

THE EFFECT OF CONSONANT-VOWEL BOUNDARY TO SPEECH **PERCEPTION IN COCHLEAR IMPLANTS**

R12

INTRODUCTION

- Cochlear Implant (CI) users report difficulty in understanding speech in noisy environments
 - ✓ No masking release from modulated maskers [5].
 - Cannot take advantage of temporal gaps
 - ✓ Can perform auditory stream segregation tasks [2].
- CI listeners have difficulty in successfully fusing interrupted speech signals into a coherent speech stream [6].
- Speech sounds are broadly classified into vowels and consonants.
- Consonants carry more information than vowels while reading.
- Vowels contribute more to speech intelligibility than consonants
- Vowel-only sentences led to a 2:1 intelligibility advantage over consonant-only sentences regardless of the type of segmental replacement in normal hearing listeners [1].

METHODS

Listeners: 8 adult CI users participated in this study.

Speech Corpus: Speech stimuli were taken from the AZTIMIT sentences [3]. All lists were equi-intelligible with a mean intelligibility of 73% [4].

List Characteristics:

- average of 128 words per list (range = 115 to 136 words)
- 18-20 unique talkers per list
- At least 6 male and 6 female talkers per list
- Talkers were from four dialectal regions (New England, Northern, North Midland, and Western)

Speech Processing strategies:

- Segment replacement paradigm on the AZRIMIT speech corpus was used to evaluate the effect of consonant-vowel boundary to speech perception.
- Two processing strategies were created to emphasize the duration of vowels and consonants by presenting different amounts (0%, 40%, 60%, 80%, and 90%) of consonants and vowels
- First strategy (*FVXC*) preserved full vowels and presented different amounts of consonants by replacing the consonant centers with either silence of speech shaped noise
- Second strategy (<u>FCXV</u>) preserved full consonants and presented different amounts of vowels by replacing the vowel centers with either silence of speech shaped noise
- Clean speech and interrupted speech (3Hz interruption rate, 50% duty cycle) were also presented
- PDA based research platform was used to present speech stimuli

Nirmal Kumar Srinivasan¹, Hussnain Ali¹, Emily A. Tobey², and Philipos C. Loizou¹ Department of Electrical Engineering¹, Dallas Callier Advanced Hearing Research Center^{2,} The University of Texas at Dallas, Richardson, TX.

SPEECH PROCESSING STRATEGIES

Figure 1. Schematic of replacement paradigm depicted for a single VCV (panel a) or CVC (panel b). Horizontal bars indicate vowels, vertical bars indicate consonants and stippled bars indicate replaced portions (silence or speech shaped noise replacement).

RESULTS – Average Speech Intelligibility

Figure 2. Mean speech intelligibility for all experimental conditions. The original TIMIT C-V boundary is at 0%V and 0%C. Error bars display standard error of mean.

Individual Speech Intelligibility

FULL CONSONANT

FULL VOWEL

Figure 3. Individual speech intelligibility for different conditions. Solid lines denote SSN and dotted lines represent silence replacements

RESULTS

- For FCXV condition, within groups repeated measures ANOVA confirmed a significant effect of filler (F(1,7) = 44.5, p < 0.001, significant effect of vowel percent (F(5,35) = 99.9, p < 0.001, and a significant interaction (F(5,35) = 5.3, p = 5.3) 0.001). Post-hoc tests using Bonferroni correction (α =0.05) indicated SSN filled interrupted sentences' speech intelligibility was significantly greater than silence filled at 0%, 40%, and 60% vowel presentation.
- For FCXV condition, within groups repeated measures ANOVA confirmed a significant effect of filler (F(1,7) = 15.7, p = 0.02), significant effect of vowel percent (F(5,35) = 74.9, p < 0.001, and a non-significant interaction (F(5,35) = 1, p = 1) 0.42).
- > No significant difference in speech intelligibility for interrupted speech at a constant interruption rate filled with either SSN or silence (absence of classic phonemic restoration).

CONCLUSIONS

- > CI listeners did not tolerate periodic interruptions in continuous speech signal
- Showed evidence to fuse interrupted speech signals into a coherent speech stream
- > Vowels contribute more to speech intelligibility as compared to consonants for CI listeners

REFERENCES

- [1]. Cole, R. et al. (1996). *Proc. ICASSP*. 853 856.
- [2]. Chatterjee, M., and Galvin III, J. J. (2002). J. Acoust. Soc. Am. 111, 2429.
- [3]. Dorman, M. F. et al. (2005). *Ear. Hear.* 26, 371 380.
- [4]. King, S. E., et al. (2012). *J. Am. Acad. Audiol.* 23, 313 331.
- [5]. Nelson, P. B. et al., (2003). *J. Acoust. Soc. Am.* 113, 961 968.
- [6]. Nelson, P. B., and Jin, S. H. (2004). *J. Acoust. Soc. Am.* 115, 2286 2294.

ACKNOWLEDGEMENTS

Research supported by NIH-NIDCD (R01 DC010494).