 

noise [61]. This may be due to the wider dynamic ranges and consequently steeper mapping 

functions seen in children as compared to adults [143]. Children preferred sound coding with 

ADRO in 46% of the conditions, which is relatively smaller than the preference by adults (59% 

of conditions). 

All studies conducted so far have evaluated ADRO in quiet and/or noisy (multi-talker 

babble) conditions. However, these two conditions do not represent the naturalistic everyday 
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situations where CI users are challenged to understand speech in the presence of reverberation 

and noise, individually and in combination. Speech perception scores of CI users drop 

substantially in reverberant environments when early and late reflections of the direct sound are 

added to speech, thereby blurring both temporal and spectral characteristics of speech [144]. 

Unlike reverberation, noise is additive and affects speech in a different and complimentary 

fashion. Noise masks weak consonants to a greater degree than higher intensity vowels, but 

unlike reverberation this masking does not depend on the energy of the preceding segments 

[145]. Therefore, the combined effects of reverberation and noise affect speech intelligibility to a 

greater degree than either reverberation or noise alone [146]. 

In the afore-mentioned study, we compared speech intelligibility scores obtained from ten 

adult CI users in quiet, noisy, reverberant, and noisy + reverberant (where noise and 

reverberation are simultaneously present) conditions. The main goal of the study was to evaluate 

the effect of ADRO pre-processing on speech perception of CI users in adverse listening 

conditions in terms of intelligibility. 

A.2  Methods 

Subjects and Material 

Ten adult post-lingually deafened CI recipients participated in this study. All participants were 

native speakers of American English who received no benefit from hearing aids pre-operatively. 

All subjects were paid for their participation. CI users were fitted with the Nucleus 24 

multichannel implant devices manufactured by Cochlear Corporation. All listeners used their 

devices routinely and had a minimum of 3 years experience with their devices. All participants 

were experienced users of ADRO as it was locked into their everyday MAPs. The detailed 
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biographical data of the CI participants is presented in Table A.1. All subjects had at least 20 

active electrodes and a stimulation rate of 900 Hz per channel (except S5 and S6 with 1200 and 

500 Hz stimulation rates, respectively). 

 

Table A.1. Demographic data of CI participants in the ADRO study 

 

Subjects Gender 
Age, 

years 

Years 

implanted 

CI 

processor 

Etiology of 

hearing loss 

Sens. 

level 

Average 

electric 

dynamic 

range 

S1 M 60 3 N5 Noise 9 38 

S2 F 62 7 N5 Unknown 12 21 

S3 F 54 4 N5 Unknown 12 48 

S4 F 56 3 N5 Hereditary 12 39 

S5 M 80 8 N5 Hereditary 12 30 

S6 F 60 2 N5 Hereditary 10 10 

S7 F 65 4 Freedom Antibiotics 12 51 

S8 M 61 3 N5 Meniere’s Disease 12 45 

S9 M 65 3 N5 Hereditary 12 52 

S10 M 70 8 N5 Unknown 12 5 
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IEEE sentences [111]were used as the speech stimuli for testing. The root-mean-square (RMS) 

level of all sentences was equalized and presented at 65 dB SPL. The reverberant stimuli were 

generated by convolving the clean signals with measured room impulse responses (RIR) 

recorded in a 227.46 m3 room [146] with a reverberation time equal to 0.6 s, which is allowable 

in U.S. classrooms according to ANSI S12.60 standard [147]. The direct-to-reverberant ratio 

(DRR) of the RIR was −1.8 dB. The distance between the single-source signal and the 

microphone was 5.5 m, which is beyond the critical distance (≃1 m). 

Speech-shaped noise (SSN) with the same long-term spectrum as the test sentences from 

the IEEE corpus was used as a continuous (steady-state) masker to generate the noisy signals at a 

10 dB SNR level. 

The noisy reverberant stimuli were generated using the following model [the masker was 

added to the reverberant stimuli at a 10 dB reverberant speech signal to noise ratio (RSNR)11]: 

𝑦(𝑛) = {𝑥(𝑛) ∗ ℎ(𝑛)} + 𝑚(𝑛) 

where 𝑦(𝑛), 𝑥(𝑛), ℎ(𝑛), and 𝑚(𝑛) denote corrupted signal (by noise and reverberation), 

anechoic clean signal, RIR, and additive noise, respectively. 

The reverberant noisy speech stimuli were generated using the following model (the 

noise-masked speech at 10 dB SNR was reverberated): 

𝑦(𝑛) = {𝑥(𝑛) + 𝑚(𝑛)} + ℎ(𝑛) 

 

 

                                                 

11 For generating noisy reverberant stimuli, the reverberant signal served as the target signal in the SNR 
computation. Hence, we refer to the SNR values in this condition as reverberant signal to noise ratios 
(RSNR) 
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Signal Processing 

All CI participants used ACE speech coding strategy in their clinical processors (clinical 

processors were programmed with the users' clinical MAP and configured with and without 

ADRO for each listening condition). In the ACE coding strategy, the acoustic signal is split into 

22 frequency bands by a combination of coefficients produced from an FFT analysis. ADRO 

dynamically applies channel gains to the output of the frequency bands every 2 ms. Next, “n 

maxima” (bands with highest energy, e.g., eight bands) are selected and compressed through a 

compression scheme (typically logarithmic compression) to generate current levels in the output 

dynamic range of the selected (active) electrodes. 

ADRO uses four rules to continuously vary the input signal gain in each frequency band. 

The channel gain adjustments are conducted based on comfort, background noise, audibility, and 

maximum gain rules. The rules are applied based on the long-term calculated output levels 

(every 2  ms) using a percentile level estimator with a time constant of 20 dB/s. Three target 

levels (comfort, background, and audibility) define the dynamic range at each frequency band. 

The comfort rule reduces the gain if the 98th percentile of the long-term output level is greater 

than the target comfort level. The background noise rule decreases the gain if the 40th percentile 

of the long-term output level is greater than the background target level. If the 70th percentile of 

the long-term output is below the audibility target level, then the audibility rule increases the 

gain. Finally, the maximum gain rule limits the gain in order not to exceed a pre-determined 

maximum value (for more details on ADRO algorithm see James et al. [141]). 
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Procedure 

Subjects were tested using a clinical CI processor in a double-wall sound-proof booth (Acoustic 

Systems, Inc.). Recorded sentences were presented in free field at 65 dB SPL. CI listeners were 

tested unilaterally using the ear with the best performance. Bilateral/bimodal listeners were asked 

to remove the CI/hearing aid of the contralateral ear during test. The clinical processor was 

programmed with each individual subject's everyday clinical MAP (e.g., stimulation rate, 

microphone sensitivity, comfort, and threshold levels) using Custom Sound software developed 

by Cochlear Limited, and was configured with and without ADRO. All CI listeners used similar 

compression function with a base level of 4 and Q value of 20. Participants selected their 

sensitivity settings based on experience with their processors. Institutional review board (IRB) 

approval and informed consent were obtained from all participants prior to testing. 

Subjects participated in a total of ten listening conditions: (1) Anechoic quiet (T60 ≈ 

0.0 s), (2) reverberant (T60 = 0.6 s), (3) noisy (SNR = 10 dB SSN), (4) noisy reverberant 

(T60 = 0.6 s, RSNR = 10 dB), and (5) reverberant noisy (SNR = 10 dB, T60 = 0.6 s) conditions 

(each with and without ADRO). Twenty IEEE sentences (two lists) were used per condition. 

None of the lists used was repeated across conditions. The sequence of test conditions was 

randomized across subjects to minimize any order effects. To achieve a balance test order, half 

the CI users were tested with ADRO (ACE + ADRO) first, and the other half without ADRO 

(standard ACE). Evaluations were blind so subjects were not aware which was the ADRO 

condition. For each testing condition, 20 training sentences (not used in the test sessions) were 

played to the listener in order to familiarize them with the new condition. Participants were 

instructed to repeat as many words as they could identify. The responses of each individual were 
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collected and scored off-line based on the number of words correctly identified. All words were 

scored. The percent correct scores for each condition were calculated by dividing the number of 

words correctly identified by the total number of words. To avoid listener fatigue, participants 

were given a 15 min break every 60 min during the test session. The entire test duration for each 

subject was approximately 4 hours. 

A.3  Results 

Intelligibility listening tests were conducted in five different environments with and without 

ADRO. The individual as well as mean speech intelligibility scores for all five conditions are 

presented in Figure A.1. The intelligibility scores progressively declined with the level of 

difficulty in test condition, ranging from 96% for clean to 23% in reverberant noisy environment. 

The mean speech intelligibility difference between ADRO and non-ADRO test conditions varied 

from a minimum absolute value of 0.44% in clean (ADRO > non-ADRO) to a maximum 

absolute value of 4.76% in reverberant noisy condition (non-ADRO > ADRO). However, 

individual variations between ADRO and non-ADRO conditions ranged from −26% to +24%. 

On average, non-ADRO program performed slightly better (3.23%) than the ADRO program in 

the most challenging listening conditions (R, NR, and RN from Figure A.1). 

Repeated-measures analysis of variance (ANOVA) was performed to assess the effect of 

environment type and program (ADRO/non-ADRO) on the intelligibility scores with an α factor 

set to 0.05. Subjects were considered a random (blocked) factor, while environment type and 

ADRO/non-ADRO conditions were used as the main analysis factors. No statistically significant 

difference in speech intelligibility was found between ADRO/non-ADRO conditions 

(F[1,9] = 0.656,  p = 0.439).    The  interaction  between  the environment  type  and  ADRO/non- 
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Figure A.1. Individual speech intelligibility scores of ten CI users in (a) anechoic quiet (clean), (b) 

noisy (N, SNR = 10 dB), (c) reverberant (R, T 60 = 0.6 s), (d) noisy reverberant (NR, T 60 = 0.6 s, 

RSNR = 10 dB), and (e) reverberant noisy (RN, SNR = 10 dB, T 60 = 0.6 s) conditions. Panel (f) 

demonstrates average scores in all conditions. The error bars in panel (f) indicate standard 

deviations. 
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Table A.2. Correlation coefficients between speech intelligibility and electric dynamic range of 

CI users in different listening conditions. “ACE” and “ACE + ADRO” stand for standard ACE 

strategy without and with ADRO program, respectively. Significant correlation values are 

marked with “*.” 

Condition Clean N R NR RN Mean 

ACE 0.76* 0.66* 0.83* 0.62* 0.85* 0.74* 

ACE + ADRO 0.36 0.82* 0.65- 0.83- 0.81* 0.69* 

 

ADRO conditions was not significant (F[4,36] = 0.900, p = 0.474). However, a significant main 

effect of environment type on speech intelligibility was observed (F[4,36] = 333.937, p < 0.001). 

The post hoc Bonferroni test for pairwise comparisons between the five environment types 

indicated significant differences between all, with the exception of reverberant-noisy and noisy-

reverberant environments (p = 1.000). 

In order to assess the effect of CI users' MAP parameters on speech intelligibility, 

correlations between the subjects' average electric dynamic range and speech intelligibility 

scores were computed for the five environment types for ADRO/non-ADRO programs. The 

results are presented in Table A.2. Speech intelligibility was positively correlated with average 

electric dynamic range in all five conditions. 

A.4   Summary and Discussion 

The main goal of this study was to assess the effect of ADRO pre-processing on speech 

intelligibility for CI users in various listening environments (anechoic quiet, noisy, reverberant, 

noisy reverberant, and reverberant noisy). 

The ADRO strategy was initially developed for bimodal listening and has been 

previously validated for hearing aids and cochlear implants [60]. Studies by James et al. [141] 
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and Dawson et al. [61] indicated that sound quality and speech perception performance were 

improved using ADRO as compared to fixed channel gains in both adults and children. The later 

study with children suggested ADRO to be locked into the processor for young children whose 

MAPs have been stabilized and may be left as an option for the older ones. In line with previous 

studies, Iwaki et al. [142] reported significantly improved speech intelligibility with ADRO for 

six adult CI users in clean and noisy conditions using Japanese hearing in noise test (JHINT). 

However, all studies assessing the effect of ADRO pre-processing on speech intelligibility of CI 

users only considered anechoic quiet and noisy environments. The current study aimed to assess 

the potential ADRO benefit in everyday realistic environments where reverberation and/or noise 

can exist individually or in combination. 

For all five environment types, our results indicate non-significant speech intelligibility 

benefit of ADRO over standard ACE program when speech material at 65 dB SPL were 

presented to CI users. Due to the subjective variability in scores, no clear trend in the pattern of 

results for either condition/program was found. On average, intelligibility scores for standard 

ACE program (non-ADRO) were only 1.23% higher than the ACE + ADRO program. 

On average, the standard ACE program performed better than the ACE + ADRO program 

in R, NR, and RN conditions by 3.23%. Seven out of ten subjects had equal or better scores for 

the non-ADRO program in NR and RN conditions. One of the potential causes which could be 

attributed to this is that low energy late reflections of the reverberant sound may become 

amplified by the ADRO strategy as it tends to amplify low-intensity sounds. In such a scenario, 

ADRO programming may not be beneficial in reverberant environments. Further investigation 
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into how late reflections of the sound are processed in ADRO is required to establish the exact 

explanation. 

Eight out of ten subjects had similar sensitivity settings (12) in their processors. Because 

of the limited dataset, no relationship between subjects' intelligibility scores and sensitivity 

settings could be determined in the current study. Positive correlation between the subjects' 

electric dynamic range and intelligibility scores was observed in all tested conditions, indicating 

that subjects with a wider dynamic range could be expected to perform better in various listening 

conditions. This is in line with studies conducted by Loizou et al. [148] as well as Fu and 

Shannon [149]. 

The present study could not establish any significant benefit with ADRO preprocessing 

on speech intelligibility in the specific tested conditions. Due to the limited number of 

participants, their highly variable performance, and similarity in their MAP parameters, no clear 

trend between the intelligibility scores and their processing parameters (such as stimulation rate 

and sensitivity level) could be determined. Given that a CI user may or may not benefit with 

ADRO in different listening environments, ADRO may be left as an optional setting which could 

be turned on or off according to personal preference of the implant user. Further research is 

warranted to investigate long-term benefits of ADRO in practical listening environments 

(reverberation + noise) as well as the effect of ADRO strategy on intelligibility of reverberant 

speech at both soft and loud presentation levels. 
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APPENDIX B 

SUPPLEMENTARY DETAILS ON STUDY 1: VOCODER-SIMULATIONS WITH 

NORMAL HEARING INDIVIDUALS 

In Section 4.4.1, we presented a study on acoustic simulations of cochlear implants (using noise-

band vocoder) with normal hearing listeners to assess the efficacy of customized frequency 

assignment strategy and compare it against the clinical mapping scheme acutely. The data and 

analysis provided in the main text only considered the mean results. In this section, we would 

provide supplementary details on each individual image map, and the resulting performance. 

 Here is a brief overview of study 1: 42 normal hearing individuals participated. A total of 

14 image maps were tested. Each map was tested with three individuals and scores were 

averaged. Four frequency mapping conditions were evaluated:  

Condition#1: Default frequency allocation with ideal electrode position: In this condition, same 

set of analysis and synthesis filters were used to simulate an ideal scenario in which acoustic 

frequencies were matched to cochlear place in a matched one-to one scenario. This condition 

used default frequency allocation table which is used in ACE coding strategy. Filter frequency 

characteristic for this condition are given in Table 4.1. 

Condition#2: Default frequency allocation with true electrode position: In this condition, we try 

to mimic the actual listening perception experienced by CI users. This is achieved by using the 

default ACE filterbanks at the analysis stage, and filterbanks derived from DVF curves at the 

synthesis stage. The resulting signal is, thus, typically mismatched.  
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Condition#3: Custom frequency allocation with true electrode position: In this condition, custom 

frequency allocation were used at the analysis stage and filterbanks derived from DVF curves 

were used as synthesis filters to simulate the perceived sound. Custom filter-banks were designed 

according to each individual’s DVF curve data using the methods from section 4.3.  

Condition#4: Frequency allocation matched with true electrode position: Analysis and synthesis 

filter-banks were chosen identically from the DVF curves. This condition mimics if acoustic 

filterbanks were chosen to match exactly with electrode positions  

All four conditions are summarized in the Table 4.2 and depicted graphically in Figure 

4.6. Speech recognition was assessed on four speech material, namely 20-medial consonants, 12-

medial vowels, IEEE sentences in quiet, and IEEE sentences in 10 dB SNR speech-shaped noise. 

The test order of speech material, and mapping conditions was randomized across subjects. This 

study aimed to assess acute performance with different frequency mapping configurations.  

The scores and statistical analysis of the data indicated that performance with the 

proposed custom frequency assignment strategy was on average better than the clinical mapping. 

In the following section, frequency characteristics, performance, and statistical analysis of each 

image map is provided separately. 
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B.1.  MAP01 

Table B.1. Frequency allocation tables for MAP01. All numbers in the table represent 

frequencies in Hz. LF: Low cut-off Frequency, CF: Center Frequency, and UF: Upper cut-off 

Frequency. Channels marked with hyphen were de-activated. 

 

 
Clinical  Image  Custom 

 
LF CF UF  CF  LF CF UF 

1 188 250 313  291  238 291 344 

2 313 375 438  302  - - - 

3 438 500 563  397  344 397 483 

4 563 625 688  474  - - - 

5 688 750 813  569  483 569 613 

6 813 875 938  656  613 656 695 

7 938 1000 1063  733  695 733 799 

8 1063 1125 1188  864  799 864 964 

9 1188 1250 1313  1063  964 1063 1132 

10 1313 1438 1563  1201  1132 1201 1331 

11 1563 1688 1813  1284  - - - 

12 1813 1938 2063  1461  1331 1461 1745 

13 2063 2188 2313  1628  - - - 

14 2313 2500 2688  1834  - - - 

15 2688 2875 3063  2028  1745 2028 2132 

16 3063 3313 3563  2236  2132 2236 2521 

17 3563 3813 4063  2559  2521 2806 3456 

18 4063 4375 4688  2806  - - - 

19 4688 5000 5313  3230  3456 4106 4555 

20 5313 5688 6063  3795  4555 5003 5534 

21 6063 6500 6938  4283  5534 6064 6692 

22 6938 7438 7938  4995  6692 7320 7947 
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Analysis: 2-way repeated measures ANOVA: 

Effect of condition: Significant F[3, 6] = 19.825 p = 0.002 

Effect of speech material: Significant F[3, 6] = 10.590 p = 0.008 

Interaction (condition × speech material): Significant F[9, 18] = 3.313 p = 0.015 

 

Pairwise LSD comparisons: 
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Significantly different pair is marked with asterisk. 

 

 

Figure B.1. MAP01 - Average speech recognition scores for MAP01 tested with 3 NH listeners. 
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B.2.  MAP02 

Table B.2. Frequency allocation tables for MAP02. All numbers in the table represent 

frequencies in Hz. LF: Low cut-off Frequency, CF: Center Frequency, and UF: Upper cut-off 

Frequency. Channels marked with hyphen were de-activated. 

 

 
Clinical  Image  Custom 

 
LF CF UF  CF  LF CF UF 

1 188 250 313  337  - - - 

2 313 375 438  422  356 422 489 

3 438 500 563  555  489 555 591 

4 563 625 688  627  591 627 665 

5 688 750 813  702  665 702 775 

6 813 875 938  749  - - - 

7 938 1000 1063  847  775 847 974 

8 1063 1125 1188  916  - - - 

9 1188 1250 1313  1101  974 1101 1182 

10 1313 1438 1563  1263  1182 1263 1362 

11 1563 1688 1813  1284  - - - 

12 1813 1938 2063  1461  1362 1461 1803 

13 2063 2188 2313  1484  - - - 

14 2313 2500 2688  1943  - - - 

15 2688 2875 3063  2145  1803 2145 2336 

16 3063 3313 3563  2267  - - - 

17 3563 3813 4063  2526  2336 2526 2685 

18 4063 4375 4688  2843  2685 2843 3474 

19 4688 5000 5313  3271  3474 4106 4555 

20 5313 5688 6063  3842  4555 5003 5534 

21 6063 6500 6938  4655  5534 6064 6692 

22 6938 7438 7938  5233  6692 7320 7947 
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Analysis: 2-way repeated measures ANOVA: 

Effect of condition: Significant F[3, 6] = 20.372 p = 0.002 

Effect of speech material: Significant F[3, 6] = 58.157 p < 0.001 

Interaction (condition × speech material): Significant F[9, 18] = 4.639 p = 0.003 

 

Pairwise LSD comparisons: 
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Significantly different pair is marked with asterisk. 

 

 

Figure B.2. MAP02 - Average speech recognition scores for MAP02 tested with 3 NH listeners. 
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B.3.  MAP03 

Table B.3. Frequency allocation tables for MAP03. All numbers in the table represent 

frequencies in Hz. LF: Low cut-off Frequency, CF: Center Frequency, and UF: Upper cut-off 

Frequency. Channels marked with hyphen were de-activated. 

 

 
Clinical  Image  Custom 

 
LF CF UF  CF  LF CF UF 

1 188 250 313  656  500 583 667 

2 313 375 438  718  - - - 

3 438 500 563  765  667 750 833 

4 563 625 688  952  833 917 1038 

5 688 750 813  1160  1038 1160 1244 

6 813 875 938  1327  1244 1327 1429 

7 938 1000 1063  1531  1429 1531 1710 

8 1063 1125 1188  1888  1710 1888 2078 

9 1188 1250 1313  2267  2078 2267 2431 

10 1313 1438 1563  2594  2431 2594 2775 

11 1563 1688 1813  2955  2775 2955 3265 

12 1813 1938 2063  3482  3265 3576 3790 

13 2063 2188 2313  3842  3790 4004 4238 

14 2313 2500 2688  4232  - - - 

15 2688 2875 3063  4995  4238 4473 4731 

16 3063 3313 3563  5481  - - - 

17 3563 3813 4063  5872  4731 4989 5272 

18 4063 4375 4688  6958  5272 5555 5866 

19 4688 5000 5313  8590  5866 6177 6518 

20 5313 5688 6063  10450  6518 6859 7234 

21 6063 6500 6938  12677  7234 7608 7983 

22 6938 7438 7938  12813  - - - 
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Analysis: 2-way repeated measures ANOVA: 

Effect of condition: Significant F[3, 6] = 13.037 p = 0.005 

Effect of speech material: Significant F[3, 6] = 13.258 p < 0.005 

Interaction (condition × speech material): Significant F[9, 18] = 5.447 p = 0.001 

 

Pairwise LSD comparisons: 
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Significantly different pair is marked with asterisk. 

 

 

Figure B.3. MAP03 - Average speech recognition scores for MAP03 tested with 3 NH listeners. 
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B.4.  MAP04 

Table B.4. Frequency allocation tables for MAP04. All numbers in the table represent 

frequencies in Hz. LF: Low cut-off Frequency, CF: Center Frequency, and UF: Upper cut-off 

Frequency. Channels marked with hyphen were de-activated. 

 

 
Clinical  Image  Custom 

 
LF CF UF  CF  LF CF UF 

1 188 250 313  702  500 583 667 

2 313 375 438  749  667 750 833 

3 438 500 563  952  833 917 990 

4 563 625 688  1063  990 1063 1142 

5 688 750 813  1221  1142 1221 1296 

6 813 875 938  1371  1296 1371 1440 

7 938 1000 1063  1508  1440 1508 1740 

8 1063 1125 1188  1971  1740 1971 2119 

9 1188 1250 1313  2267  2119 2267 2397 

10 1313 1438 1563  2361  - - - 

11 1563 1688 1813  2526  2397 2526 2703 

12 1813 1938 2063  2880  2703 2880 3197 

13 2063 2188 2313  3525  3197 3514 3703 

14 2313 2500 2688  3842  3703 3892 4097 

15 2688 2875 3063  4132  - - - 

16 3063 3313 3563  4766  4097 4303 4526 

17 3563 3813 4063  5355  4526 4750 4993 

18 4063 4375 4688  5939  4993 5236 5500 

19 4688 5000 5313  7693  5500 5765 6052 

20 5313 5688 6063  10116  6052 6340 6653 

21 6063 6500 6938  12147  6653 6965 7305 

22 6938 7438 7938  13950  7305 7646 7986 
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Analysis: 2-way repeated measures ANOVA: 

Effect of condition: Significant F[3, 6] = 61.697 p < 0.001 

Effect of speech material: Significant F[3, 6] = 13.217 p = 0.005 

Interaction (condition × speech material): Significant F[9, 18] = 2.999 p = 0.023 

 

Pairwise LSD comparisons: 
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Significantly different pair is marked with asterisk. 

 

 

Figure B.4. MAP04 - Average speech recognition scores for MAP04 tested with 3 NH listeners. 
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B.5.  MAP05 

Table B.5. Frequency allocation tables for MAP05. All numbers in the table represent 

frequencies in Hz. LF: Low cut-off Frequency, CF: Center Frequency, and UF: Upper cut-off 

Frequency. Channels marked with hyphen were de-activated. 

 

 
Clinical  Image  Custom 

 
LF CF UF  CF  LF CF UF 

1 188 250 313  733  500 625 750 

2 313 375 438  864  750 875 960 

3 438 500 563  1044  960 1044 1143 

4 563 625 688  1242  1143 1242 1318 

5 688 750 813  1393  1318 1393 1462 

6 813 875 938  1531  1462 1531 1710 

7 938 1000 1063  1888  1710 1888 2157 

8 1063 1125 1188  2115  - - - 

9 1188 1250 1313  2426  2157 2426 2527 

10 1313 1438 1563  2628  2527 2628 3008 

11 1563 1688 1813  3071  3008 3389 3529 

12 1813 1938 2063  3439  3529 3668 3817 

13 2063 2188 2313  3842  3817 3966 4126 

14 2313 2500 2688  4232  4126 4285 4454 

15 2688 2875 3063  4937  4454 4624 4805 

16 3063 3313 3563  5544  4805 4986 5179 

17 3563 3813 4063  6146  5179 5372 5578 

18 4063 4375 4688  8590  5578 5784 6003 

19 4688 5000 5313  10564  6003 6223 6457 

20 5313 5688 6063  12409  6457 6692 6942 

21 6063 6500 6938  13803  6942 7192 7458 

22 6938 7438 7938  15023  7458 7725 7991 
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Analysis: 2-way repeated measures ANOVA: 

Effect of condition: Significant F[3, 6] = 59.535 p < 0.001 

Effect of speech material: Significant F[3, 6] = 33.405 p < 0.001 

Interaction (condition × speech material): Not Significant F[9, 18] = 2.171 p = 0.077 

 

Pairwise LSD comparisons: 
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Significantly different pair is marked with asterisk. 

 

 

Figure B.5. MAP05 - Average speech recognition scores for MAP05 tested with 3 NH listeners. 
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B.6.  MAP06 

Table B.6. Frequency allocation tables for MAP06. All numbers in the table represent 

frequencies in Hz. LF: Low cut-off Frequency, CF: Center Frequency, and UF: Upper cut-off 

Frequency. Channels marked with hyphen were de-activated. 

 

 
Clinical  Image  Custom 

 
LF CF UF  CF  LF CF UF 

1 188 250 313  765  500 625 750 

2 313 375 438  899  750 875 998 

3 438 500 563  1121  998 1121 1257 

4 563 625 688  1221  - - - 

5 688 750 813  1393  1257 1393 1523 

6 813 875 938  1653  1523 1653 1771 

7 938 1000 1063  1888  1771 1888 2002 

8 1063 1125 1188  2115  2002 2115 2337 

9 1188 1250 1313  2267  - - - 

10 1313 1438 1563  2559  2337 2559 2683 

11 1563 1688 1813  2806  2683 2806 3160 

12 1813 1938 2063  3110  3160 3514 3703 

13 2063 2188 2313  3525  - - - 

14 2313 2500 2688  3985  3703 3892 4097 

15 2688 2875 3063  4546  4097 4303 4526 

16 3063 3313 3563  5172  4526 4750 4993 

17 3563 3813 4063  5872  4993 5236 5500 

18 4063 4375 4688  7276  5500 5765 6052 

19 4688 5000 5313  9376  6052 6340 6653 

20 5313 5688 6063  11269  6653 6965 7305 

21 6063 6500 6938  12950  7305 7646 7986 

22 6938 7438 7938  13950  - - - 
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Analysis: 2-way repeated measures ANOVA: 

Effect of condition: Significant F[3, 6] = 76.685 p < 0.001 

Effect of speech material: Significant F[3, 6] = 8.797 p = 0.013 

Interaction (condition × speech material): Significant F[9, 18] = 5.950 p = 0.001 

 

Pairwise LSD comparisons: 
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Cond1    * 

Cond2     

Cond3     

Cond4 *    

 

C
o
n
d
1
 

C
o
n
d
2
 

C
o
n
d
3
 

C
o
n
d
4
 

 

 Cond1  * * * 

Cond2 *    

Cond3 *    

Cond4 *    

 

C
o
n
d
1
 

C
o
n
d
2
 

C
o
n
d
3
 

C
o
n
d
4
 

 

 Cond1  * * * 

Cond2 *  *  

Cond3 * *  * 

Cond4 *  *  

 

C
o
n
d
1
 

C
o
n
d
2
 

C
o
n
d
3
 

C
o
n
d
4
 

 

 Cond1  * * * 

Cond2 *    

Cond3 *    

Cond4 *    

 

C
o
n
d
1
 

C
o
n
d
2
 

C
o
n
d
3
 

C
o
n
d
4
 

 

Significantly different pair is marked with asterisk. 

 

 

Figure B.6. MAP06 - Average speech recognition scores for MAP06 tested with 3 NH listeners. 
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B.7.  MAP07 

Table B.7. Frequency allocation tables for MAP07. All numbers in the table represent 

frequencies in Hz. LF: Low cut-off Frequency, CF: Center Frequency, and UF: Upper cut-off 

Frequency. Channels marked with hyphen were de-activated. 

 

 
Clinical  Image  Custom 

 
LF CF UF  CF  LF CF UF 

1 188 250 313  797  500 625 750 

2 313 375 438  916  750 875 969 

3 438 500 563  1063  969 1063 1142 

4 563 625 688  1221  1142 1221 1285 

5 688 750 813  1349  1285 1349 1417 

6 813 875 938  1484  1417 1484 1620 

7 938 1000 1063  1755  1620 1755 1921 

8 1063 1125 1188  2086  1921 2086 2256 

9 1188 1250 1313  2426  2256 2426 2580 

10 1313 1438 1563  2734  2580 2734 3061 

11 1563 1688 1813  3110  3061 3389 3529 

12 1813 1938 2063  3614  3529 3668 3817 

13 2063 2188 2313  4232  3817 3966 4126 

14 2313 2500 2688  4600  4126 4285 4454 

15 2688 2875 3063  5294  4454 4624 4805 

16 3063 3313 3563  5872  4805 4986 5179 

17 3563 3813 4063  6880  5179 5372 5578 

18 4063 4375 4688  8877  5578 5784 6003 

19 4688 5000 5313  10678  6003 6223 6457 

20 5313 5688 6063  12409  6457 6692 6942 

21 6063 6500 6938  13803  6942 7192 7458 

22 6938 7438 7938  14865  7458 7725 7991 
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Analysis: 2-way repeated measures ANOVA: 

Effect of condition: Significant F[3, 6] = 75.074 p < 0.001 

Effect of speech material: Significant F[3, 6] = 105.812 p < 0.001 

Interaction (condition × speech material): Significant F[9, 18] = 3.573 p = 0.010 

 

Pairwise LSD comparisons: 
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Significantly different pair is marked with asterisk. 

 

 

Figure B.7. MAP07 - Average speech recognition scores for MAP07 tested with 3 NH listeners. 
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B.8.  MAP08 

Table B.8. Frequency allocation tables for MAP08. All numbers in the table represent 

frequencies in Hz. LF: Low cut-off Frequency, CF: Center Frequency, and UF: Upper cut-off 

Frequency. Channels marked with hyphen were de-activated. 

 

 
Clinical  Image  Custom 

 
LF CF UF  CF  LF CF UF 

1 188 250 313  847  500 625 750 

2 313 375 438  970  750 875 979 

3 438 500 563  1082  979 1082 1162 

4 563 625 688  1140  - - - 

5 688 750 813  1242  1162 1242 1318 

6 813 875 938  1393  1318 1393 1427 

7 938 1000 1063  1461  1427 1461 1570 

8 1063 1125 1188  1678  1570 1678 1839 

9 1188 1250 1313  1999  1839 1999 2165 

10 1313 1438 1563  2330  2165 2330 2532 

11 1563 1688 1813  2734  2532 2734 3079 

12 1813 1938 2063  3110  3079 3423 3576 

13 2063 2188 2313  3704  3576 3729 3893 

14 2313 2500 2688  4387  3893 4058 4234 

15 2688 2875 3063  5233  4234 4410 4599 

16 3063 3313 3563  6007  4599 4787 4990 

17 3563 3813 4063  7693  4990 5192 5409 

18 4063 4375 4688  10227  5409 5627 5860 

19 4688 5000 5313  11890  5860 6093 6342 

20 5313 5688 6063  13513  6342 6592 6860 

21 6063 6500 6938  14865  6860 7128 7415 

22 6938 7438 7938  15836  7415 7703 7990 
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Analysis: 2-way repeated measures ANOVA: 

Effect of condition: Significant F[3, 6] = 14.465 p = 0.004 

Effect of speech material: Significant F[3, 6] = 35.955 p < 0.001 

Interaction (condition × speech material): Significant F[9, 18] = 6.821 p < 0.001 

 

Pairwise LSD comparisons: 
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Significantly different pair is marked with asterisk. 

 

 

Figure B.8. MAP08 - Average speech recognition scores for MAP08 tested with 3 NH listeners. 
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B.9.  MAP09 

Table B.9. Frequency allocation tables for MAP09. All numbers in the table represent 

frequencies in Hz. LF: Low cut-off Frequency, CF: Center Frequency, and UF: Upper cut-off 

Frequency. Channels marked with hyphen were de-activated. 

 

 
Clinical  Image  Custom 

 
LF CF UF  CF  LF CF UF 

1 188 250 313  847  500 625 750 

2 313 375 438  1006  750 875 1000 

3 438 500 563  1140  1000 1125 1250 

4 563 625 688  1305  1250 1375 1453 

5 688 750 813  1531  1453 1531 1630 

6 813 875 938  1729  1630 1729 1893 

7 938 1000 1063  2057  1893 2057 2258 

8 1063 1125 1188  2298  - - - 

9 1188 1250 1313  2459  2258 2459 3017 

10 1313 1438 1563  2663  - - - 

11 1563 1688 1813  2843  - - - 

12 1813 1938 2063  3354  3017 3576 3790 

13 2063 2188 2313  3704  - - - 

14 2313 2500 2688  3889  - - - 

15 2688 2875 3063  4132  3790 4004 4238 

16 3063 3313 3563  4822  - - - 

17 3563 3813 4063  5233  4238 4473 4731 

18 4063 4375 4688  5805  4731 4989 5272 

19 4688 5000 5313  6728  5272 5555 5866 

20 5313 5688 6063  8975  5866 6177 6518 

21 6063 6500 6938  11148  6518 6859 7234 

22 6938 7438 7938  12813  7234 7608 7983 
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Analysis: 2-way repeated measures ANOVA: 

Effect of condition: Significant F[3, 6] = 45.978 p < 0.001 

Effect of speech material: Significant F[3, 6] = 31.278 p < 0.001 

Interaction (condition × speech material): Significant F[9, 18] = 6.289 p < 0.001 

 

Pairwise LSD comparisons: 
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Significantly different pair is marked with asterisk. 

 

 

Figure B.9. MAP09 - Average speech recognition scores for MAP09 tested with 3 NH listeners. 
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B.10.  MAP10 

Table B.10. Frequency allocation tables for MAP10. All numbers in the table represent 

frequencies in Hz. LF: Low cut-off Frequency, CF: Center Frequency, and UF: Upper cut-off 

Frequency. Channels marked with hyphen were de-activated. 

 

 
Clinical  Image  Custom 

 
LF CF UF  CF  LF CF UF 

1 188 250 313  864  500 625 750 

2 313 375 438  1082  - - - 

3 438 500 563  1121  750 875 1063 

4 563 625 688  1284  - - - 

5 688 750 813  1484  1063 1250 1542 

6 813 875 938  1834  1542 1834 2114 

7 938 1000 1063  2086  - - - 

8 1063 1125 1188  2394  2114 2394 2929 

9 1188 1250 1313  2663  - - - 

10 1313 1438 1563  3354  2929 3464 3633 

11 1563 1688 1813  3704  - - - 

12 1813 1938 2063  4232  3633 3802 3985 

13 2063 2188 2313  4995  - - - 

14 2313 2500 2688  5418  3985 4168 4365 

15 2688 2875 3063  6007  4365 4562 4774 

16 3063 3313 3563  7036  4774 4987 5216 

17 3563 3813 4063  10450  5216 5446 5694 

18 4063 4375 4688  12542  5694 5942 6209 

19 4688 5000 5313  14708  6209 6476 6765 

20 5313 5688 6063  16004  6765 7054 7365 

21 6063 6500 6938  16173  - - - 

22 6938 7438 7938  16691  7365 7677 7988 
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Analysis: 2-way repeated measures ANOVA: 

Effect of condition: Significant F[3, 6] = 77.073 p < 0.001 

Effect of speech material: Significant F[3, 6] = 48.609 p < 0.001 

Interaction (condition × speech material): Significant F[9, 18] = 3.038 p = 0.021 

 

Pairwise LSD comparisons: 
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Significantly different pair is marked with asterisk. 

 

 

Figure B.10. MAP10 - Average speech recognition scores for MAP10 tested with 3 NH listeners. 
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B.11.  MAP11 

Table B.11. Frequency allocation tables for MAP11. All numbers in the table represent 

frequencies in Hz. LF: Low cut-off Frequency, CF: Center Frequency, and UF: Upper cut-off 

Frequency. Channels marked with hyphen were de-activated. 

 

 
Clinical  Image  Custom 

 
LF CF UF  CF  LF CF UF 

1 188 250 313  864  500 625 750 

2 313 375 438  970  750 875 979 

3 438 500 563  1082  979 1082 1142 

4 563 625 688  1201  1142 1201 1264 

5 688 750 813  1327  1264 1327 1418 

6 813 875 938  1508  1418 1508 1606 

7 938 1000 1063  1703  1606 1703 1837 

8 1063 1125 1188  1971  1837 1971 2119 

9 1188 1250 1313  2267  2119 2267 2363 

10 1313 1438 1563  2459  2363 2459 2633 

11 1563 1688 1813  2806  2633 2806 3115 

12 1813 1938 2063  3230  3115 3423 3576 

13 2063 2188 2313  3937  3576 3729 3893 

14 2313 2500 2688  4439  3893 4058 4234 

15 2688 2875 3063  4937  4234 4410 4599 

16 3063 3313 3563  5481  4599 4787 4990 

17 3563 3813 4063  5939  4990 5192 5409 

18 4063 4375 4688  7196  5409 5627 5860 

19 4688 5000 5313  9478  5860 6093 6342 

20 5313 5688 6063  11269  6342 6592 6860 

21 6063 6500 6938  12542  6860 7128 7415 

22 6938 7438 7938  13513  7415 7703 7990 
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Analysis: 2-way repeated measures ANOVA: 

Effect of condition: Significant F[3, 6] = 27.789 p = 0.001 

Effect of speech material: Significant F[3, 6] = 21.110 p = 0.001 

Interaction (condition × speech material): Significant F[9, 18] = 6.650 p < 0.001 

 

Pairwise LSD comparisons: 
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Significantly different pair is marked with asterisk. 

 

 

Figure B.11. MAP11 - Average speech recognition scores for MAP11 tested with 3 NH listeners. 
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B.12.  MAP12 

Table B.12. Frequency allocation tables for MAP12. All numbers in the table represent 

frequencies in Hz. LF: Low cut-off Frequency, CF: Center Frequency, and UF: Upper cut-off 

Frequency. Channels marked with hyphen were de-activated. 

 

 
Clinical  Image  Custom 

 
LF CF UF  CF  LF CF UF 

1 188 250 313  934  500 625 750 

2 313 375 438  1082  750 875 1063 

3 438 500 563  1201  - - - 

4 563 625 688  1371  1063 1250 1542 

5 688 750 813  1461  - - - 

6 813 875 938  1834  1542 1834 1975 

7 938 1000 1063  1943  - - - 

8 1063 1125 1188  2115  1975 2115 2223 

9 1188 1250 1313  2330  2223 2330 2462 

10 1313 1438 1563  2594  2462 2594 2700 

11 1563 1688 1813  2806  2700 2806 3191 

12 1813 1938 2063  3110  - - - 

13 2063 2188 2313  3525  3191 3576 3790 

14 2313 2500 2688  4132  3790 4004 4238 

15 2688 2875 3063  4710  4238 4473 4731 

16 3063 3313 3563  5544  4731 4989 5272 

17 3563 3813 4063  6958  5272 5555 5866 

18 4063 4375 4688  9274  5866 6177 6518 

19 4688 5000 5313  11391  6518 6859 7234 

20 5313 5688 6063  12950  7234 7608 7983 

21 6063 6500 6938  13657  - - - 

22 6938 7438 7938  14708  - - - 
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Analysis: 2-way repeated measures ANOVA: 

Effect of condition: Significant F[3, 6] = 39.301 p < 0.001 

Effect of speech material: Significant F[3, 6] = 78.190 p < 0.001 

Interaction (condition × speech material): Significant F[9, 18] = 2.712 p = 0.034 

 

Pairwise LSD comparisons: 
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Significantly different pair is marked with asterisk. 

 

 

Figure B.12. MAP12 - Average speech recognition scores for MAP12 tested with 3 NH listeners. 
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B.13.  MAP13 

Table B.13. Frequency allocation tables for MAP13. All numbers in the table represent 

frequencies in Hz. LF: Low cut-off Frequency, CF: Center Frequency, and UF: Upper cut-off 

Frequency. Channels marked with hyphen were de-activated. 

 

 
Clinical  Image  Custom 

 
LF CF UF  CF  LF CF UF 

1 188 250 313  1101  500 625 750 

2 313 375 438  1305  750 875 1038 

3 438 500 563  1508  1038 1200 1400 

4 563 625 688  1703  1400 1600 1800 

5 688 750 813  1999  1800 1999 2133 

6 813 875 938  2267  2133 2267 2397 

7 938 1000 1063  2526  2397 2526 2666 

8 1063 1125 1188  2806  2666 2806 3083 

9 1188 1250 1313  3150  3083 3360 3488 

10 1313 1438 1563  3569  3488 3617 3753 

11 1563 1688 1813  3842  3753 3890 4035 

12 1813 1938 2063  4182  4035 4180 4334 

13 2063 2188 2313  4710  4334 4488 4651 

14 2313 2500 2688  5294  - - - 

15 2688 2875 3063  5872  4651 4814 4988 

16 3063 3313 3563  7116  4988 5161 5346 

17 3563 3813 4063  8877  5346 5530 5726 

18 4063 4375 4688  10678  5726 5921 6129 

19 4688 5000 5313  12277  6129 6337 6557 

20 5313 5688 6063  13803  6557 6778 7012 

21 6063 6500 6938  14708  7012 7246 7495 

22 6938 7438 7938  15670  7495 7744 7993 
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Analysis: 2-way repeated measures ANOVA: 

Effect of condition: Significant F[3, 6] = 49.521 p < 0.001 

Effect of speech material: Significant F[3, 6] = 46.897 p < 0.001 

Interaction (condition × speech material): Significant F[9, 18] = 7.225 p < 0.001 

 

Pairwise LSD comparisons: 

     Consonants      Vowels       Sentences Quiet     Sentences Noise 
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Significantly different pair is marked with asterisk. 

 

 

Figure B.13. MAP13 - Average speech recognition scores for MAP13 tested with 3 NH listeners. 
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B.14.  MAP14 

Table B.14. Frequency allocation tables for MAP14. All numbers in the table represent 

frequencies in Hz. LF: Low cut-off Frequency, CF: Center Frequency, and UF: Upper cut-off 

Frequency. Channels marked with hyphen were de-activated. 

 

 
Clinical  Image  Custom 

 
LF CF UF  CF  LF CF UF 

1 188 250 313  1201  500 625 750 

2 313 375 438  1349  - - - 

3 438 500 563  1438  - - - 

4 563 625 688  1531  750 875 1138 

5 688 750 813  1755  1138 1400 1686 

6 813 875 938  1971  1686 1971 2183 

7 938 1000 1063  2145  - -  

8 1063 1125 1188  2394  2183 2394 2494 

9 1188 1250 1313  2594  2494 2594 2719 

10 1313 1438 1563  2843  2719 2843 3154 

11 1563 1688 1813  3271  - - - 

12 1813 1938 2063  3658  3154 3464 3633 

13 2063 2188 2313  4033  - - - 

14 2313 2500 2688  4439  3633 3802 3985 

15 2688 2875 3063  4879  3985 4168 4365 

16 3063 3313 3563  5481  4365 4562 4774 

17 3563 3813 4063  6146  4774 4987 5216 

18 4063 4375 4688  7196  5216 5446 5694 

19 4688 5000 5313  9899  5694 5942 6209 

20 5313 5688 6063  11269  6209 6476 6765 

21 6063 6500 6938  12813  6765 7054 7365 

22 6938 7438 7938  14401  7365 7677 7988 
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Analysis: 2-way repeated measures ANOVA: 

Effect of condition: Significant F[3, 6] = 256.664 p < 0.001 

Effect of speech material: Significant F[3, 6] = 14.550 p = 0.004 

Interaction (condition × speech material): Significant F[9, 18] = 3.724 p = 0.008 

 

Pairwise LSD comparisons: 
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Significantly different pair is marked with asterisk. 

 

 

Figure B.14. MAP14 - Average speech recognition scores for MAP14 tested with 3 NH listeners. 



 

 

 

 

 

 
 

227 

REFERENCES 

 

[1] A. Volta, "On the electricity excited by mere contact of conducting substances of different 

kinds," Philosophical Transactions of the Royal Society of London, vol. 90, pp. 403-431, 

January; 1, 1800.  

[2] R. Finn, A. Hudspeth James, J. Zwislocki, E. Young and M. Merzenich, "Sound from silence: 

The development of cochlear implants," Beyond Discovery: The Path from Research to 

Human Benefit, pp. 1-8, 1998.  

[3] F. Zeng, "Auditory prostheses: Past, present, and future," in Cochlear Implants: Auditory 

Prostheses and Electric Hearing, F. Zeng, A. Popper N. and R. Fay R., Eds. New York: 

Springer-Verlag, 2004, pp. 1-6. 

[4] B. S. Wilson and M. F. Dorman, "Interfacing Sensors With the Nervous System: Lessons 

From the Development and Success of the Cochlear Implant," IEEE Sensor, vol. 8, pp. 131-

147, 2008.  

[5] M. D. Eisen, "The history of cochlear implants," in Cochlear Implants Principles & 

Practices, Second edition ed., J. K. Niparko, Ed. Philadelphia: Lippincott Williams & 

Wilkins, 2009, pp. 89-93. 

[6] Anonymous "NIDCD fact sheet: Cochlear implants," NIDCD, NIH, Tech. Rep. NIH 

Publication No. 11-4798, 2013. 

[7] Anonymous "NIDCD fact sheet: Cochlear implants," NIDCD, NIH, Tech. Rep. NIH 

Publication No. 11-4798, 2011. 

[8] Fan-Gang Zeng, S. Rebscher, W. Harrison, Xiaoan Sun and Haihong Feng, "Cochlear 

Implants: System Design, Integration, and Evaluation," Biomedical Engineering, IEEE 

Reviews In, vol. 1, pp. 115-142, 2008.  

[9] (October 17, 2015). PUBMED - Annual number of scientific publications in the field of 

cochlear implants. Available: http://www.pubmed.gov. 

[10] B. S. Wilson and M. F. Dorman, "Cochlear implants: a remarkable past and a brilliant 

future," Hear. Res., vol. 242, pp. 3-21, 06/22, 2008.  

http://www.pubmed.gov/


228 

 

[11] B. S. Wilson and M. F. Dorman, "The design of cochlear implants," in Cochlear Implants 

Principles & Practices, Second edition ed., J. K. Niparko, Ed. Philadelphia: Lippincott 

Williams & Wilkins, 2009, pp. 95-135. 

[12] R. V. Shannon, Q. J. Fu and J. Galvin 3rd, "The number of spectral channels required for 

speech recognition depends on the difficulty of the listening situation," Acta Otolaryngol. 

Suppl., vol. (552), pp. 50-54, May, 2004.  

[13] L. M. Friesen, R. V. Shannon, D. Baskent and X. Wang, "Speech recognition in noise as a 

function of the number of spectral channels: comparison of acoustic hearing and cochlear 

implants," J. Acoust. Soc. Am., vol. 110, pp. 1150-1163, Aug, 2001.  

[14] M. F. Dorman and A. J. Spahr, "Speech perception by adults with mutlichannel cochlear 

implants," in , Second eitition ed.Anonymous New York: Thieme Medical Publishers, 2006, 

pp. 193-204. 

[15] C. Garnham, M. O'Driscoll, R. Ramsden And and S. Saeed, "Speech understanding in noise 

with a Med-El COMBI 40+ cochlear implant using reduced channel sets," Ear Hear., vol. 

23, pp. 540-552, Dec, 2002.  

[16] B. S. Wilson, C. C. Finley, D. T. Lawson and M. Zerbi, "Temporal representations with 

cochlear implants," Am. J. Otol., vol. 18, pp. S30-4, Nov, 1997.  

[17] B. R. Glasberg and B. C. Moore, "Derivation of auditory filter shapes from notched-noise 

data," Hear. Res., vol. 47, pp. 103-138, Aug 1, 1990.  

[18] B. C. Moore, "Coding of sounds in the auditory system and its relevance to signal 

processing and coding in cochlear implants," Otol. Neurotol., vol. 24, pp. 243-254, Mar, 

2003.  

[19] T. Balkany, A. Hodges, C. Menapace, L. Hazard, C. Driscoll, B. Gantz, D. Kelsall, W. 

Luxford, S. McMenomy, J. G. Neely, B. Peters, H. Pillsbury, J. Roberson, D. Schramm, S. 

Telian, S. Waltzman, B. Westerberg and S. Payne, "Nucleus Freedom North American 

Clinical Trial," Otolaryngology -- Head and Neck Surgery, vol. 136, pp. 757-762, May 01, 

2007.  

[20] D. B. Koch, M. J. Osberger, P. Segel and D. Kessler, "HiResolutionTM and Conventional 

Sound Processing in the HiResolutionTM Bionic Ear: Using Appropriate Outcome Measures 

to Assess Speech Recognition Ability," Audiol Neurotol, vol. 9, pp. 214-223, 2004.  

[21] C. Arnoldner, D. Riss, M. Brunner, M. Durisin, W. Baumgartner and >. Hamzavi, "Speech 

and music perception with the new fine structure speech coding strategy: preliminary 

results," Acta Otolaryngol., vol. 127, pp. 1298-1303, 01/01; 2015/10, 2007.  



229 

 

[22] A. J. Spahr, M. F. Dorman and L. H. Loiselle, "Performance of Patients Using Different 

Cochlear Implant Systems: Effects of Input Dynamic Range," Ear Hear., vol. 28, 2007.  

[23] J. B. Firszt, L. K. Holden, M. W. Skinner, E. A. Tobey, A. Peterson, W. Gaggl, C. Runge-

Samuelson and P. A. Wackym, "Recognition of Speech Presented at Soft to Loud Levels by 

Adult Cochlear Implant Recipients of Three Cochlear Implant Systems," Ear Hear., vol. 25, 

2004.  

[24] P. Blamey, P. Arndt, F. Bergeron, G. Bredberg, J. Brimacombe, G. Facer, J. Larky, B. 

Lindstrom, J. Nedzelski, A. Peterson, D. Shipp, S. Staller and L. Whitford, "Factors 

affecting auditory performance of postlinguistically deaf adults using cochlear implants," 

Audiol. Neurootol., vol. 1, pp. 293-306, Sep-Oct, 1996.  

[25] D. B. Pisoni, M. Cleary, A. E. Geers and E. A. Tobey, "Individual Differences in 

Effectiveness of Cochlear Implants in Children Who Are Prelingually Deaf: New Process 

Measures of Performance," Volta Rev., vol. 101, pp. 111-164, 1999.  

[26] D. B. Pisoni, "Cognitive factors and cochlear implants: some thoughts on perception, 

learning, and memory in speech perception," Ear Hear., vol. 21, pp. 70-78, Feb, 2000.  

[27] A. Kral and J. Tillein, "Brain plasticity under cochlear implant stimulation," Adv. 

Otorhinolaryngol., vol. 64, pp. 89-108, 2006.  

[28] J. B. Fallon, D. R. Irvine and R. K. Shepherd, "Cochlear implants and brain plasticity," 

Hear. Res., vol. 238, pp. 110-117, Apr, 2008.  

[29] D. S. Lazard, C. Vincent, F. Venail, P. Van de Heyning, E. Truy, O. Sterkers, P. H. 

Skarzynski, H. Skarzynski, K. Schauwers, S. O'Leary, D. Mawman, B. Maat, A. Kleine-

Punte, A. M. Huber, K. Green, P. J. Govaerts, B. Fraysse, R. Dowell, N. Dillier, E. Burke, 

A. Beynon, F. Bergeron, D. Baskent, F. Artieres and P. J. Blamey, "Pre-, per- and 

postoperative factors affecting performance of postlinguistically deaf adults using cochlear 

implants: a new conceptual model over time," PLoS One, vol. 7, pp. e48739, 2012.  

[30] L. K. Holden, C. C. Finley, J. B. Firszt, T. A. Holden, C. Brenner, L. G. Potts, B. D. Gotter, 

S. S. Vanderhoof, K. Mispagel, G. Heydebrand and M. W. Skinner, "Factors affecting open-

set word recognition in adults with cochlear implants," Ear Hear., vol. 34, pp. 342-360, 

May-Jun, 2013.  

[31] P. Blamey, F. Artieres, D. Baskent, F. Bergeron, A. Beynon, E. Burke, N. Dillier, R. 

Dowell, B. Fraysse, S. Gallego, P. J. Govaerts, K. Green, A. M. Huber, A. Kleine-Punte, B. 

Maat, M. Marx, D. Mawman, I. Mosnier, A. F. O'Connor, S. O'Leary, A. Rousset, K. 

Schauwers, H. Skarzynski, P. H. Skarzynski, O. Sterkers, A. Terranti, E. Truy, P. Van de 

Heyning, F. Venail, C. Vincent and D. S. Lazard, "Factors affecting auditory performance of 



230 

 

postlinguistically deaf adults using cochlear implants: an update with 2251 patients," Audiol. 

Neurootol., vol. 18, pp. 36-47, 2013.  

[32] M. Lenarz, G. Joseph, H. Sönmez, A. Büchner and T. Lenarz, "Effect of technological 

advances on cochlear implant performance in adults," Laryngoscope, vol. 121, pp. 2634-

2640, 2011.  

[33] G. M. Clark, P. J. Blamey, A. M. Brown, P. A. Gusby, R. C. Dowell, B. K. Franz, B. C. 

Pyman, R. K. Shepherd, Y. C. Tong and R. L. Webb, "The University of Melbourne--

nucleus multi-electrode cochlear implant," Adv. Otorhinolaryngol., vol. 38, pp. V-IX, 1-181, 

1987.  

[34] P. M. Seligman, J. F. Patrick, Y. C. Tong, G. M. Clark, R. C. Dowell and P. A. Crosby, "A 

signal processor for a multiple-electrode hearing prosthesis," Acta Otolaryngol. Suppl., vol. 

411, pp. 135-139, 1984.  

[35] P. J. Blamey, R. C. Dowell, G. M. Clark and P. M. Seligman, "Acoustic parameters 

measured by a formant-estimating speech processor for a multiple-channel cochlear 

implant," J. Acoust. Soc. Am., vol. 82, pp. 38-47, Jul, 1987.  

[36] R. C. Dowell, P. M. Seligman, P. J. Blamey and G. M. Clark, "Evaluation of a two-formant 

speech-processing strategy for a multichannel cochlear prosthesis," Annals of Otology, 

Rhinology & Laryngology, vol. 96, pp. 132-134, 1987.  

[37] J. F. Patrick and G. M. Clark, "The Nucleus 22-channel cochlear implant system," Ear 

Hear., vol. 12, pp. 3S-9S, Aug, 1991.  

[38] E. L. von Wallenberg and R. D. Battmer, "Comparative speech recognition results in eight 

subjects using two different coding strategies with the Nucleus 22 channel cochlear 

implant," Br. J. Audiol., vol. 25, pp. 371-380, Dec, 1991.  

[39] R. C. Dowell, P. W. Dawson, S. J. Dettman, R. K. Shepherd, L. A. Whitford, P. M. 

Seligman and G. M. Clark, "Multichannel cochlear implantation in children: a summary of 

current work at the University of Melbourne," Am. J. Otol., vol. 12 Suppl, pp. 137-143, 

1991.  

[40] M. W. Skinner, L. K. Holden, T. A. Holden, R. C. Dowell, P. M. Seligman, J. A. 

Brimacombe and A. L. Beiter, "Performance of postlinguistically deaf adults with the 

Wearable Speech Processor (WSP III) and Mini Speech Processor (MSP) of the Nucleus 

Multi-Electrode Cochlear Implant," Ear Hear., vol. 12, pp. 3-22, Feb, 1991.  

[41] D. K. Eddington, "Speech discrimination in deaf subjects with cochlear implants," J. 

Acoust. Soc. Am., vol. 68, pp. 885-891, Sep, 1980.  



231 

 

[42] M. F. Dorman, M. T. Hannley, K. Dankowski, L. Smith and G. McCandless, "Word 

recognition by 50 patients fitted with the Symbion multichannel cochlear implant," Ear 

Hear., vol. 10, pp. 44-49, Feb, 1989.  

[43] H. W. Dudley, "The Vocoder," vol. 18, pp. 122-126, 1939.  

[44] B. S. Wilson, C. C. Finley, D. T. Lawson, R. D. Wolford, D. K. Eddington and W. M. 

Rabinowitz, "Better speech recognition with cochlear implants," Nature, vol. 352, pp. 236-

238, Jul 18, 1991.  

[45] H. J. McDermott, C. M. McKay and A. E. Vandali, "A new portable sound processor for the 

University of Melbourne/Nucleus Limited multielectrode cochlear implant," J. Acoust. Soc. 

Am., vol. 91, pp. 3367-3371, Jun, 1992.  

[46] P. Seligman and H. McDermott, "Architecture of the Spectra 22 speech processor," Ann. 

Otol. Rhinol. Laryngol. Suppl., vol. 166, pp. 139-141, Sep, 1995.  

[47] J. Kiefer, S. Hohl, E. Sturzebecher, T. Pfennigdorff and W. Gstoettner, "Comparison of 

speech recognition with different speech coding strategies (SPEAK, CIS, and ACE) and 

their relationship to telemetric measures of compound action potentials in the nucleus CI 

24M cochlear implant system," Audiology, vol. 40, pp. 32-42, Jan-Feb, 2001.  

[48] A. E. Vandali, L. A. Whitford, K. L. Plant and G. M. Clark, "Speech perception as a 

function of electrical stimulation rate: using the Nucleus 24 cochlear implant system," Ear 

Hear., vol. 21, pp. 608-624, Dec, 2000.  

[49] W. Noguiera, A. Buchner, T. Lenarz and B. and Edler, "A psychoacoustic ‘nofm’-type 

speech coding strategy for cochlear implants," EURASIP J. Appl. Signal Process., vol. 18, 

pp. 3044-3059, 2005.  

[50] A. Buchner, W. Nogueira, B. Edler, R. D. Battmer and T. Lenarz, "Results from a 

psychoacoustic model-based strategy for the nucleus-24 and freedom cochlear implants," 

Otol. Neurotol., vol. 29, pp. 189-192, Feb, 2008.  

[51] I. Hochmair, P. Nopp, C. Jolly, M. Schmidt, H. Schosser, C. Garnham and I. Anderson, 

"MED-EL Cochlear implants: state of the art and a glimpse into the future," Trends Amplif, 

vol. 10, pp. 201-219, Dec, 2006.  

[52] D. Riss, J. S. Hamzavi, A. Selberherr, A. Kaider, M. Blineder, V. Starlinger, W. Gstoettner 

and C. Arnoldner, "Envelope versus fine structure speech coding strategy: a crossover 

study," Otol. Neurotol., vol. 32, pp. 1094-1101, Sep, 2011.  

[53] J. Muller, S. Brill, R. Hagen, A. Moeltner, S. J. Brockmeier, T. Stark, S. Helbig, J. Maurer, 

T. Zahnert, C. Zierhofer, P. Nopp and I. Anderson, "Clinical trial results with the MED-EL 



232 

 

fine structure processing coding strategy in experienced cochlear implant users," ORL J. 

Otorhinolaryngol. Relat. Spec., vol. 74, pp. 185-198, 2012.  

[54] B. S. Wilson, D. T. Lawson, M. Zerbi and C. C. Finley, "Speech processors for auditory 

prostheses: Virtual channel interleaved sampling (VCIS) processors-initial studies with 

subject SR2," Neural Prosthesis Program, National Institutes of Health (NIH), Bethesda 

(MD), Tech. Rep. First Quarterly Progress Report, NIH project N01-DC-2-2401, 1992. 

[55] W. Nogueira, A. Buechner, J. Ostermann and B. Edler, "Signal processing strategies for 

cochlear implants using current steering," in Voice Communication 

(SprachKommunikation), 2008 ITG Conference On, 2008, pp. 1-4. 

[56] G. S. Donaldson, P. K. Dawson and L. Z. Borden, "Within-subjects comparison of the 

HiRes and Fidelity120 speech processing strategies: speech perception and its relation to 

place-pitch sensitivity," Ear Hear., vol. 32, pp. 238-250, Mar-Apr, 2011.  

[57] F. Zeng, S. Rebsher, W. Harrison, X. Sun and H. Feng, "Cochlear Implants: System Design, 

Integration, and Evaluation," IEEE Reviews in Biomedical Engineering, vol. 1, pp. 115-142, 

2008.  

[58] J. H. L. Hansen, "Speech enhancement," in Wiley Encyclopedia of Electrical and 

Electronics EngineeringAnonymous John Wiley & Sons, Inc., 2001, . 

[59] P. C. Loizou, Speech Enhancement: Theory and Practice, Second Edition. CRC Press, 2013. 

[60] P. J. Blamey, "Adaptive dynamic range optimization (ADRO): a digital amplification 

strategy for hearing aids and cochlear implants," Trends Amplif, vol. 9, pp. 77-98, 2005.  

[61] P. W. Dawson, J. A. Decker and C. E. Psarros, "Optimizing dynamic range in children using 

the nucleus cochlear implant," Ear Hear., vol. 25, pp. 230-241, Jun, 2004.  

[62] P. Blamey, C. J. James, H. J. McDermott, L. Martin and K. Wildi, "Adaptive dynamic range 

optimization sound processor," International Patent Application PCT/ AU99/00076, U.S. 

Patent Application 09/478,022, 07/12, 1999. 

[63] Anonymous "ClearVoice clinical results white paper," Advanced Bionics, 2012. 

[64] H. Ali, O. Hazrati, E. A. Tobey and J. H. Hansen, "Evaluation of adaptive dynamic range 

optimization in adverse listening conditions for cochlear implants," J. Acoust. Soc. Am., vol. 

136, pp. EL242, Sep, 2014.  

[65] D. D. Greenwood. Critical bandwidth and the frequency coordinates of the basilar 

membrane. J. Acoust. Soc. Am. 33(10), pp. 1344-1356. 1961. . DOI: 

http://dx.doi.org/10.1121/1.1908437. 

http://dx.doi.org/10.1121/1.1908437


233 

 

[66] D. D. Greenwood. A cochlear frequency‐position function for several species—29 years 

later. J. Acoust. Soc. Am. 87(6), pp. 2592-2605. 1990. . DOI: 

http://dx.doi.org/10.1121/1.399052. 

[67] R. Glueckert, K. Pfaller, A. Kinnefors, H. Rask-Andersen and A. Schrott-Fischer, "The 

human spiral ganglion: new insights into ultrastructure, survival rate and implications for 

cochlear implants," Audiol. Neurootol., vol. 10, pp. 258-273, Sep-Oct, 2005.  

[68] I. Hochmair, W. Arnold, P. Nopp, C. Jolly, J. Muller and P. Roland, "Deep electrode 

insertion in cochlear implants: apical morphology, electrodes and speech perception results," 

Acta Otolaryngol., vol. 123, pp. 612-617, Jun, 2003.  

[69] J. Otte, H. F. Schunknecht and A. G. Kerr, "Ganglion cell populations in normal and 

pathological human cochleae. Implications for cochlear implantation," Laryngoscope, vol. 

88, pp. 1231-1246, Aug, 1978.  

[70] J. B. Nadol Jr, "Patterns of neural degeneration in the human cochlea and auditory nerve: 

implications for cochlear implantation," Otolaryngol. Head. Neck. Surg., vol. 117, pp. 220-

228, Sep, 1997.  

[71] A. Kawano, H. L. Seldon and G. M. Clark, "Computer-aided three-dimensional 

reconstruction in human cochlear maps: measurement of the lengths of organ of Corti, outer 

wall, inner wall, and Rosenthal's canal," Ann. Otol. Rhinol. Laryngol., vol. 105, pp. 701-709, 

Sep, 1996.  

[72] E. Erixon, H. Hogstorp, K. Wadin and H. Rask-Andersen, "Variational anatomy of the 

human cochlea: implications for cochlear implantation," Otol. Neurotol., vol. 30, pp. 14-22, 

Jan, 2009.  

[73] S. Biedron, M. Westhofen and J. Ilgner, "On the number of turns in human cochleae," Otol. 

Neurotol., vol. 30, pp. 414-417, Apr, 2009.  

[74] O. Stakhovskaya, D. Sridhar, B. H. Bonham and P. A. Leake, "Frequency Map for the 

Human Cochlear Spiral Ganglion: Implications for Cochlear Implants," J. Assoc. Res. 

Otolaryngol., vol. 8, pp. 220-233, Jun, 2007.  

[75] W. R. TIFFANY and D. N. BENNETT, "Intelligibility of slow-played speech," J. Speech 

Hear. Res., vol. 4, pp. 248-258, Sep, 1961.  

[76] R. G. Daniloff, T. H. Shriner and W. R. Zemlin. Intelligibility of vowels altered in duration 

and frequency. J. Acoust. Soc. Am. 44(3), pp. 700-707. 1968. . DOI: 

http://dx.doi.org/10.1121/1.1911164. 

http://dx.doi.org/10.1121/1.399052
http://dx.doi.org/10.1121/1.1911164


234 

 

[77] M. Nagafuchi, "Intelligibility of distorted speech sounds shifted in frequency and time in 

normal children," Audiology, vol. 15, pp. 326-337, Jul-Aug, 1976.  

[78] C. M. Reed, B. L. Hicks, L. D. Braida and N. I. Durlach, "Discrimination of speech 

processed by low-pass filtering and pitch-invariant frequency lowering," J. Acoust. Soc. 

Am., vol. 74, pp. 409-419, Aug, 1983.  

[79] D. S. Beasley, N. L. Mosher and D. J. Orchik, "Use of frequency-shifted/time-compressed 

speech with hearing-impaired children," Audiology, vol. 15, pp. 395-406, Sep-Oct, 1976.  

[80] L. D. Braida, N. I. Durlach, R. P. Lippmann, B. L. Hicks, W. M. Rabinowitz and C. M. 

Reed, "Hearing aids--a review of past research on linear amplification, amplitude 

compression, and frequency lowering," ASHA Monogr., vol. (19), pp. 1-114, Apr, 1979.  

[81] M. F. Dorman, P. C. Loizou and D. Rainey. Simulating the effect of cochlear-implant 

electrode insertion depth on speech understanding. J. Acoust. Soc. Am. 102(5), pp. 2993-

2996. 1997. . DOI: http://dx.doi.org/10.1121/1.420354. 

[82] Q. J. Fu and R. V. Shannon, "Recognition of spectrally degraded and frequency-shifted 

vowels in acoustic and electric hearing," J. Acoust. Soc. Am., vol. 105, pp. 1889-1900, Mar, 

1999.  

[83] R. V. Shannon, F. G. Zeng and J. Wygonski, "Speech recognition with altered spectral 

distribution of envelope cues," J. Acoust. Soc. Am., vol. 104, pp. 2467-2476, Oct, 1998.  

[84] D. Baskent and R. V. Shannon, "Speech recognition under conditions of frequency-place 

compression and expansion," J. Acoust. Soc. Am., vol. 113, pp. 2064-2076, Apr, 2003.  

[85] D. Baskent and R. V. Shannon, "Frequency-place compression and expansion in cochlear 

implant listeners," J. Acoust. Soc. Am., vol. 116, pp. 3130-3140, Nov, 2004.  

[86] D. Baskent and R. V. Shannon, "Interactions between cochlear implant electrode insertion 

depth and frequency-place mapping," J. Acoust. Soc. Am., vol. 117, pp. 1405-1416, Mar, 

2005.  

[87] D. Baskent and R. V. Shannon, "Combined effects of frequency compression-expansion and 

shift on speech recognition," Ear Hear., vol. 28, pp. 277-289, Jun, 2007.  

[88] ANSI, "American National Standard Methods for Calculation of the Speech Intelligibility 

Index," ANSI S3. 5 American National Standards Institute, New York, 1997.  

[89] M. J. Goupell, B. Laback, P. Majdak and W. D. Baumgartner, "Effects of upper-frequency 

boundary and spectral warping on speech intelligibility in electrical stimulation," J. Acoust. 

Soc. Am., vol. 123, pp. 2295-2309, Apr, 2008.  

http://dx.doi.org/10.1121/1.420354


235 

 

[90] S. Rosen, A. Faulkner and L. Wilkinson, "Adaptation by normal listeners to upward spectral 

shifts of speech: implications for cochlear implants," J. Acoust. Soc. Am., vol. 106, pp. 

3629-3636, Dec, 1999.  

[91] C. L. De Filippo and B. L. Scott, "A method for training and evaluating the reception of 

ongoing speech," J. Acoust. Soc. Am., vol. 63, pp. 1186-1192, Apr, 1978.  

[92] J. D. Harnsberger, M. A. Svirsky, A. R. Kaiser, D. B. Pisoni, R. Wright and T. A. Meyer, 

"Perceptual "vowel spaces" of cochlear implant users: implications for the study of auditory 

adaptation to spectral shift," J. Acoust. Soc. Am., vol. 109, pp. 2135-2145, May, 2001.  

[93] Q. J. Fu, R. V. Shannon and J. J. Galvin 3rd, "Perceptual learning following changes in the 

frequency-to-electrode assignment with the Nucleus-22 cochlear implant," J. Acoust. Soc. 

Am., vol. 112, pp. 1664-1674, Oct, 2002.  

[94] A. Faulkner, S. Rosen and D. Stanton, "Simulations of tonotopically mapped speech 

processors for cochlear implant electrodes varying in insertion depth," J. Acoust. Soc. Am., 

vol. 113, pp. 1073-1080, Feb, 2003.  

[95] A. Faulkner, S. Rosen and C. Norman, "The right information may matter more than 

frequency-place alignment: simulations of frequency-aligned and upward shifting cochlear 

implant processors for a shallow electrode array insertion," Ear Hear., vol. 27, pp. 139-152, 

Apr, 2006.  

[96] C. M. Siciliano, A. Faulkner, S. Rosen and K. Mair, "Resistance to learning binaurally 

mismatched frequency-to-place maps: implications for bilateral stimulation with cochlear 

implants," J. Acoust. Soc. Am., vol. 127, pp. 1645-1660, Mar, 2010.  

[97] J. P. J. Pinel, Biopsychology. Pearson, 2014. 

[98] T. Li, J. J. Galvin 3rd and Q. J. Fu, "Interactions between unsupervised learning and the 

degree of spectral mismatch on short-term perceptual adaptation to spectrally shifted 

speech," Ear Hear., vol. 30, pp. 238-249, Apr, 2009.  

[99] Q. J. Fu and J. J. Galvin 3rd, "Perceptual learning and auditory training in cochlear implant 

recipients," Trends Amplif, vol. 11, pp. 193-205, Sep, 2007.  

[100] M. A. Svirsky, T. M. Talavage, S. Sinha, H. Neuburger and M. Azadpour, "Gradual 

adaptation to auditory frequency mismatch," Hear. Res., vol. 322, pp. 163-170, Apr, 2015.  

[101] G. Parikh and P. C. Loizou, "The influence of noise on vowel and consonant cues," J. 

Acoust. Soc. Am., vol. 118, pp. 3874-3888, Dec, 2005.  



236 

 

[102] L. A. Reiss, C. W. Turner, S. R. Erenberg and B. J. Gantz, "Changes in pitch with a 

cochlear implant over time," J. Assoc. Res. Otolaryngol., vol. 8, pp. 241-257, Jun, 2007.  

[103] L. A. Reiss, B. J. Gantz and C. W. Turner, "Cochlear implant speech processor frequency 

allocations may influence pitch perception," Otol. Neurotol., vol. 29, pp. 160-167, Feb, 

2008.  

[104] L. A. Reiss, M. W. Lowder, S. A. Karsten, C. W. Turner and B. J. Gantz, "Effects of 

extreme tonotopic mismatches between bilateral cochlear implants on electric pitch 

perception: a case study," Ear Hear., vol. 32, pp. 536-540, Jul-Aug, 2011.  

[105] J. H. Noble, R. F. Labadie, O. Majdani and B. M. Dawant, "Automatic segmentation of 

intracochlear anatomy in conventional CT," IEEE Trans. Biomed. Eng., vol. 58, pp. 2625-

2632, Sep, 2011.  

[106] J. H. Noble, R. F. Labadie, R. H. Gifford and B. M. Dawant, "Image-guidance enables new 

methods for customizing cochlear implant stimulation strategies," IEEE Trans. Neural Syst. 

Rehabil. Eng., vol. 21, pp. 820-829, Sep, 2013.  

[107] J. H. Noble, R. H. Gifford, A. J. Hedley-Williams, B. M. Dawant and R. F. Labadie, 

"Clinical evaluation of an image-guided cochlear implant programming strategy," Audiol. 

Neurootol., vol. 19, pp. 400-411, 2014.  

[108] D. R. Ketten, M. W. Skinner, G. Wang, M. W. Vannier, G. A. Gates and J. G. Neely, "In 

vivo measures of cochlear length and insertion depth of nucleus cochlear implant electrode 

arrays," Ann. Otol. Rhinol. Laryngol. Suppl., vol. 175, pp. 1-16, Nov, 1998.  

[109] M. W. Skinner, D. R. Ketten, L. K. Holden, G. W. Harding, P. G. Smith, G. A. Gates, J. G. 

Neely, G. R. Kletzker, B. Brunsden and B. Blocker, "CT-derived estimation of cochlear 

morphology and electrode array position in relation to word recognition in Nucleus-22 

recipients," J. Assoc. Res. Otolaryngol., vol. 3, pp. 332-350, Sep, 2002.  

[110] L. T. Cohen, P. A. Busby, L. A. Whitford and G. M. Clark, "Cochlear implant place 

psychophysics 1. Pitch estimation with deeply inserted electrodes," Audiol. Neurootol., vol. 

1, pp. 265-277, Sep-Oct, 1996.  

[111] Anonymous "IEEE Recommnded Pratice for Speech Quality Measurements," Audio and 

Electroacoustics, IEEE Transactions On, vol. 17, pp. 225-246, 1969.  

[112] J. Hillenbrand, L. A. Getty, M. J. Clark and K. Wheeler. Acoustic characteristics of 

american english vowels. J. Acoust. Soc. Am. 97(5), pp. 3099-3111. 1995. . DOI: 

http://dx.doi.org/10.1121/1.411872. 

http://dx.doi.org/10.1121/1.411872


237 

 

[113] Emily Shannon Fu Foundation, "Internet-based Computer-Assisted Speech Testing Open 

Platform," . 

[114] G. E. PETERSON and I. LEHISTE, "Revised CNC lists for auditory tests," J. Speech 

Hear. Disord., vol. 27, pp. 62-70, Feb, 1962.  

[115] A. J. Spahr, M. F. Dorman, L. M. Litvak, S. Van Wie, R. H. Gifford, P. C. Loizou, L. M. 

Loiselle, T. Oakes and S. Cook, "Development and validation of the AzBio sentence lists," 

Ear Hear., vol. 33, pp. 112-117, Jan-Feb, 2012.  

[116] A. J. Spahr and M. F. Dorman, "Performance of subjects fit with the Advanced Bionics CII 

and Nucleus 3G cochlear implant devices," Arch. Otolaryngol. Head. Neck. Surg., vol. 130, 

pp. 624-628, May, 2004.  

[117] Anonymous "MSTB: The new minimum speech test battery," 2011. 

[118] R. H. Gifford, A. Hedley-Williams and A. J. Spahr, "Clinical assessment of spectral 

modulation detection for adult cochlear implant recipients: a non-language based measure of 

performance outcomes," Int. J. Audiol., vol. 53, pp. 159-164, Mar, 2014.  

[119] S. Gatehouse and W. Noble, "The Speech, Spatial and Qualities of Hearing Scale (SSQ)," 

Int. J. Audiol., vol. 43, pp. 85-99, Feb, 2004.  

[120] G. Fairbanks, "Voice and articulation drillbook," in Voice and Articulation Drillbook, New 

York: Harper & Row, Ed. 1969, pp. 124-139. 

[121] R. S. Tyler, J. P. Preece, C. R. Lansing, S. R. Otto and B. J. Gantz, "Previous experience as 

a confounding factor in comparing cochlear-implant processing schemes," J. Speech Hear. 

Res., vol. 29, pp. 282-287, Jun, 1986.  

[122] J. Wouters, H. J. McDermott and T. Francart, "Sound Coding in Cochlear Implants: From 

electric pulses to hearing," Signal Processing Magazine, IEEE, vol. 32, pp. 67-80, 2015.  

[123] L. Litvak, B. Delgutte and D. Eddington, "Improved neural representation of vowels in 

electric stimulation using desynchronizing pulse trains," J. Acoust. Soc. Am., vol. 114, pp. 

2099-2111, Oct, 2003.  

[124] L. M. Litvak, B. Delgutte and D. K. Eddington, "Improved temporal coding of sinusoids in 

electric stimulation of the auditory nerve using desynchronizing pulse trains," J. Acoust. 

Soc. Am., vol. 114, pp. 2079-2098, Oct, 2003.  

[125] J. C. Middlebrooks, "Effects of cochlear-implant pulse rate and inter-channel timing on 

channel interactions and thresholds," J. Acoust. Soc. Am., vol. 116, pp. 452-468, Jul, 2004.  



238 

 

[126] R. V. Shannon, R. J. Cruz and J. J. Galvin 3rd, "Effect of stimulation rate on cochlear 

implant users' phoneme, word and sentence recognition in quiet and in noise," Audiol. 

Neurootol., vol. 16, pp. 113-123, 2011.  

[127] L. M. Collins, T. A. Zwolan and G. H. Wakefield, "Comparison of electrode 

discrimination, pitch ranking, and pitch scaling data in postlingually deafened adult cochlear 

implant subjects," J. Acoust. Soc. Am., vol. 101, pp. 440-455, Jan, 1997.  

[128] T. A. Zwolan, L. M. Collins and G. H. Wakefield. Electrode discrimination and speech 

recognition in postlingually deafened adult cochlear implant subjects. J. Acoust. Soc. Am. 

102(6), pp. 3673-3685. 1997. . DOI: http://dx.doi.org/10.1121/1.420401. 

[129] S. I. Duran, "Psychophysics-based electrode selection for cochlear implant listeners," Ph. 

D. Dissertation, Duke University, 2014.  

[130] J. Wouters and J. Vanden Berghe, "Speech recognition in noise for cochlear implantees 

with a two-microphone monaural adaptive noise reduction system," Ear Hear., vol. 22, pp. 

420-430, Oct, 2001.  

[131] P. C. Loizou, "Speech processing in vocoder-centric cochlear implants," Adv. 

Otorhinolaryngol., vol. 64, pp. 109-143, 2006.  

[132] R. J. van Hoesel and G. M. Clark, "Evaluation of a portable two-microphone adaptive 

beamforming speech processor with cochlear implant patients," J. Acoust. Soc. Am., vol. 97, 

pp. 2498-2503, Apr, 1995.  

[133] P. C. Loizou, Speech Enhancement – Theory and Practice. CRC Press, 2012. 

[134] Y. Hu, P. C. Loizou, N. Li and K. Kasturi, "Use of a sigmoidal-shaped function for noise 

attenuation in cochlear implants," J. Acoust. Soc. Am., vol. 122, pp. EL128-34, Oct, 2007.  

[135] Y. Hu and P. C. Loizou, "A new sound coding strategy for suppressing noise in cochlear 

implants," J. Acoust. Soc. Am., vol. 124, pp. 498-509, Jul, 2008.  

[136] R. C. Dowell, D. J. Mecklenburg and G. M. Clark, "Speech recognition for 40 patients 

receiving multichannel cochlear implants," Arch. Otolaryngol. Head. Neck. Surg., vol. 112, 

pp. 1054-1059, Oct, 1986.  

[137] P. C. Loizou, "Mimicking the human ear," Signal Processing Magazine, IEEE, vol. 15, pp. 

101-130, 1998.  

[138] I. Cohen, "Noise spectrum estimation in adverse environments: improved minima 

controlled recursive averaging," Speech and Audio Processing, IEEE Transactions On, vol. 

11, pp. 466-475, 2003.  

http://dx.doi.org/10.1121/1.420401


239 

 

[139] H. Ali, A. P. Lobo and P. C. Loizou, "Design and Evaluation of a Personal Digital 

Assistant-based Research Platform for Cochlear Implants," Biomedical Engineering, IEEE 

Transactions On, vol. 60, pp. 3060-3073, 2013.  

[140] L. F. A. Martin, P. J. Blamey, C. J. James, K. L. Galvin and D. Macfarlane, "Adaptive 

dynamic range optimization for hearing aids," Acoust. Australia, vol. 29, pp. 21-24, 2001.  

[141] C. J. James, P. J. Blamey, L. Martin, B. Swanson, Y. Just and D. Macfarlane, "Adaptive 

dynamic range optimization for cochlear implants: a preliminary study," Ear Hear., vol. 23, 

pp. 49S-58S, Feb, 2002.  

[142] T. Iwaki, P. Blamey and T. Kubo, "Bimodal studies using adaptive dynamic range 

optimization (ADRO) technology," Int. J. Audiol., vol. 47, pp. 311-318, Jun, 2008.  

[143] M. L. Hughes, C. J. Brown, P. J. Abbas, A. A. Wolaver and J. P. Gervais, "Comparison of 

EAP thresholds with MAP levels in the nucleus 24 cochlear implant: data from children," 

Ear Hear., vol. 21, pp. 164-174, Apr, 2000.  

[144] O. Hazrati, "Development of dereverberation algorithms for improved speech intelligibility 

by cochlear implant users," Ph. D. Dissertation, University of Texas, Dallas, TX, 2012.  

[145] A. K. Nabelek, T. R. Letowski and F. M. Tucker, "Reverberant overlap- and self-masking 

in consonant identification," J. Acoust. Soc. Am., vol. 86, pp. 1259-1265, Oct, 1989.  

[146] O. Hazrati and P. C. Loizou, "The combined effects of reverberation and noise on speech 

intelligibility by cochlear implant listeners," Int. J. Audiol., vol. 51, pp. 437-443, Jun, 2012.  

[147] American National Standards Institute, "Acoustical Performance Criteria, Design 

Requirements and Guidelines for Schools," ANSI S12. 60 American National Standards 

Institute, New York, 2002.  

[148] P. C. Loizou, M. Dorman and J. Fitzke, "The effect of reduced dynamic range on speech 

understanding: implications for patients with cochlear implants," Ear Hear., vol. 21, pp. 25-

31, Feb, 2000.  

[149] Q. J. Fu and R. V. Shannon, "Effects of dynamic range and amplitude mapping on 

phoneme recognition in Nucleus-22 cochlear implant users," Ear Hear., vol. 21, pp. 227-

235, Jun, 2000.  

  

 



 

 

 

 

 

 
 

 

VITA 

Hussnain Ali was born in Sialkot, Pakistan in 1985. He received his Bachelor’s degree in 

Electrical Engineering from National University of Science & Technology (NUST) in April 

2008. Thereafter, he worked in Center for Advanced Research in Engineering, Islamabad for one 

and a half years where he worked on the development of a cardiac telemedicine system. He 

joined the Electrical Engineering department at The University of Texas of Dallas in January 

2010 to undertake graduate studies. He received his Master of Science degree in Electrical 

Engineering in 2012 under the supervision of Prof. Philipos C. Loizou. Since then he has been 

working towards his Ph.D. degree and working as a lab manager and project supervisor on 

projects funded by NIH. His research interests include implantable and wearable medical devices 

and systems, biomedical signal processing, cochlear implants, and emerging healthcare 

technologies to improve quality of life. 

 

 


