

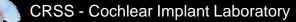
CCi-MOBILE Research Platform for Cochlear Implants and Hearing Aids

HANDS-ON WORKSHOP July 18, 2017 CIAP-2017

John H.L. Hansen, Hussnain Ali, Sandeep Ammula, Juliana Saba

Cochlear Implant Laboratory Center for Robust Speech Systems The University of Texas at Dallas

Acknowledgements - Sponsors



This work was supported by Grant R01 DC010494-01A awarded from the NIH/NIDCD

Special thanks to Cochlear Corp. for their sustained contributions and collaborations

Getting to know the hardware

- Multiple configurations to use the platform
- Software
 - MATLAB
 - Android

Show to use the platform in your research

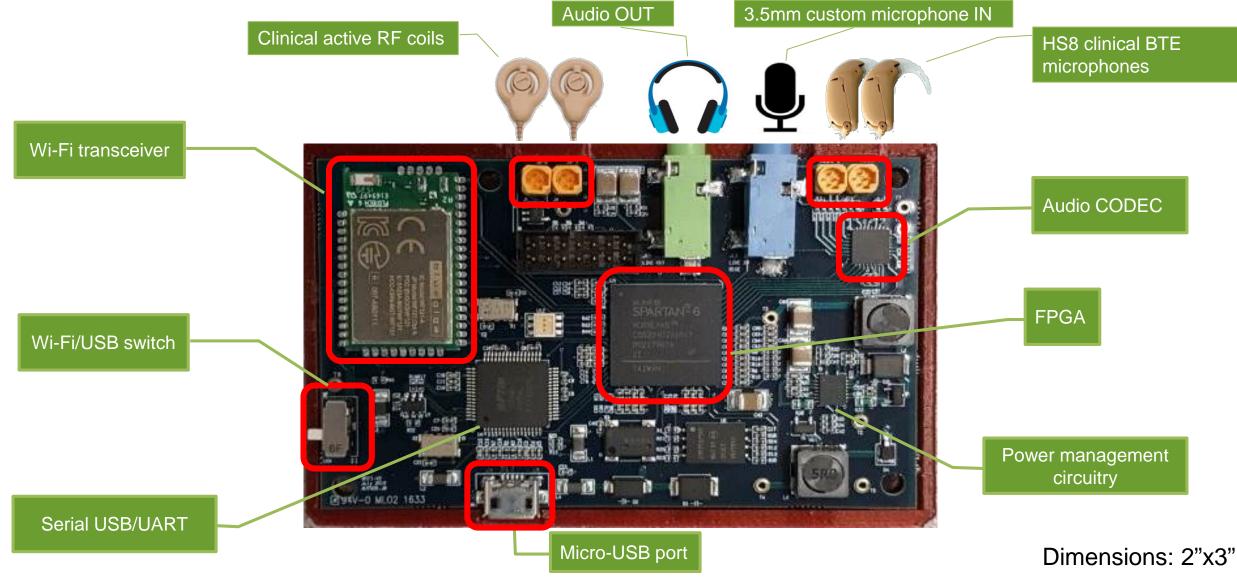
- Equipment needed
- Second to conduct human testing with the platform
- Resources
- Demos + Hands-on session

Platform – at a glance

Compatible with:

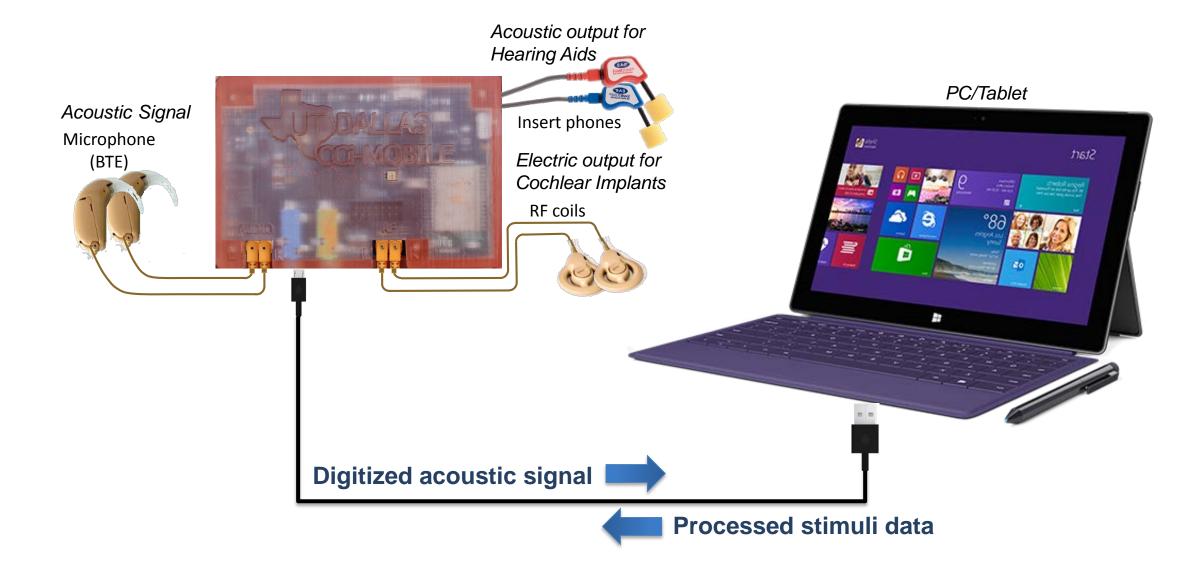
- Southear implant Cochlear Corp. (Cl24)
- Hearing aid transducers

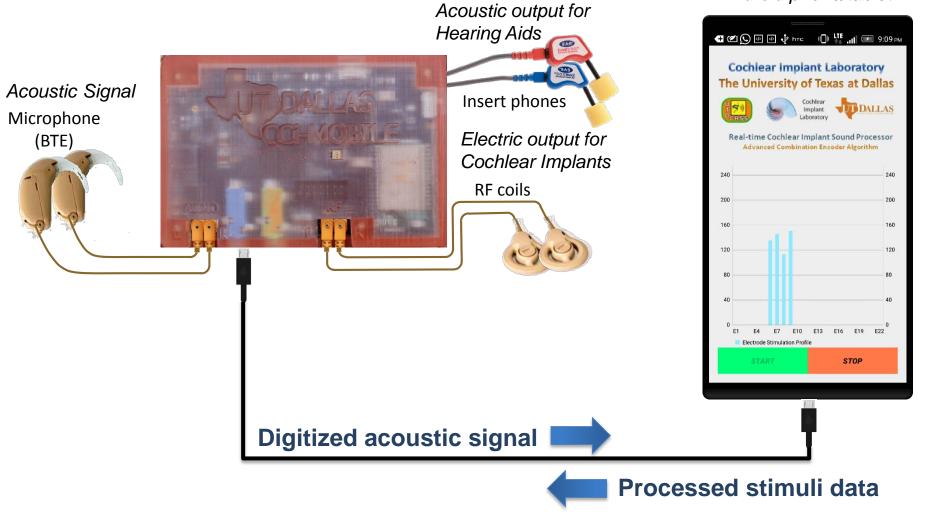
Supports:

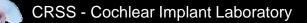

- Unilateral and time synchronized Bilateral electric stimulation
- Synchronized acoustic stimulation bimodal/electric+acoustic stim.

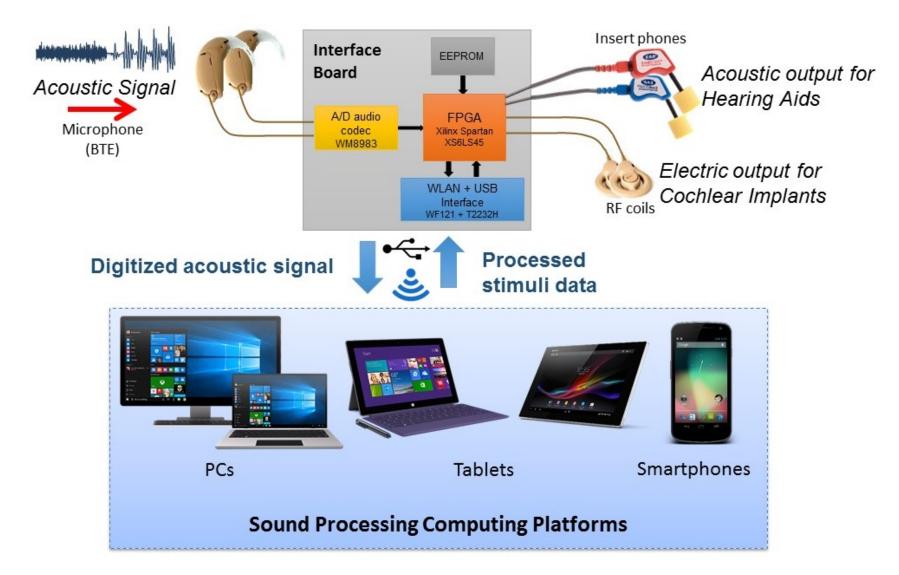
Modes:

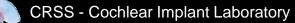
- PC-based for Laboratory studies
- Android for field trials
- Plug-and-play
- Portable, wearable
- On-the-go adjustment of sound processing parameters


Interface Board




PC-based Setup


Android-based Setup



High-level Overview

Software

Android JAVA Applications for: **Real-time Processing Audio Recording** • On-the-go map changes H A B 08:0 • 08:00 **DEMOs** • 23 🖂 /ISUS

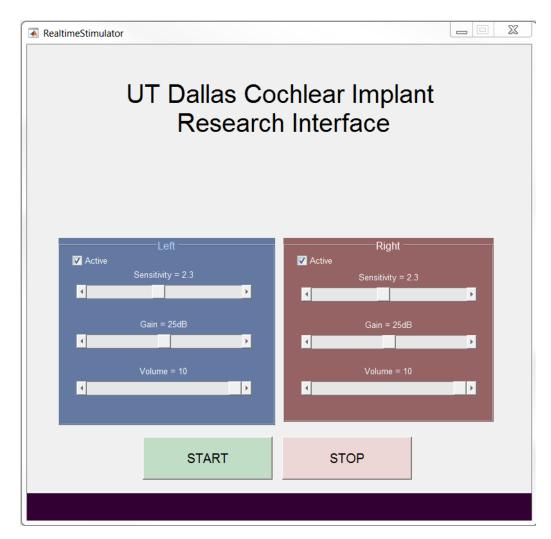
PC – MATLAB-based software

UTDC	Cochlear	Implant Rese	earch Interface	
Left	1 Interse CI24RE 1000pos Sous			
Right 2 Active Senatohy = 23 0 0 0 Votume = 10		20 - I. 199 - I.		
Implant hype = Nor Simulation Rate Pulse Width = 2 START	skes CRARE = 1125pps Ses			

Real-time MATLAB capability

- Integrate your existing MATLAB algorithms
- Access to microphone signals
- Complete control on stimuli
- Modular software design
- Simple, intuitive, easy-tounderstand, and straight-forward

MATLAB applications – **DEMO**


UTD Cochlear	Implant Research Interface
Leit Serutiky = 2.3 Gain = 25dB Gain = 25dB Volume = 10 Implant type = Nucleus CI24RE Stimulation Raits = 1000pps Pulse Width = 25us	
Right Can = 25dB Can = 25dB Volume = 10 Stimulation Rate = 1125pps Pulse Wridth = 25us	
START STOP	20 <u>A</u> <u>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</u>

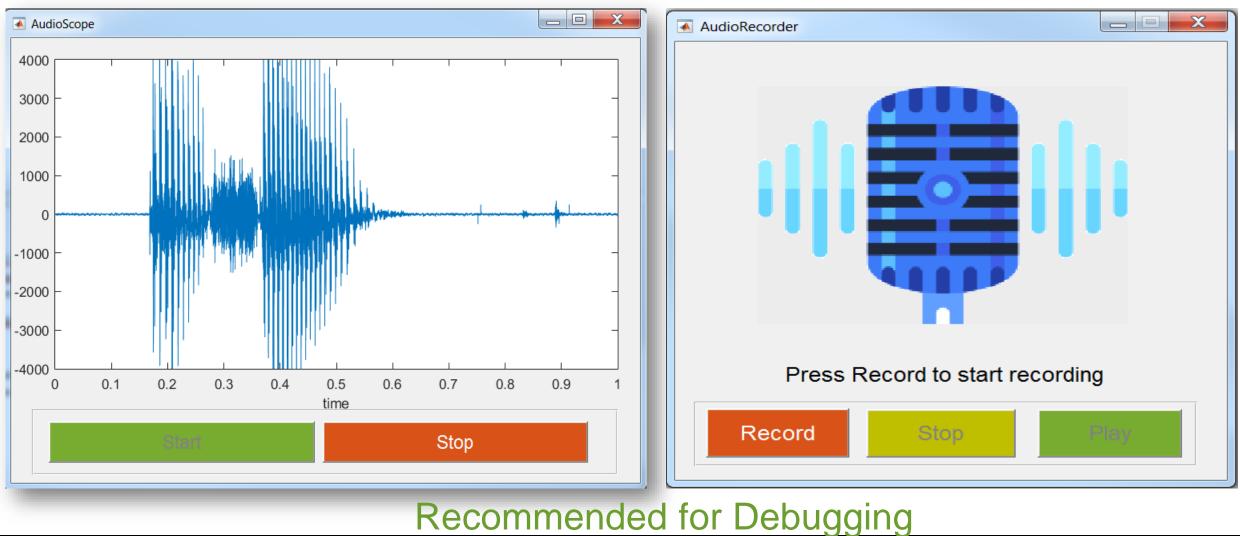
- Visualize acquired acoustic signal waveform in realtime
- Bilateral ACE processing
- Visualize pulse sequence generated by processing
- Change parameters on the go

NOT recommended for human use

MATLAB applications – Realtime ACE

- For real-time bilateral ACE processing in Free field
- Audio signal from microphone
- Complete control on processing, parameters, and stimulation.
- Variable rate supported on frameby-frame basis
- Bimodal version also available

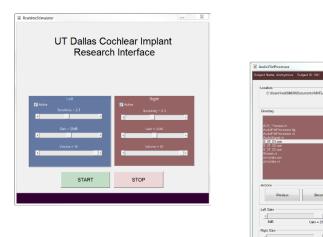
MATLAB applications – Offline ACE

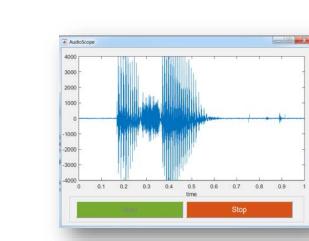

AudioFileProcessor				
Subject Name: Anonymous	Subject ID: S01	MAP: S01	_ACE_900Hz	
⊂Location C:\Users\hxa098020)\Documents\MATL	AB\CCIMob	ile∖AudioFilePro	cessor
Directory				
ACE_Process.m AudioFileProcessor.fig AudioFileProcessor.m AudioSignal.m S_01_01.wav S_01_02.wav S_01_03.wav Stream.m stimulate.asv stimulate.m				•
Actions				
Previous	Stream	m	Next	
Left Gain				
0dB	Gain = 25	j jdB		▶ 50dB
Right Gain				
OdB	Gain = 25	dB		▶ 50dB

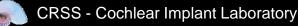
- For processing audio wave files from your PC
- streaming processed files directly to implant
- Complete control on processing, parameters, and stimulation.
- Variable rate supported on frameby-frame basis
- Bimodal version also available
- Perfect for HUMAN testing

UTD MATLAB applications – Audio Recorder/Visualizer

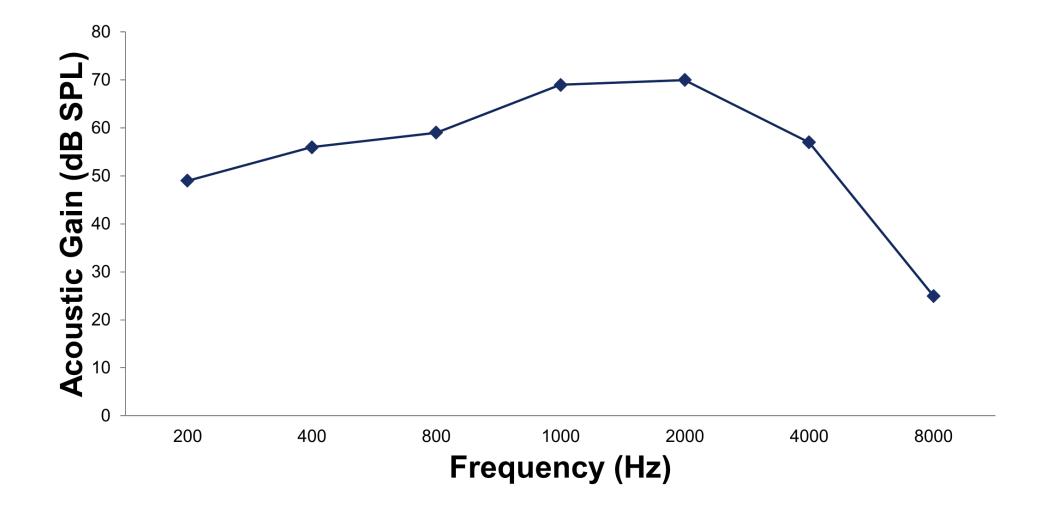
Audio Scope


Audio Recorder





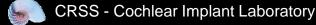
- 4 channels of time-synchronized stimulation
 - 2 channels of electric stimulation (left and right)
 - 2 channels of acoustic stimulation (left and right)
- Hearing-aid routines can be implemented as per your needs.
- Similar suite of applications available in bimodal mode.



Electric + Acoustic Stimulation Gain Profile

MAP

		-		-		;	<pre>% Optional: Subject Name</pre>		
		bjectID		= 'S01';			<pre>% Optional: Random Subje</pre>		
MAP.Gen	eral.Map	pTitle		= 'S01_ACH	E_9001	ΗZ	'; % Optional: Map Title		
MAP.Gen	eral.Nu	mberOfIm	plants	3 = 2:			% '1' for Unilateral and		
			-	= 'bilate:	ral!:		<pre>% 'Left' for left side;</pre>		
				= 'Both';			<pre>% 'Left' for left only;</pre>		
In .och		LINGIGUCE	410	20001 ,			· here for fere only,		
%% Left	Ear Par	rameters							
<pre>% remo</pre>	ve this	section	if le	eft side doe	es not	t (exist		
MAP.Lef	t.Implar	ntType		= 'CI24RE'	;	8	Implant chip type, e.g., CI24R		
MAP.Lef	t.Sampli	ingFrequ	ency	= 16000;		8	Fixed		
MAP.Lef	t.Number	rOfChann	els	= 22;		ş	22 fixed for imlants from Coc		
MAP.Lef	t.Strate	∍gy		= 'ACE';		÷	'ACE' or 'CIS' or 'Custom'		
MAP.Lef	t.Nmaxir	na		= 8;		÷	Nmaxima 1 - 22 for n-of-m str		
MAP.Lef	t.Stimul	lationMo	de	= 'MP1+2';		÷	<pre>% Electrode Configuration/Stimu</pre>		
		lationRa		= 1000;			Stimulation rate per electrod		
	t.Pulse			= 25;			Pulse width in us		
MAP.Lef				= 8;			Inter-Phase Gap (IPG) fixed a		
		tivity		= 2.3;			Microphone Sensitivity (adjus		
MAP.Lef				= 25;			Global gain for envelopes in		
	t.Volume	2		= 10;			Volume Level on a scale of 0		
MAP.Lef				= 20;			Q-factor for the compression		
	t.BaseLe	evel		= 0.0156;			Base Level		
	MAP.Left.SaturationLevel					Saturation Level			
		elOrderT					<pre>% Channel Stimulation Order t</pre>		
							Frequency assignment for each		
	t.Window		-				Window type		
			R MCL	Gain = [
% E1	F Low	F_High	THR	MCL	Gair	n			
	188	313			0.0				
21	313	438	100		0.0				
20	438	563	100		0.0				
19	563	688	100	200	0.0				
18	688	813	100	200	0.0				
17	813	938	100	200	0.0				
16	938	1063	100	200	0.0				
15	1063	1188	100	200	0.0				
	1188	1313			0.0				
	1313	1563	100		0.0				
	1563	1813	100	200	0.0				
	1813	2063	100	200	0.0				
	2063	2313	100		0.0				
		2688			0.0				
	2688	3063	100		0.0				
	3063	3563	100		0.0				
	3563	4063	100	200	0.0				
	4063	4688	100		0.0				
	4688				0.0				
	5313	5313 6063	100	200	0.0				
	6063	6938	100		0.0				
-		7938							
1;	0000	/500	100	200	0.0				
17									


00 Dista Res D				
%% Right Ear Pa				
% remove this		r right si = 'CI2		exist
MAP.Right.Impla			-	9 Trimed
MAP.Right.Samp		-	J;	% Fixed
MAP.Right.Numbe		13 = 22; = 'ACE		<pre>% 22 fixed for imlants from Cochl(% 'ACE' or 'CIS' or 'Custom'</pre>
MAP.Right.Strat				<pre>% Nmaxima 1 - 22 for n-of-m strat(</pre>
MAP.Right.Nmax:		= 8;		<pre>% NMAXIMA 1 - 22 for n-of-m strate % Electrode Configuration/Stimula1</pre>
MAP.Right.Stim MAP.Right.Stim				<pre>% Stimulation rate per electrode :</pre>
MAP.Right.Puls		= 25;	, ,	<pre>% Stimulation fate per electrode . % Pulse width in us</pre>
MAP.Right.IPG	ewiden	= 25;		<pre>% Fulse width in us % Inter-Phase Gap (IPG) fixed at {</pre>
MAP.Right.Sens:		= 2.3;		<pre>% Microphone Sensitivity (adjusta)</pre>
MAP.Right.Gain	ICIVICY	= 25;		<pre>% Global gain for envelopes in dB</pre>
MAP.Right.Volu	ne	= 10;		% Volume Level on a scale of 0 to
MAP.Right.Q	iiic	= 20;		& Q-factor for the compression fur
MAP.Right.Basel	Level	= 0.01	56.	<pre>% Q-factor for the compression fun % Base Level</pre>
MAP.Right.Satu				<pre>% Saturation Level</pre>
-				<pre>% Channel Stimulation Order type:</pre>
MAP.Right.Freq		-	fault';	<pre>% Frequency assignment for each }</pre>
MAP.Right.Wind	-			% Window type
MAP.Right.El Cl		~~~	-	s window olbe
% El F Low				
22 188		100 20		
21 313		100 20		
20 438		100 20		
19 563	688	100 20	0.0	
18 688	813 :	100 20		
17 813	938 :	100 20	0.0	
16 938	1063 :	100 20	0.0	
15 1063	1188 :	100 20	0.0	
14 1188	1313 :	100 20	0.0	
13 1313	1563 3	100 20	0.0	
12 1563	1813 :	100 20	0.0	
11 1813	2063	100 20	0.0	
10 2063	2313 :	100 20	0.0	
9 2313	2688	100 20	0.0	
8 2688	3063	100 20	0.0	
7 3063	3563	100 20	0.0	
6 3563	4063	100 20	0.0	
5 4063	4688	100 20	0.0	
4 4688	5313 3	100 20	0.0	
3 5313	6063	100 20	0.0	
2 6063		100 20		
1 6938	7938 3	100 20	0.0	
1;				
MAP.Right.Numbe				.Right.El_CF1_CF2_THR_MCL_Gain, 1);
MAP.Right.Elect				t.El_CF1_CF2_THR_MCL_Gain(:, 1);
MAP.Right.Lower		-		t.El_CF1_CF2_THR_MCL_Gain(:, 2);
MAP.Right.Upper	rCutOffFre	quencies		t.El_CF1_CF2_THR_MCL_Gain(:, 3);
MAP.Right.THR				t.El_CF1_CF2_THR_MCL_Gain(:, 4);
MAP.Right.MCL				t.El_CF1_CF2_THR_MCL_Gain(:, 5);
MAP.Right.Band	Sains		= MAP.Righ	t.El_CF1_CF2_THR_MCL_Gain(:, 6);

.m file for MATLAB Easy to read structure

Nucleus MATLAB toolbox + CCiMOBILE

- Option to use Nuclues MATLAB toolbox (NMT) to directly stream stimuli via CCiMOBILE platform
- Example codes are available (see DEMO)

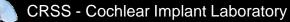
How easy is it to modify the codes Directory Structure

	🗏 📗 AudioRecorder
🗄 📕 AudioFileProcessor	🚵 AudioRecorder.fig
🗄 📕 AudioRecorder	🖄 AudioRecorder.m
🗄 📕 AudioScope	🔝 BTEaudio.wav
🗉 👢 CommonFunctions	騷 mic.png
🗄 📙 Demo	READ ME.txt
🗄 📙 MAPs	🗏 📗 AudioScope
🗄 📙 Realtime	🚵 AudioScope.fig
🗄 📙 test	AudioScope.m
UTDResearchInterface - Introductory Manual - Software Routines.docx	READ ME.txt
📜 UTDResearchInterface - Introductory Manual - Software Routines.pdf	🗉 儿 CommonFunctions
	🗏 📗 Demo
	🖄 ACE_Processing_Realtime.m
	🔚 interface.jpg
	READ ME.txt
	🚵 RealtimeStimulator.fig
	🖄 RealtimeStimulator.m
	🗉 📙 MAPs
	🖃 儿 Realtime
	🖄 ACE_Processing_Realtime.m
	READ ME.txt
	🚵 RealtimeStimulator.fig
	🖄 RealtimeStimulator.m
	🖺 RealtimeStimulator_Script.m
	🖺 SampleMap.m
	m 🕨

How easy is it to modify the codes – **General Structure**

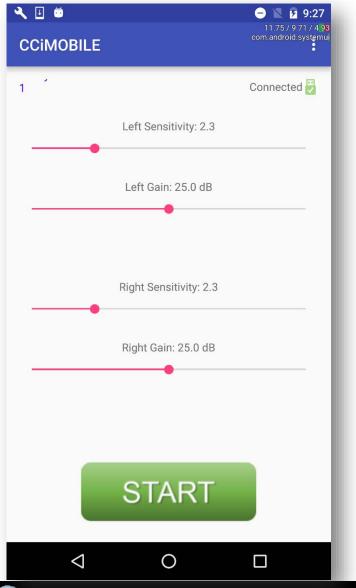
while frame no<nframes-1 % use while else timing won't be right

```
if (Wait(s)>= 512)
```


<pre>AD_data=typecast(int8(AD_data_bytes), 'int16'); audio_left = double(AD_data(1:2:end));</pre>	<pre>% Read audio from BTE % Type cast to short 16 bits % Type cast to double for processing</pre>
<pre>audio_left = double(AD_data(1:2:end));</pre>	
	% Type cast to double for processing
audio left = (n left scale factor) *audio left:	
addio_ieit = (p.heit.scale_iactor). addio_ieit,	<pre>% Adjust sensitivity</pre>
%% STEP 2: PROCESS AUDIO SIGNAL FRAMES	
<pre>stimuli.left = ACE_Processing_Realtime(audio_left, b</pre>	oufferHistory_left, p.Left);

stimulus = UART output buffer(stimuli, p); Write(s, stimulus, 516);

% Fill output Buffers


end

frame no = frame no+1; end % end while loop for nframes

Android applications – Realtime ACE

- For real-time bilateral ACE processing
- Audio signal acquired from microphone
- Complete control on sound processing, parameters and stimulation.
- Variable rate supported on frame-by-frame basis
- Change parameters on-the-go
- Bimodal version is currently in works
- Perfect for HUMAN testing in free field

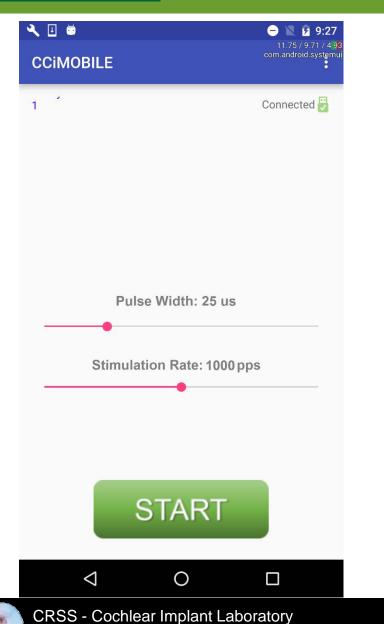
Android applications – Realtime ACE

Change parameters on-the-go

 ▲ I I CCIMOBILE 		• N 9:27 11.75 / 9.71 / 4.98 com.android.systemui
1		Connected 🜄
	Left Sensitivity: 2.3	
	Left Gain: 25.0 dB	- 1
•	Right Sensitivity: 2.3	_
	Right Gain: 25.0 dB	-1
		.
	START	- 1
\triangleleft	0	

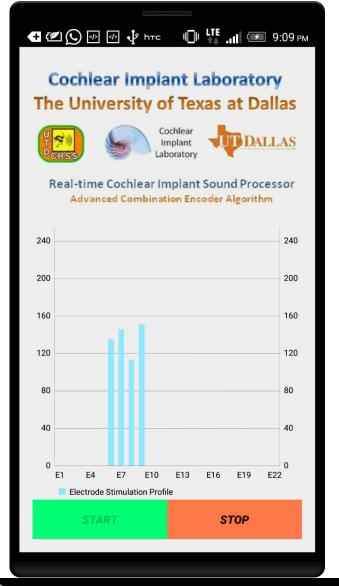
2 🖬 🗉 💆			- 11.7	9:27 9:27
CCIMOBILE				oid.system
	LEFT		RIGHT	
Implant Type	CI24RE		CI24RE	
Sampling Frequency (kHz)	16000		16000	
Number of Channels	22		22	
Frequency Table	Default		Default	
Sound Processing Strategy	ACE	•	ACE	•
nMaxima	8	-	10	-
Stimulation Mode	MP1+2	•	MP1+2	•
Stimulation Rate (pps)	1000		500	
Pulse Width (us)	25		50	
Sensitivity	2.0		2.0	
Gain (dB)	25.0		25.0	
Volume	10	-	10	-
Q-factor	20.0		20.0	
	0.0		0.0	

							<mark>∳ 9:2</mark> 9.8975 id.syste	
Volum	e	10	10 -		10		•	
Q-fact	or	20.0	20.0		20.0			
Base L	.evel	0.0	0.0			0.0		
Satura	tion Level	0.0			0.0			
Stimul	ation Order	ape	x-to-b	•	apex-to-b		-	
Window		Hanning		•	Han	ning	•	
		LEFT			RIGH	Г		
El	Band #	THR	MCL	Gain	THR	MCL	Gair	
22	1	100	200	0.0	100	200	0.0	
21	2	100	200	0.0	100	200	0.0	
20	3	100	200	0.0	100	200	0.0	
19	4	100	200	0.0	100	200	0.0	
18	5	100	200	0.0	100	200	0.0	
17	6	100	200	0.0	100	200	0.0	
16	7	100	200	0.0	100	200	0.0	
15	8	100	200	0.0	100	200	0.0	
14	9	100	200	0.0	100	200	0.0	


CRSS - Cochlear Implant Laboratory

- For recording the audio signals acquired from BTE microphones
- Could potentially be used for capturing realworld acoustic environments
- Perfect for HUMAN testing in free field

Android applications – DEMO variable rate



- Change stimulation rate and pulse width in real-time
- Pulse sequence updates in realtime visualize on an oscilloscope
- For DEMO only

Android applications – RT ACE

- Audio signal acquired from phone's microphone
- Signal processing (ACE) in realtime
- Output pulse visualization
- For DEMO only but can be configured for experimental use
- Available on Google Play Store

UT D

Android code - JAVA

while(start) {

```
int iavailable_0 = ftDev.getQueueStatus();
if(iavailable_0>=512) {
    // STEP 1: READ AUDIO SIGNAL
    ftDev.read(readBuffer, 512, 0);
    System.arraycopy(readBuffer, 0, buffbyte2, 0, 512);
    ByteBuffer.wrap(buffbyte2).order(ByteOrder.BIG_ENDIAN).asShortBuffer().get(shortbuffer);
    for (int m = 0; m < leftData.length; m++) {</pre>
```

```
leftData[m] = ((double) shortbuffer[2 * m]) * leftScaleFactor;
rightData[m] = ((double) shortbuffer[(2 * m) + 1]) *rightScaleFactor;
```

// STEP 2: Process Audio Signal

leftStimuli = leftACE.processAudio(leftData);

```
rightStimuli = rightACE.processAudio(rightData);
```

```
// STEP 3: Stream Stimuli
```

updateOutputBuffer();

```
rc = ftDev.write(writeBuffer, 516, true);
```


Android code – JAVA – Sound Processing

for(int subframe = 0; subframe < map.pulsesPerFramePerChannel; subframe++)</pre>

```
workingData = new double[BLOCK SIZE];
```

```
j = 0;
for(int i = offset; i < BLOCK_SIZE + offset; i++) {
    workingData[j++] = inputBuffer[i]; }
```

applyWindow(); // Apply Window

fft();

magnitudeSquaredSpectrum();

weightedSquareSum();

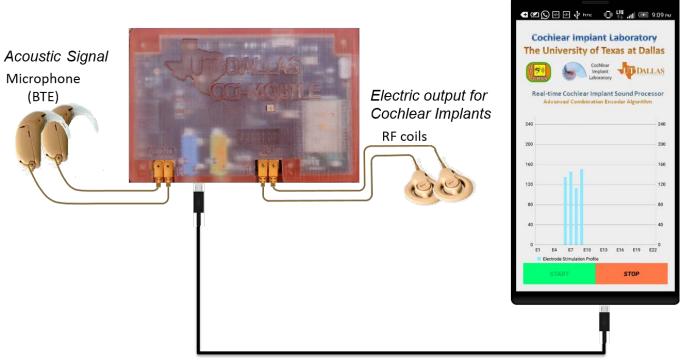
applyChannelGains();

sorting();

```
loudnessGrowthFunction();
```

applyPatientMap();

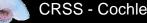
```
stimulationOrder();
```


```
for(int i = 0; i < map.nMaxima; i++) {
    stimuli.Amplitudes[indx] = current_levels[i];
    stimuli.Electrodes[indx] = electrode_numbers[i];
    indx=indx+1;
}
offset+= blockShift;</pre>
```

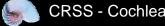

Android specifications

- Plug and play hardware
- Board derives power from the smartphone
- Connect with any commercial off-theshelf USB OTG cable
- Any commercial Android smartphone can be used, but it has to be rooted, Googleversion of Android is recommended.
- For reliable real-time operation, run one application at a time
- Delay: 16ms
- Power Requirements:
- Battery Life: 4 5 hours

Portability/Wearability – 3D Sleeve



- Charge-balanced symmetric pulses only
- Embedded routines for error checking and correcting stimulation parameters
- Pulse-width limited to 400us
- Current levels are checked against the implant type for safe operation.
- Standard stimulation mode
- For sound processing, each pulse's amplitude is checked against subject's MAP and limited in case of erroneous stimulation.


- Set a stand-alone PC/phone specifically for conducting human testing.
- Avoid running parallel applications.
- Avoid running extra applications/software on phone.
- Test stimuli on scope before conducting human testing.
- Strongly recommended to have access to implant-in-box emulator
- Test applications are provided to test the integrity of signal and real-time performance.
- Always double check the MAP parameters to ensure you have typed in correct values.

- CCi-MOBILE interface Board
- PC running MATLAB (for benchtop studies)
- Android smartphone (newer recommended with plain Android)
- BTE microphones + RF coils + cables
- **USB** cables
- Optional: Implant-in-a-box (recommended)

Please fill the Request form and return to us. Reach out to our team on how to get the platform

Resources

- User Manuals and Technical documentation
- Software updates on the website
 - Utdallas.edu/~hussnain.ali/CCIMOBILE.html
 - GitHUB cilabutdallas https://github.com/cilabutdallas/CCiMOBILE.git
- How-to videos
 - Youtube Channel CILab UTDallas
- Social media
- Annual Workshops (ASA/CIAP)
- **Boot-camp at UT-Dallas**
- Always feel free to email our team
 - John Hansen: john.Hansen@utdallas.edu
 - Hussnain Ali: hussnain.ali@utdallas.edu —

CILab UTDallas

Video

44 views • 7 months ago

✓ Subscribed 🛕 1

Research Activities of Cochlear Implant (CI) Laboratory at the University of Texas at Dallas

Demonstration

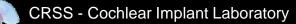
CCI-Mobile Hardware Setup 51 views · 7 months ago 38 views • 7 months ago

MATLAB (Electric) MATLAB (EAS)

Android + Tech.

Resources

Hussnain Ali


Juliana (Juli) Saba Angell

John Hansen

Two DEMO systems available for you to experiment with

