

CCi-MOBILE: Cochlear Implant & Hearing Aid Research Platform for Speech Scientists and Engineers

John H.L. Hansen, Hussnain Ali, Juliana Saba, Ram Charan M. C., Nursadul Mamun, Ria Ghosh, Avamarie Brueggeman, Soheil Khorram

CIAP-2019 July 16, 2019 **CILab: Cochlear Implant Processing Lab CRSS-CILab:** Center for Robust Speech Systems The University of Texas at Dallas https://crss.utdallas.edu/CILab/

Cochlear Implant Laboratory

Supported by Grant No. R01 DC016839-02 NIH (NIDCD)

Acknowledgements Sponsors & Collaborators

This work was supported by Grant R01 DC016839-02 awarded from the NIH/NIDCD

Special thanks to our NIH RO1 collaborators: Dr. Ruth Litovsky & Dr. Mario Svirsky

Mario Svirsky

Special thanks to Cochlear Corp. for their sustained contributions and collaborations

♦ <u>3:00-3:20</u>: Overview Presentation on CCi-MOBILE

General functions & capabilities; web-site support; technical MEMOs; GetHub software; Hands-On Stations demo'ing software, hardware, and Android development software - share on GetHub for the community.

♦ <u>3:20-4:00</u>: PANEL DISCUSSION (Q&A)

Open panel discussion by Users of CCi-MOBILE research platform; - experiences? Areas to expand/improve on? Wish list?

♦ 4:05 – 4:45: Hands-On Experience:

Attendees to talk with UTD team members at stations covering: Matlab software available; hardware – including Burn-In testing/safety; Android smartphone support; IRB support; NIH researchers access

♦ <u>4:45 – 5:00: Final Q&A session:</u>

opportunity for follow on questions from attendees.

Limitations in existing research interfaces

- Sectionality
 - Lack of bimodal support (electric + acoustic hearing)
- Computation power
 - Must sustain complex signal processing algorithms
- Portability "Naturalistic Testing"
- Real-time evaluation
- Entry Barrier based on unfamiliar programming languages

Not suitable for a broad range of experiments

Proposed attributes

Custom solutions (*i.e.*, direct connection to implants)

CCi-MOBILE

CCi-MOBILE Research Platform

- USB/Wi-Fi research interface configured for both in-laboratory and field testing of sound processing strategies and/or data collection for CI/HA*
- Plug-and-play system (portable, wearable, on-the-go signal processing adjustments)
- Supports time synchronized Fi acoustic and/or electric stimulation
 - Unilateral/bilateral CIs*
 - Bimodal (Electric-Acoustic-Stimulation)
- High-level language software suite (MATLAB, Java)

Figure 3. CCi-MOBILE Research Platform (open-case) in unilateral mode.

Investigational Parameters

- Number electrodes/channels configurations
- Stimulation mode
- Stimulation rate (pps/ch)
- Pulse width (bi-phasic stimulation)
- Proposed signal processing strategies (CISbased**) for unilateral/bilateral

* Supports cochlear implants (CIs) manufactured from Cochlear Ltd. from the CI24 implant series.
 ** Supports signal processing strategies adapted using the Continuous-Interleaved-Strategy (CIS).

USER SITES (Since Fall 2017 – Summer 2019) = 17 Units Distributed

Cites with CCi-MOBILE (2 Platforms)

- **New York University** (New York, NY)
- Madison, WI)
- New Jersey Institute of Technology (Newark, NJ)
- **Cadwell Industries** (Kennewick, WA)
- McMaster University (Hamilton, ON, Canada)
- Universidade Federal de Santa Cararna (Florianópolis, Santa Catarina, Brazil)
- South China University of Technology (Guangdong Sheng, China)

Cites with CCi-MOBILE (1 Platform)

- Split University (Split, Croatia)
- Shenzhen University (Guangdong Sheng, China)
- **EXAMPLE AT CORPORATION, LLC.**

DE SANTA CATARINA

So what does CCi-MOBILE stand for?

- Research platform intended to promote benchtop & field/MOBILE evaluations with CI Users: Ci-MOBILE
- UTDallas CRSS-CILab wanted to recognize our former colleague who committed his life/career to hearing/CI research – Philip Loizou; device named for his son

COSTAKIS Ci-MOBILE

- FPGA design programmed in Verilog using Xilinx ISE software
- Real-time performance (minimal processing delay) achieved via buffering of incoming and outgoing data on a frame-by-frame basis
- Variable rate electric stimulation uses 16-bit wide RAM buffers to store information: electrodes and current levels

- Parameter matching using inter-pulse-gap, pulsewidth, and inter-phasegap used to determine accuracy received at the RF-coil
- Parameters are measured and verified using an externally connected oscilloscope

CCi Mobile Simulation Packages

Bimodal Type

Input:

BTE (acoustic) input

Output:

- Acoustic output (to HA)
- Electric output (to CI)

Electric Only Type

Input:

BTE (acoustic) input

Output:

Electric output only (to CI)

Hardware Design Modules

CCi-MOBILE Research Platform (open-case) in unilateral mode.

*Keywords-*CTS- Clear To Send RTS- Ready To Send

10

Tx- Transmitter Rx- Receiver DAC- Digital To Analog Converter ADC- Analog to Digital Converter

High-Level Functionality

Modules Running Concurrently

Software Applications

6

AudioScope

 Generates a time-waveform of real-time microphone input (BTE or HA)

Dallas	Cochle	əar Ir	nplar	nt Res	earcł	n Intei	face		Gentlementer Laboratory
1									
0.9 -									
0.8 -									
0.7 -									
0.6 -									
0.5 -									
0.4 -									
0.3 -									
0.2 -									
0.1 -									
0		1	1		1	1	1		
0 0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
	Start					ŝ	Stop		

AudioRecorder

Record audio either in-lab settings or infield environment using the microphone

<image><page-header><page-header>

RealtimeStimulator (CI only)

 Implements subject-MAP using an 'n'-of-'m' strategy* (ACE) in real-time to RF coils

Left	Streaming
Sensitivity = OdB 25dB 50dB	CodB 25dB 50dB
Gain =	Gain =
0dB 25dB 50dB	DdB 25dB 50dB
Volume =	Volume =
DdB 25dB 50dB	0dB 25dB 50dB

AudioFileProcessor (CI only)

Stream individual audio files (.wav files) to subject in a direct connect set up (via RF)

De	Cochlear Implant Resec	irch Interface [📰 🐑	ateg
	Please Load a MAP	file	
	Location		
Ca	Double Click to Ope	n	ng
stra	Directory	CCI-MOBILE Communication	atior
	Folder Content		
		Streaming to CCI-MOBILE	
	Current file:		
	Select Folder		
	Stream File from File List Box		
	Previous File Selected File	Next File	
	Left Gain (dB)		
	0dB 25dB	50dB	
	Right Gain (dB)		
	0dB 25dB	50dB	

* Supports cochlear implants (CIs) manufactured from Cochlear Ltd. from the CI24 implant series. ** Supports signal processing strategies adapted using the Continuous-Interleaved-Strategy (CIS).

Speech Enhancement (CI only)

- Perform speech enhancement for acoustic I/O and electric I/O
- Perform speech enhancement with different noises (WGN, SSN, Babble)

	*	1	G	enerate Plot		
	or Load Custom Selection	> 0.5		≻ 0.5		
Load Se	lection	00	0.5	0	0.5	1
Noise Select		11	x	11	x	
() WGN	◯ SSN ◯ No. 3					
		≻ 0.5		≻ 0.5		
Speech Enhan	cement					
() Weiner	○ No.2 ○ No.3	0	0.5 X		0.5 X	1
	Image					
	Spectrogram	≻ 0.5		≻ 0.5		
	Waveform					

Custom Signal Processing (CI only)

Stream individual audio files (.wav files) to subject in a direct connect set up (via RF)

	Load	d MAP	
Left M	AP	Rig	ht MAP
timulation Rate (pps/ch: pulse	s per second per channel)	Stimulation Rate (pps/ch:	pulses per second per channe
MAP-Defined	÷	MAP-Defined	\$
STATUS	÷	STATUS	÷
Adjusted	÷	Adjusted	÷
Total Pulses Per Sti	nulation Cycle	Total Pulses P	er Stimulation Cycle
MAP-Defined	÷	MAP-Defined	÷
STATUS	÷	STATUS	÷
Adjusted	÷	Adjusted	* *
Pulses Per Frame	Per Channel	Pulses Per F	rame Per Channel
MAP-Defined	÷	MAP-Defined	\$
STATUS	÷	STATUS [÷
Adjusted	÷	Adjusted [¢
Block Sl	hift	Blo	ock Shift
MAP-Defined	÷	MAP-Defined	\$
STATUS	\$	STATUS	\$
Adjusted	÷	Adjusted	÷
Pulse W	lidth	Pu	lse Width
MAP-Delined	÷	MAP-Delined	÷
STATUS	÷	STATUS	÷
Adjusted	÷	Adjusted	÷
Left Gain	(dB)	Righ	t Gain (dB)
0dB 25dB	50dB	0dB	25dB 50dB
Strategy	Directo	bry Content	
• ACE			

Signal Processing Pipeline

Adapted from Nucleus MATLAB Toolbox into MATLAB AppDesigner and GUIDE formats for drop-and-play interface with custom signal processing scripts

Figure: Processing pipeline (implemented in MATLAB) to develop stimulation parameters from an input acoustic signal using a CIS stimulation strategy and an 'n-of-m' signal processing strategy (ACE).

Custom Signal Processing

PHASE-1: Acoustic-Diversity Evaluation

Determine charge (current) from various acoustic input (380 hrs.) of audio, speech, music, noise, etc.

PHASE-2: Experimental Set-Up and Results

All charge/current values produced from CCi-MOBILE were within clinical safety limits (safety limit = 350 mC/s²)

Custom Signal Processing (SP) Parameter Evaluation

Determine sample loss from customized SP input parameters (stimulation rate, pulse-width, number of electrodes) using a standard 0-150 user-defined MAP

Experimental Set-Up and Results

99.008% of valid configurations resulted in <1% sample loss</p>

Clinical-Processor-vs-CCi-MOBILE Evaluation

Compare speech intelligibility of CI users (N=8) using their commercial processors (Cochlear Ltd.) and CCi-MOBILE

Experimental Set-Up and Results

Comparable performance to clinical processors achieved (F[7,49]=4.882, p<0.069)</p>

CCi-MOBILE Applications

- Easily record naturalistic audio using build-in audiorecording application(s)
 - Stereo and mono recordings
- Perform lateralization and localization experiments
- Implementation of novel signal processing algorithms for CIs/HAs
 - Speech enhancement, noise suppression, etc.
- Built-in vocoder application to simulate electric-hearing for normal hearing (NH) listeners³

Android App

Real-time performance on Android smartphones and tablets

- Highly suitable for in-field or take-home trials
- Easily adjust signal processing/MAP parameters in real-time
- Quickly select/define pre-programmed environments

Figure 4. Android app for CCi-MOBILE program windows.

[3] H. Ali, N. Mamun, A. Brueggeman, R.C.M.C. Shekar, J.N. Saba, J.H.L. Hansen (**2018**) Conf. Acoust. Soc. Am., 144:1872.

CCi-MOBILE Demo

Controls and executes real-time ACE processing and displays the corresponding stimuli.

Find Our Code on GitHub

What is a fork on GitHub?

- Fork: a copy of a repository
- Use our code as a starting point for your own project
- Collaborate with us by submitting your changes via "pull requests"

How to fork our code

- So to our repository
- Press the fork button to make your own copy
- Download your fork to save it to your local machine

CILabUTD / CCi-MOBILE		•	Watch 1 🛨 Star 4 😵 Fork 1
↔ Code ① Issues 0 ۩ Pull r	equests 0 🛛 🕅 Projects 0 🔹 Security	nsights	
The CCi-Mobile research platform manufactured by Cochlear Corpo cochlear-implant matlab android	is an external body-worn sound proce ration. https://crss.utdallas.edu/CILab,	essor intended to perform bas /CCi-M	ic research with cochlear implants
60 commits	ဖို 2 branches	🛇 0 releases	L 5 contributors
Branch: master ▼ New pull request			Find File Clone or download -
abrueggeman Merge pull request #4	from CILabUTD/optimizeSettingsLayout		Latest commit fb894ce on May 15
Android/CCiMOBILE	Merge branch 'master' into optimizeS	ettingsLayout	2 months ago
MATLAB	Merge branch 'master' into optimizeS	ettingsLayout	2 months ago

Website launched Monday, Feb. 25, 2019

https://crss.utdallas.edu/CILab/

The CCi-Mobile research platform currently funded by the <u>National Institute of Health (NIH)</u>, enables easy development and evaluation of sound processing algorithms/strategies with cochlear implant as well as hearing aid users. The platform is compatible with Nucleus devices manufactured by Cochlear Corp.

Previous Research Past PDA Research project NIH-N01 Grant (2006-2011)

NIH-N01 Grant (2012-2017)

Directed by Dr. Philip Loizou

The main aim of this Personal Digital Assistant based project, funded by NIDCD/NIH was to develop a research interface platform which could be used by researchers interested in exploring new ideas to improve cochlear

Website Layout

CCi-MOBILE related detailed information

CCi-MOBILE

The CCi-Mobile (Costakis Cochlear implant-MOBILE) research platform is an external body-worn sound processor interface intended to perform basic research with cochlear implants manufactured by Cochlear Corporation. The research interface bypasses the clinical processor and acts as the sound processing unit. The platform consists of: 1) a computing device (e.g., a PC, smartphone/tablet) for sound processing needs, and 2) a custom-developed interface board to connect with commercial, FDA-approved RF transmitter coils (see Figure 1). The interface board was designed, engineered and developed at UT-Dallas and is a successor to the PDA-based platform (which was under FDA-IDE # G100069)

FOR HA/CI USERS & THE SPEECH SCIENCE RESEARCH COMMUNITY

CCi-MOBILE Details Features Hardware Design Software Downloads Github Training and Documentation Publications Subscription Tiers FAQs

FAQs answered on the website

Projects

Participate

Team

Contact

Cochlear Implant

Home

CILab: Cochlear Implant Processing Laboratory

CCi-MOBILE

UT DALLAS

UTDallas

Frequently Asked Questions about the CCi-MOBILE

CRSS: Center for Robust Speech Systems

(Click the question for answers)

1. What can the CCi-MOBILE research interface do? KEYWORDS: purpose, goal, operating specifications, experiments, general, research

A lot!¹⁰ The research platform allows researchers to investigate new HA/CI signal processing, record audio in naturalistic conditions, test real-time algorithms on HA/CI stimulated processors, enable in-lab, in-booth, and field experiments, and exploration of signal processing parameters, MAP parameters, and processing pipelines with more freedom than manufacturer research interfaces. CCi-MOBILE is written in a low-level language environment (MATLAB) with a large number of template user-interfaces, basic implementation, easy-to-adjustment MAP/signal processing parameters, and general applications such as an audio recorder, a visual temporal audio signal, and so much more. The goal of developing the CCi-MOBILE research interface was to stimulate the field of speech science by providing a tool to allow the investigation of otherwise proprietary signal processing techniques and field experimentation outside the general confinements of the sound booth. For applications of how to use CCi-MOBILE for your research, we encourage you to attend one of our conference workshops at appropriate meetings (Acoustical Society, Alliance of Cochlear Implants, Conference on Implantable Auditory Prosthesis, etc.).

2. How can my institution get the CCi-MOBILE research interface? KEYWORDS: subscription, purchase, rent, obtain, receive, own, membership, tiers

3. Can my institution rent-to-own the CCi-MOBILE research interface? KEYWORDS: subscription tiers, rent, transfer, upgrade, cost, memberships

4. Is there external support for obtaining CCi-MOBILE?

5. Where does the money for CCi-MOBILE go? KEYWORDS: cost, money, motivation, rationale, intent, purpose, hardware

6. Is CCi-MOBILE safe to use with cochlear implant and hearing-aid users? KEYWORDS: safe, clinical level, standards, safety, limitations

27

CCi-MOBILE: Q&A release notes

CCi-MOBILE Research Interface for Cochlear Implant and Hearing-Aid Research Release Notes: Jan-22-2019

These release notes address the following from version 2.2c:

- Realtime vs. offline processing
- Operating specifications non-integer number of pulses per frame
- Data loss
- Other possible solutions for non-integer pulses per frame
- User-specified MAP and signal processing parameters
- Data communication

Question: Is there a difference between real-time and offline processing?

ANSWER: Yes. Differences between real-time and offline include: pre-emphasis step, user-specific parameter adjustment, communication to the board, and a few minor function calls/for loops. The real-time implementation was specifically designed to minimize the latency in data communication and signal processing. The offline implementation was

predominately adopted from Nucleus MATLAB Toolbox (Cochlear

 For engineers, compare the functions (CCi-MOBI (CCi-MOBIE\MATLAB\Realtime) 'ACE_Processin

Question: What is the operating specification: 'non-integer n

ANSWER: Non-integer pulses per frame will result in a selecting (i.e. 4 samples verses 4.348 samples). The number of pulses per stimulation rate (Hz) and the number of selected electrodes ('n-m samples used in the overlap-and-add method (i.e. the variable, demonstrated in equation [2]. To account for this, a change in the of pulses.

Question: Is CCi-MOBILE losing data and/or dropping samples?

ANSWER: It is dependent on the real-time and/or offline implementation.

- For offline ACE/CIS implementation, there is not a loss in data. The remaining non-integer data bytes (RF cycles) are processed with the subsequent frame and the remaining byte-size shift is applied throughout the entire length of the offline speech token to provide stimulation without data loss. Because the signal is processing offline, the buffer function (overlap-and-add) will automatically zero pad the data to ensure all frames can be processed.
 NOTE: Adjustments to the user-specified parameters may ensure no data is lost.
 - For engineers, see the function (CCi-MOBILE\MATLAB\AudioFileProcessor\...) 'Stream.m' lines 38-46 and lines 54-62 (ver 2.2c)
- For real-time ACE/CIS implementation, there is a loss in data. The numerical amount of data loss is in the form
 of samples. The numerical amount of samples per stimulation cycle (RF cycle) is dependent on the user-specified
 stimulation rate. The maximum number of dropped samples is equivalent to: (sampling frequency) / (stimulation
 rate)¹. NOTE: Adjustments to the user-specified parameters may ensure no data is lost.
 - For engineers, see the function (CCi-MOBILE\MATLAB\Realtime\...) 'ACE_Processing_Realtime.m' line 7 (ver 2.2c), variable output 'z' are the dropped samples.
 - NOTE: While there is a loss in a small amount of data for the real-time implementation of ACE/CIS, the subject performance (N=8) with their clinical processor against the real-time implementation of ACE/CIS

¹ NOTE: A non-integer value from this calculation will be rounded toward positive infinity (i.e. the MATLAB function, 'ceil')

Cochlear Implant Processing Laboratory The University of Texas at Dallas

- CCi-MOBILE platform is meant for "non-clinical" experimental investigation of research ideas
- Platform does not fall under the scope of an FDA IDE
- Your organization must have IRB approval from your respective institution to conduct any human testing.
- CRSS-CILab submitted an Overview Summary of CCi-MOBILE to FDA to assess FDA-IDE status; their response:

"...we have determined that your study does not fall within the scope of the IDE regulation, and an IDE application is not required to be submitted to FDA for your proposed study." FDA – Feb., 2017

- IRB: CCi-MOBILE platform is intended for research investigations; if you need help with n IRB, we can provide you with sample IRB for which you can obtain IRB approval at your institution.
- Hardware Cost: There is a cost for CCi-MOBILE Hardware production; all funds from hardware are folded back to support hardware units in the field (update, repair, etc.); as well as produce additional units for distribution
- Various User Options: full ownership (2 or 1 platform), year lease; monthly lease (\$15k - \$250/month)
- NIH Investigators you can submit a supplement request to obtain CCi-MOBILE; CRSS-UTDallas will provide you with a sample request letter if needed.

Open source software, and Hardware available to the research community (35 New Platforms recently completed; an Access Sub-Committee from multiple institutions will review all requests and make recommendations)

♦ 4:00-4:20: Overview Presentation on CCi-MOBILE

General functions & capabilities; web-site support; technical MEMOs; GetHub software; Hands-On Stations demo'ing software, hardware, and Android development software - share on GetHub for the community.

♦ <u>4:20-5:00:</u> PANEL DISCUSSION (Q&A)

Open panel discussion by Users of CCi-MOBILE research platform; - experiences? Areas to expand/improve on? Wish list?

♦ <u>5:05 – 5:45</u>: Hands-On Experience:

Attendees to talk with UTD team members at stations covering: Matlab software available; hardware – including Burn-In testing/safety; Android smartphone support; IRB support; NIH researchers access

♦ <u>5:45 – 6:00</u>: Final Q&A session:

opportunity for follow on questions from attendees.

CCI-MOBILE USER PANEL

PANEL DISCUSSION (Q&A)

Mario Svirsky Tanvi Thakkar John Cadwell Alan Kan Mahan Azadpour (NYU); (UW – Madison)

- Initial Impressions/Experience: CCi-MOBILE platform
- What Testing Have you done? Research Plans/Interests?
- Siven BASE OPEN Source software Suite, issues in coding?
- What new directions could CCi-MOBILE be used for?
- Wish List? what support/directions/options do you need?

♦ 3:00-3:20: Overview Presentation on CCi-MOBILE

General functions & capabilities; web-site support; technical MEMOs; GetHub software; Hands-On Stations demo'ing software, hardware, and Android development software - share on GetHub for the community.

♦ 3:20-4:00: PANEL DISCUSSION (Q&A)

Open panel discussion by Users of CCi-MOBILE research platform; - experiences? Areas to expand/improve on? Wish list?

♦ <u>4:05 – 4:45:</u> Hands-On Experience:

Attendees to talk with UTD team members at stations covering: Matlab software available; hardware – including Burn-In testing/safety; Android smartphone support; IRB support; NIH researchers access

♦ 4:45 – 5:00: Final Q&A session:

opportunity for follow on questions from attendees.

STATION #1: MATLAB Software Demo

Audio Scope

AudioFileProcessor

		Please Load & MAP 1	5×
Locator			
		Double Click to Ope	
Directory			COMOBILE Communication
	Folder Contr	Joe	
			Streening to CCHAUBID
Current Bit			
	Select Fold	ler)	
Stream File I	om Filz List Box		
1	Previous File	Scipper Hio	Not #ls
Lott Gain (d	•		
_			
	1dB	25/IB	00dB
Right Calh (r	F)		
	()). (

Cechear Inplant Resource Interface Index Interface Interface

Custom Signal Processing

Vocoder

Cochlear Implant Research Interface

RealtimeStimulator

					0
	IN			825	chart;
	447 7.32			STREET	
02	1546	34.19	- ND	37.5	TXD
	1681			211	
642	25.0	.4.94	315	2541	110
	NA18-			Wate-	
(31	-540		**	34-	***

34

Speech Enhancement

Station Leader(s)

- Name: Juliana N. Saba
- Year: Y3 PhD Student
- Research Areas: Lombard Effect, CI Signal Processing Strategies
- Name: Nursadul Mamun
- Year: Y1 PhD Student
- Research Areas: Speech Enhancement, Machine Learning for CI

- Demo of Desktop Applications (AudioScope, AudioRecorder, AudioFileProcessor, RealtimeStimulator)
- Demo of Vocoder, Speech Enhancement, Custom Signal Processing Applications
- How to create custom GUI (AppDesigner)
- How to use/run MATLAB Scripts

STATION #2: Hardware Demo

Hardware Overview

Station Leader

 Name: Ria Ghosh
 Year: Y1 PhD Student
 Research Areas: Hardware and Firmware Development

- Individual FPGA Components of CCi-MOBILE
- Demo of Desktop Application (CCi-MOBILE Demo)
- How CCi-MOBILE Communicates with Tablet/PC
- How CCi-MOBILE Communicated Stimuli/RF Data using UART/FPGA Routines

STATION #3: SAFETY & TESTING DEMO

TDALLAS Cochlear Implant Research Interface

User Parameter Evaluation

Acoustical Evaluation

Speech	Wav File 1 Wav File 2 Wav File 3 Wav File 4 Wav File 5		'n-maxima' (No. of selected channels 8	(ch:channels)
	Wav File 1		Pulse Width	
Music	Wav File 2 Wav File 3 Wav File 4 Wav File 5		25	(µs: micro-seconds)
			Stimulation Rate	
Noise	Wav File 1 Wav File 2 Wav File 3 Wav File 4		1000	(pps/ch: pulses per second per channel)
	Wav File 5			
	Play	View Electrodogram	Check User Parameters II	n Operating Specifications
Status		Safe	Accepted	
		Exceeds Limit	Exceeds Limit	
	View Safety Ch	neck Results	Run Burn-In Test	View Safety Check Results

Station Leader

- Name: Ram Charan M. Chandra.Shekar
- Sear: Y3 PhD Student
- Research Areas: Safety and Performance Assessment of Research Platform

- Safety and Performance Assessment
- Acoustical Diversity Assessment
- User Specified Parameter Testing

STATION #4: Android App Demo

Android App Overview

Station Leader

					1 20	
IOBILE	Ð,	CCI-MOBILE				
	Connected V	PARAMETE	RS	EL	LECTRODES	
	Sample war un		LEFT		RIGHT	
-	160 8	Implant Type	CI24RE		CI24RE	
	Rent of	Sampling Frequency (kHz)	16000		16000	
Electrode		Number of Channels	22		22	
Left Sensitiv	ity	Frequency Table	Default		Default	
2.3 Left Gain (d	10	Sound Processing Strategy	ACE	•	ACE	
25.0 Dight Sagette	50	nMaxima	8	٠	10	•
August Johnson	10	Stimulation Mode	MP1+2	•	MP1+2	-
Right Gain (d	B)	Stimulation Rate (pps)	1000		1000	
25,0	50	Pulse Width (us)	25		25	-
LECT MAP 👲 S	AVE MAP	Sensitivity	2.3		2.3	5

- Name: Avamarie Brueggeman
- Year: Y1 PhD Student
- Research Areas: Music Appreciation for Cls, Machine Learning

- How to run the Android app
 - Selecting a MAP file
 - Streaming to the board
 - Adjusting realtime parameters
 - Saving the new MAP file
- How to find our open-source code
 - How to fork a GitHub repository

GitHub	Repository
--------	------------

ILABUID / CCI-MOBILE		•	Watch 1 🖈 Star 4 🖞 Fork 1
Code () Issues () () Pull	I requests 0 🔲 Projects 0 🕕 Securi	ity 🛄 Insights	
CCi-Mobile research platfor	m is an external body-worn sound pro	cessor intended to perform ba	asic research with cochlear implants
ufactured by Cochlear Corp	oration. https://crss.utdallas.edu/CILa	b/CCi-M	
hlear-implant matlab androi	id		
E 60 commits	12 2 branches	© 0 releases	11.5 contributors
	p & brancings	↓ • reneases	S controlators
anch: master - New pull request			Find File Clone or download +
anch: master New pull request abrueggeman Merge pull request A	14 from CILabUTD/optimizeSettingsLayout		Find File Clone or download + Latest commit +70894ce on May 15
Android/CCIMOBILE	14 from CllabUTD/optimizeSettingsLayout im Merge branch 'master' into optimize	eSettingsLayout	Find File Clone or download - Latest commit #5894ce on May 15 2 months ago
Android/CCiMOBILE MATLAB	44 from ClLabUTD/optimizeSettingsLayout () Merge branch 'master' into optimize Merge branch 'master' into optimize	rSettingsLayout rSettingsLayout	Find File Clone or download - Latest commit #884ce on May 15 2 months ago 2 months ago

♦ 3:00-3:20: Overview Presentation on CCi-MOBILE

General functions & capabilities; web-site support; technical MEMOs; GetHub software; Hands-On Stations demo'ing software, hardware, and Android development software - share on GetHub for the community.

♦ 3:20-4:00: PANEL DISCUSSION (Q&A)

Open panel discussion by Users of CCi-MOBILE research platform; - experiences? Areas to expand/improve on? Wish list?

♦ 4:05 – 4:45: Hands-On Experience:

Attendees to talk with UTD team members at stations covering: Matlab software available; hardware – including Burn-In testing/safety; Android smartphone support; IRB support; NIH researchers access

♦ <u>4:45 – 5:00: Final Q&A session:</u>

opportunity for follow on questions from attendees.

Conclusions

- CCi-MOBILE is an open-source, flexible research platform compatible with cochlear implants and hearing aids
- Easy-to-use, adaptable applications and templates available for speech scientists in a high-language environment
- Hardware and software verification routines ensure safety and reliability of CCi-MOBILE
- Suited to address multi-disciplinary hearing research topics such as: speech-in-noise, sound localization/lateralization, speech enhancement, custom environmental MAP changes, etc.
- Enables bench-top, in-lab, and field experiments for all speech and hearing scientists

40

