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Abstract 
 

Various segmentation algorithms have been 
proposed for better classification of the highly 
nonstationary heart sounds. This paper proposes an 
improved segmentation technique based on Shannon 
Energy calculation of the phonocardiogram using 
adaptive windows. The major focus of the research has 
been on a simple yet comprehensive signal representation 
as well as on extracting most information from the 
Shannon energy envelogram. Earlier algorithms had a 
major disadvantage of losing the temporal resolution of 
the signal which can sometimes lead to ausculations 
unnoticed. 

First of all sinusoidal modeling of the filtered PCG is 
done. Zero crossings of the signal are detected and 
window size for the Shannon Energy calculation is 
formulated. With variable window size, Shannon Energy 
envelopes are computed. Sequence analysis is then 
performed on various features of envelopes and zero 
segments for simple classification, though aim of the 
paper is not the classifier design. The algorithm proves to 
extract details of the signal with high precision. 
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1. Introduction 

 Phonocardiography is routinely performed by 
physicians during physical examination. It is the oldest 
yet simplest and standardized technique for estimating 
heart sounds, their characteristics and any malfunctioning. 
However, the low frequency, low intensity and short 
duration of the heart sounds and vibrations make the 
analysis by human ear/hands very difficult and diagnosis 
by auscultation highly depends on the skills and 
experience of the listener [1]. Automatic analysis of the 
PCG requires signal to be appropriately segmented to 
reveal its essential characteristics. 
 The two major audible heart sounds in a normal 
cardiac cycle are the first and second heart sounds, S1 and 
S2 respectively. S1 occurs at the onset of the ventricular 
contraction during the closure of the AV-valves. It 

contains a series of low-frequency vibrations, and is 
usually the longest and loudest heart sound. S2 is heard at 
the end of the ventricular systole, during the closure of the 
semilunar valves. Typically, its frequency is higher than 
S1, and its duration is shorter. A normal cardiac period 
thus comprises of S1, the systolic period, S2 and the 
diastolic period in this sequence in time. Pathological 
conditions and abnormalities may add other sounds such 
as S3, S4, opening snaps, ejection clicks, splits, murmurs 
or stenosis into the normal cycle. S3, a third low-
frequency sound (ventricular gallop) may be heard at the 
beginning of the diastole, during the rapid filling of the 
ventricles. S4, the fourth heart sound (atrial gallop) may 
be heard in late diastole during atrial contraction. Opening 
snaps of the mitral valve or ejection sound of the blood in 
the aorta may be heard in case of valve disease (stenosis, 
regurgitation). Murmurs are high-frequency, noise-like 
sounds that are heard between the two major heart sounds 
during systole or diastole. They can be innocent, but can 
also indicate certain cardiovascular defects [2]. 

Detection of each of the components of a PCG usually 
requires a reference signal such as an electrocardiogram. 
It makes classification easier by demarcating the 
boundaries of each of the component but it increases 
system/apparatus complexity. Therefore, no reference 
signal has been used. 

In this paper sinusoidal modeling of the heart sound 
signal is done which simplifies the signal the same way as 
low pass filtering removes noise, however the major focus 
was not to remove noise but to simplify the signal for 
further analysis. Therefore, algorithm is optimized not to 
lose any meaningful information from the signal. 
Envelopes of the PCG are computed using adoptive 
windows where size of the window is determined from 
the size of every half cycle of the signal. The objective of 
the research has been on simplifying the PCG for analysis 
and using uncomplicated procedures to extract every bit 
of significant information. Algorithms are computed in 
MATLAB. Results obtained are very impressive 
especially because high temporal resolution is achieved 
and abnormalities in the PCG are highlighted. These 
aberrations could not be clarified by simple Shannon 
Energy Envelogram algorithms [1] or wavelet transform 
techniques [3] or time frequency analysis [4] of the signal. 



2. Database 

The database of normal and various pathologies of 
heart sounds have been taken from “e- general medical”.  
The sampling frequency is 11025Hz. Since normal and 
abnormal heart sounds lies inside a frequency range of 50 
to 700 Hz, signal is low pass filtered out using Chebyshev 
(type 1) filter with a cutoff frequency of 882 Hz [1]. 
Frequency components higher than this cutoff value are 
usually associated with noise. 
 
3. Methods 
 
3.1 Signal Modeling 
 

PCG is a running sequence of crests and troughs with 
multiple frequencies inside every half cycle. The objective 
is to smoothen out these crests and troughs in a way that 
every individual half cycle carries only one fundamental 
frequency and no other multiple frequencies. This is done 
by first calculating the zero crossings of the signal.  Two 
adjacent zero crossings contain either a crest or a trough. 
From this crest/trough of duration‘d’, a complete 
sinusoidal period of duration ‘2d’ is constructed by 
adding the original half cycle with a phase shifted version 
of its negative half cycle. Then its Fourier transform is 
taken and fundamental frequency ‘fo’ of the sinusoidal 
period is known. Multiple other frequencies show the 
deformation of the sinusoidal envelope due to extra, often 
irrelevant to analysis, information contained in PCG. 
These multiple frequencies are nullified and sinusoid is 
reconstructed from the fundamental frequency ‘fo’. The 
appropriate half cycle, either crest or trough is cut out and 
the original half cycle is replaced by it. This process is 
repeated for the complete duration of PCG until the entire 
signal is reconstructed.  In order to remove discontinuities 
at the ends of half cycles the complete signal is again 
passed through the same low pass Chebyshev Type 1 
filter with a cutoff frequency of 882Hz as before.  

Reconstructing half cycles rather than complete cycles 
is done so as not to lose the characteristics of the signal 
since nonstationary nature of PCG implies usually 
variable amplitudes and durations of adjacent crests and 
troughs. Figure 1(a) shows the actual phonocardiogram 
while Figure 1(b) shows the resulting sinusoidal modeling 
of the signal. As evident no clear distinction can be made 
between the two due to the resolution of the signal which 
clearly implies no lose of significant information from the 
signal. In order to elucidate the effect of modeling, a 
small segment of PCG is shown in Figure 2(a) and its 
modeled version in Figure 2(b). Here signal smoothing 
effect in each of the crests and troughs is evident, without 
any compromise on their amplitudes and durations. 

Figure  1.  (a)  Actual  Heart  Sound;    (b)  Sinosoidally 
Modeled Heart Sound 

Figure  2.  (a)  Original  PCG  segment  indicationg  S1;  (b) 
Sinosoidal Modelling of S1 segment 

3.2 Segmentation using Shannon Energy 
Envelograms 
 

Various strategies such as homomorphic filtering, AM 
demodulation, wavelet decomposition and etcetera have 
been reported in literature in order to compute 
envelogram of the phonocardiograms, however the 
uniqueness of Shannon Energy in computing envelopes 
lies in the fact that the Shannon Energy emphasizes the 
medium intensity signal and attenuates the effect of low 
intensity signal much more than that of high intensity 
signal [1]. Therefore, Shannon Energy is used as a 
calculation method for computing envelopes; however, 
this computation is done by adaptive windows in an 
innovative way. 

Instantaneous Shannon Energy is calculated as: 
Shannon Energy (t) ൌ െ݈ܽ݊݃݅ݏଶሺtሻ כ lo gሺ݈ܽ݊݃݅ݏଶሺݐሻሻ 
  



However, in order to evaluate envelopes average Shannon 
Energy is calculated in some time duration. 
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where ‘N’ is the window size in number of samples.  [1] 
has taken continuous 0.02 seconds window with 0.01 
seconds segment overlapping. In our research we have 
taken window size equal to the length of every half cycle 
encountered during sinusoidal modeling of the PCG. This 
approach calculates average Shannon Energy of every 
crest or trough encountered throughout the signal which 
reveals more information about the shape and boundaries 
of envelopes. In order to limit noise a threshold may be 
set below which energy is set to zero. PCG we used, had a 
very good SNR therefore we selected a threshold value of 
only 0.032 on a scale of 0—1. However this threshold 
may be set as a variable for the clinicians to optimize the 
algorithm under different circumstances and noise 
conditions. 
 Figure 3(a) shows the actual PCG of a normal subject. 
Figure 3(b) calculates the Shannon Energy envelopes 
using fixed sized windows (t=0.02s) while Figure 3(c) 
shows the envelopes extracted using adaptive windows 
which clearly shows extra envelope adjacent to fifth and 
seventh lobe. This however is not a pathological case 
since this extra lobe is not found throughout the signal 
and scrutinizing the signal classifies them as innocent 
murmurs. Capabilities of using adoptive windows are thus 
acknowledged in revealing more information from the 
signal. These murmurs went unnoticed as illustrated in 
Figure 3(b). This effect is even more profound in 
pathological cases. Extra information revealed, however 
leaves a tougher job for the classifier to categorize these 
lobes accurately but sequence analysis, as performed later, 
makes this job reasonably simple too. Figure 3(d) shows 
another version of improved envelogram technique. Here 
the horizontal scale is changed from number of windows 
to the number of samples and every half cycle is assumed 
to have a constant energy equal to the Shannon Energy of 
the respective window. Advantage of displaying 
information in this form is that it gives a rough idea about 
the duration of the windows i.e. by noticing the energy at 
some instance, one can observe the duration of that 
energy. It will give a rough idea of the fundamental 
frequency of that window since frequency is inversely 
proportional to the Time period; smaller window sizes 
will correspond to higher frequencies and vice versa. This 
would be a very helpful computation for analysis since 
smaller window sizes may imply murmurs and other 
pathologies. Furthermore this quantizing effect also helps 
in visualizing the correct boundaries of the envelopes, 
enabling classifier for better classification of duration of 
lobes and zero segments. Figure 3(d) is also a dc biased 
version so that the minimum value is set to zero. 

 

 

 

 
Figure  3.  (a)Actual  Heart  Sound;  (b)  Shannon  Energy 
Envelogram using fixed window size; (c) Shannon Energy 
Envelogram  using  adaptive  windows;  (d) Quantized 
version of Shannon Energy Envelogram 
  

Moving on to pathological cases, Figure 4(a) shows a 
case of Systolic Split in S1 (one  single priod is shown). 
Comparing the results of using fixed windows as in 
Figure 4(b) and that of adoptive windows, Figure 4(c), a 
clear split with zero segment is prominent in later. This 
clarity allows us to magnify signal details further and 
hence better classification can be made. 

Opening Snaps following second heart sound, are often 
mixed with S2 during analysis. Figure 5 shows such a 
case where Figure 5(a) shows the actual PCG containg 
opening snap. Figure 5(b) shows envelogram calculated 
using fixed windows while Figure 5(c) shows envelogram 
computed using adaptive windows. Figure 5(c) clearly 
demarcates S2 and opening snap boundries. Though 
Figure 5(b) does show two peaked S2 lobes but Figure 
5(c) actually seperates that lobe out of S2. Zooming in 
enables us see an actual zero segment between S2 and 
opening snap sound. Morever Figure 5(c) also gives a 
rough clue about the frequency content of the opening 
snap. Again zooming in would enable us actually 
visualize that, opening snap is not just an envelope like 
S2’s envelope in Figure 5(b) but infact it’s enegy and 
frequency content is highly nonstationary. This would be 
an additional useful information for the classifier. 



 

 

Figure 4 (a) Systolic Split in S1; (b) Shannon Energy 
envelogram using fixed windows; (c) Shannon Energy 
Envelogram using adotive windows. 

 

 

 

Figure 5 (a) PCG indicating opening snap; (b) Shannon 
Energy envelogram using fixed window size; (b) Shannon 
Energy quantized envelogram using adoptive windows 
 
 
3.3 Sequence Analysis 
 
 Sequence analysis is the data representation of 
different sets of information extracted by improved PCG 
envelograms. Various aspects such as amplitude of lobes, 
length of lobes, duration of zero segments, frequency 
content of lobes and etcetera, of each PCG analyzed, are 
formulated into separate sequences and the result is 

displayed for examination and further classification. Note, 
however, that this is not the classifier but the display of 
data fed to classifier and the sequence analysis is 
performed inorder to reveal various features revealed by 
our algorithm. 
 Figure 6(a) shows a normal PCG along with its 
envelogram as shown earlier. Normally intensity of S1 is 
greater than that of S2. This aspect is analyzed in Figure 
6(b) which shows sequence of maximum amplitudes of 
each of the lobes/envelopes of the normal PCG. Based on 
this reasoning S1s and S2s are marked. Note that sixth 
lobe having least amplitude of all is an aberration. 
Classification of this lobe may be interpretted from the 
zero segment duration of the Envelogram. Zero segments 
represent systole and diastole in normal cases however 
deviations may represent splits and clicks, where the 
deviant lobe is part of the adjacent S1 or S2 or they may 
represent murmurs or stenosis. Diastolic period is usually 
greater than the systole. This fact is utilized in identifying 
correct periods in Figure 6(c). Stem plot of each of the 
zero segments reveals an ongoing sequence of systole and 
diastole. Note that duration of fifth segment is virtually 
zero which indicates that proceeding 6th lobe is a part of 
the nearest envelope, S1 (5th lobe) in this case. Gap 
caused between them is due to a murmur, however it is 
not a split since a split causes a larger gap duration. 
 

 
Figure  6  (a)  Normal  PCG  and  its  Shannon  Energy 
Envelogram 
 

 

Figure 6 (b) Maximum height of each of the  lobes  

 
 
Figure 6 (c) Duration of zero segments 
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Figure 7 (a) PCG showing sequence of S1, S2 and S3; (b) 
Envelogram  calculated  using  fixed  sized  windows;  (c) 
Envelogram  computed  using  adoptive  windows;  (d) 
Sequence  showing  maximum  height  of  each  of  the 
envelopes  detected  in  (c).  S1s,  S2s  and  S3s  are  easily 
classifiable.  
 

Figure 7(a) shows PCG containg sequence of S1, S2 
and S3 heart sounds while 7(d) plots magnitude of 
maximum height of envelopes calculated using adoptive 
windows. Sequence in 7(d) is sufficient to judge a series 
of S1, S2 and S3; on the other hand, this classification 
would have been very difficult if maximum amplitude of 
Figure 7(b) was used instead which shows nearly equal 
amplitude levels for S1 and S2. 
 This technique proves very useful in enhancing signal 
details and can generally be applied on any pathological 
case. As a final example a case of early aortic stenosis 
which indicates stenosis or murmurs in early systolic 
period,  is presented for analysis. Figure 8(a) shows three 
cardiac cycles of the PCG indicating early systolic 
murmurs. Figure 8(b) shows S1 magnified, indicating the 
complexity of the wave. Figure 8(c) is sinusoidal model 
of S1 segment shown in  Fig. 8(b). Note the complexity of 
the wave is reduced considerably. If envelope of this 
segment was computed using fix window size, only the 
shape of the envelope would have given a little clue about 
the pathology however the variable window size actually 
splits these murmurs into separate small envelopes as 
indicated in figure 8(d), where Shannon Energy 

envelogram using variable window size is computed. A 
point to clarify here is that Shannon Energy is computed 
within the windows given by sinusoidal model but energy 
in this duration is calculated from the original signal so as 
not to miss or hide any signal detail.  
 

Figure 8 (a) PCG showing late systolic murmurs 
 

Figure 8 (b) S1 magnified 
 

Figure 8 (c) Sinusoidal model of S1 shown in 10b 
 

Figure 8 (d) Shannon Energy envelogram computed using 
adoptive windows 
 

Figure 8 (e) Maximum amplitude of each of the lobes 

Figure 8 (f) Duration of lobes 
 

 
 
Figure 8 (g) Duration of zero segments 
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Figure 8(e) shows a bar plot of maximum amplitudes 
of each of the distinct envelopes/lobes detected in Figure 
8(d). Lobes 1, 8, 9, 15, 16 and 23  have relatively higher 
amplitudes and are thus classified as S1s and S2s 
respectively according to the usual assumption that 
intensity of S1 is higher than S2. Rest of the lobes either 
have very low amplitudes or their amplitude content is 
virtually zero, that is why they are classified as murmurs. 
Figure 8(f) shows duration of each of the lobes/ envelopes 
computed. This indirectly correspond to the frequency 
content of the lobes. Note that lobes 1, 8, 9, 15,16 and 23 
again have discriminatingly larger lobe duration which 
implies low frequency content, that of S1s and S2s. On 
the other hand the remaining lobes with smaller lobe 
durations correspond to  lobes containing high frequency 
content and they can correctly be classified as murmurs. 
Figure 8(g) plots the duration of zero segments in the 
PCG i.e. the segments where no envelope was detected 
(gaps). These segments give information about 1) systole 
and diastole periods; 2) verify murmur classification 
comparing earlier results and 3) the relative position of 
murmurs with reference to systole and diastole. Diastolic 
and systolic periods are evident in Figure 8(g) however 
figure also indicates that these murmurs precede every 
Systolic period and hence they are a part of S1 sounds. 
From this clue, the case of early aortic stenosis can easily 
be classified. The ability to magnify signal details is 
obvious from these figures and confirmed by plotting 
these sequences for analysis and classification. 
 
 
4. Conclusion 
 

Simplification of the highly nonstationary heart sounds 
without information loss was the basis of research. The 
main objective of the research, however, was to extract 
every significant detail, either obvious or minute, from the 
signal and highlight the abnornmalities in it. Computation 
of envelograms for classification is not a new technique, 
however the information given by the envelopes was 
never sufficient for the classifiers for correct 
classification. This technique of using adaptive windows 
to compute Shannon Energy envelopes, overcomes these 
limitations and is able to enhance signal details and 
presents us with more signal characteristics. It not only 
gives obvious signal details but amplifies signal 
abnormalities as aimed. Sequence analysis as performed 
later justifies our argument. 
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