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Abstract - This paper proposes a novel approach for the 
classification of phonocardiograms based on statistical 
properties of the PCG signal energy envelograms using 
fuzzy inference system. Fuzzification of features is done to 
remove absolute boundaries and assign a degree of 
association to every segment of the signal with the 
corresponding heart sound. Since heart sound signals are 
highly nonstationary, characteristic features of the signal 
segments are usually fuzzified. Developed Mamdani-type 
fuzzy inference classifier, helps distinguish between different 
heart sounds and fuzzy features with great accuracy. 

First of all, sequences of different features of the 
envelogram are computed which are then statistically 
manipulated and used as input to the inference system. 
Rules for the classification are created and output is 
computed. Crisp results represent degree of association with 
the correct heart sound. The developed algorithm is tested 
on standard databases. Results indicate 97% average 
accuracy to identify different segments of the PCG signal.  

Keywords: Phonocardiogram (PCG), Biomedical Signal 
Processing, Segmentation of heart sounds, Fuzzy Inference 
system. 

1 Introduction 
  In digital phonocardiography, correct automatic 
identification and classification of heart sounds is still a 
complex and difficult task due to highly nonstationary 
nature of the heart sounds and its variability from person to 
person [1, 2]. Two major audible heart sounds in a normal 
cardiac cycle are the first and second heart sounds, S1 and 
S2 respectively. A normal cardiac period thus comprises of 
S1, the systolic period, S2 and the diastolic period in this 
sequence in time. Pathological conditions and abnormalities 
may add other sounds such as S3, S4, opening snaps, 
ejection clicks, splits, murmurs or stenosis into the normal 
cycle. 
 Feature extraction of PCG initiates from envelogram 
computation, i.e. segmenting the PCG into envelopes and 
zero segments. Various methods for envelogram 
computation have been reported in literature such as mean 
Shannon Energy, AM demodulation, Hilbertz Transform, 
Wavelet decomposition, rectification and low pass filtering 
of the PCG. Thresholds are set in order to limit noise and 

clarify zero segments as well as envelope boundaries. In 
our work we have computed envelogram from average 
Shannon Energy of the signal. After an efficient 
segmentation of the PCG, characteristic features of the 
envelogram are analyzed namely: amplitude, duration, 
mean frequency and average energy of envelopes as well as 
duration of zero segments. These features form a set of 
sequences which are used as inputs for the fuzzy inference 
system. Fuzzy Inference System is based on general 
properties of various heart sounds such as: usual intensity 
and duration of S1 is greater than that of S2 and etcetera. 
The crisp output of the system gives degree of association 
of the inspected segment with the theoretical one. Based on 
this association, classification is done. Murmurs, on the 
other hand, can occur anywhere in the cardiac cycle. If a 
murmur is classified, it is again fed to another fuzzy system 
which classifies it as innocent, pathological or highly 
pathological. Final classification however is performed by 
comparing the sequence classified by the fuzzy system with 
the actual cardiac cycle. Here, it is tested that no same 
segments (except murmurs) are classified adjacent to each 
other (e.g. after S1 there should be S2). If classifier 
identifies the next lobe again as S1, then either the first or 
second lobe is misclassified or a split is indicated. This case 
usually occurs in split sound pathologies, and correct 
identification is made at this stage. The objective of the 
final stage is simply to filter out the sequence of events 
classified by the fuzzy system by a more astringent 
criterion. 
  
2 Database 
 Database of normal and various cardiac abnormalities 
of heart sounds was taken from “e-general medical” [3].  
The data is sampled at 11025Hz and low pass filtered out 
using Chebyshev (type I) filter with a cutoff frequency of 
882 Hz [1]. Frequency components higher than this cutoff 
value are usually associated with noise. 

3 Signal Processing 
3.1 Envelogram Computation 
 Average Shannon Energy of the signal is computed as 
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where N is window size and is taken to be duration between 
two zero crossings of the signal. This variable window size 
rather than fixed window size as in [1] enhances signal 
characteristics by computing distinct envelograms for major 
heart sounds and murmurs which results in classification 
based on envelogram features. Figure 1(a) shows PCG of a 
normal subject while Figure 1 (b) gives Shannon Energy 
envelogram computed using adaptive windows. Here the 
horizontal axis is changed from total number of windows to 
the total sample size of the signal and it is assumed that 
every sample of the window has a constant energy equal to 
the energy of respective window. This representation makes 
feature extraction simpler and data from the envelograms 
easy to manipulate. 

3.2 Feature Extraction 
 Envelogram features are the physical characteristics of 
the envelogram. These characteristics help in categorizing 
heart sounds and indentifying pathologies. Following 
features are used as inputs for the fuzzy system. 

3.2.1 Amplitude of Envelopes 
 Amplitude of envelopes corresponds to the intensity 
of heart sounds. Usually S1 has highest intensity followed 
by S2, S3 and S4. Envelopes of innocent murmurs and 
some cases of mild aortic stenosis have least intensity. This 
criterion is used as one of the inputs to the fuzzy classifier 
to separate out major heart sounds from the minor ones. A 
sequence of amplitudes of all the envelopes of an 
envelogram is formulated and fed as an argument to the 
fuzzy classifier.  

3.2.2 Energy of Envelopes 
 Total Shannon Energy of the individual envelopes 
gives a fair clue for the identification of different heart 
sounds. The best thing about taking total energies of the 
envelopes is that it clearly differentiates every heart sound. 
However, in cases of sound splits total energy of the 
envelope may not be a useful feature. For example if there 
is a split in S1 sound, S1 is detected in the form of two 
envelopes in the envelogram. Here total energy of S1 is 
divided into two halves and energy computed from a single 
envelope is in fact a fraction of the total energy of S1. In 
such cases ratio of total energy of individual envelopes to 
the duration of respective envelopes is a useful argument 
for classification. This ratio however blurs boundaries 
between S2, S3 and murmurs. 

 
Figure 1 (a) Original PCG of a normal subject 

 
Figure 1(b) Shannon energy envelogram of the PCG 

3.2.3 Duration of Envelopes 
 Duration of envelopes is an indirect measure of 
frequency content of the envelopes. In typical cases S1 has 
longest duration followed by S2, S3/S4 and finally 
murmurs, which have highest frequency content. This 
feature is very helpful in the identification of murmurs and 
stenosis, since intensity of a murmur may be close to major 
sounds but its duration would never be. 

3.2.4 Duration of zero segment 
 Zero segments are parts of the envelogram where 
energy of the signal is nearly zero. In noisy conditions a 
threshold is often set, below which energy of the envelopes 
is forced to zero; hence rejecting extra envelopes. Durations 
of zero segments correspond to systolic (zero segment 
following S1) and diastolic (zero segment following S2) 
periods. Generally diastolic period is much greater than 
systole; therefore they are used as reference indicators for 
S1 and S2. However in cases where diastole contains S3/S4 
and abnormalities like severe stenosis, correct 
differentiation between systole and diastole is difficult to 
make. In such cases, S1s and S2s are used as reference 
indicators for systole and diastole. 

4 Fuzzy Classifier 
 Figure 2 shows schematic of the fuzzy inference 
system based on Mamdani’s method [4]. Inputs to the 
system are the features discussed in section 3.2 namely 
amplitude of the envelopes, duration of the envelopes, 
energy of envelopes and ratio of energy to the duration of 
the envelopes. For each of these inputs, rules are 
formulated through which output is inferred. These inputs 
are sufficient to differentiate between S1, S2, S3 and 
murmurs/stenosis. 



Figure 2. Complete Fuzzy inference system with four distinct inputs, i) Maximum amplitude of each of the envelopes; ii) 
Duration of envelopes; iii) Total energy of envelopes; iv) Ratio of energy of envelopes to the duration of envelopes. Four 
outputs extracted from the output of the fuzzy classifier are S1, S2, S3 and murmur/Stenosis. 

4.1 Membership Functions 
 Membership functions of all the inputs are described 
by asymmetric curves to map input space to resulting 
membership value. Leftmost membership functions of each 
of the inputs are polynomial based Z curves which are open 
to the right while the rightmost are sigmoidal membership 
functions, open to the left. Membership functions between 
leftmost and rightmost functions need to be asymmetric and 
closed in nature and are thus modeled by product of two 
sigmoidal curves. Overlapping of these curves depend upon 
the extent of clustering of the input values. Note that our 
algorithm changes the shape of these membership functions 
with every new input depending upon the statistical nature 
of the input data. Overlapping, smoothness and duration of 
these membership functions is governed by distribution of 
the data and is therefore unique for every case. Our 
algorithm is therefore adaptive and proves very efficient for 
different cases. All four input membership functions for the 
normal case are shown in Figure 3(e). 
 Output membership functions are all Gaussian in 
nature with approximately 20 percent overlapping on each 
side. Rarely an output lies in the overlapping region which 
implies that envelope under inspection has a degree of both 
the sound types and it may need further analysis. 

4.2 Clustering 
 Figure 3(a) shows PCG of a normal subject along with 
its envelogram. Figure 3(b) plots maximum amplitude of 
each of the envelopes. At this stage inference can be made 
about S1, S2 and one murmur found in envelope number 6. 
However there are cases where this distinction is difficult to 
make. In order to pass arguments to fuzzy system, data 
clustering is done. Figure 3(c) shows a histogram of the 
sequence of maximum amplitudes shown in Figure 3(b). 
Histogram makes three clusters of the data. These clusters 
show that six envelopes have highest amplitude levels 
(which correspond to S1), six have medium amplitude 
levels (corresponding to S2) and only one has lowest 
amplitude (corresponding to an innocent murmur). Ranges  

 

of amplitude levels (upper and lower bounds of each of the 
bar) indicated on the horizontal axis determine input 
arguments for the membership function curves, which are 
duration and intersecting points of the curves. Data 
clustering is done for all the inputs. Generally, three data 
clusters are formed but for cases where more than three 
clusters are made, manipulation of the histogram is done in 
such a way that data is sectioned into three clusters. This 
manipulation is not only based on the relative distance of 
each bar from the other in histogram, but is based on the 
fact that number of S1s, S2s and S3s should be equal (with 
plus minus 1 deviation, if a cycle is not complete). This 
manipulation helped in forming distinct clusters for the 
data. Figure 3(d) shows this clustering effect of maximum 
amplitude levels in order to compute upper and lower 
bounds for each of the membership function curves of the 
fuzzy system. 
 A case of interest is where S3 and murmurs occur in 
the same PCG. In such a case, four clusters each for S1, S2, 
S3 and murmurs would initially be formulated. 
Manipulating these four clusters into three would make S3 
fall in the category of S2 or murmurs. In order to deal with 
such a situation, a murmur threshold was used as a fourth 
membership curve in all the inputs except in amplitude of 
envelopes input (since murmur can have any intensity 
level). 
 This fourth murmur membership function is  modeled 
as polynomial based Z curve and is set to extreme left. Its 
duration, overlapping and intersecting point with its 
adjacent curve is determined by a murmur threshold level. 
Murmur threshold is individual for all three inputs but a 
constant value. This threshold is set by analyzing more than 
forty PCGs in such a way that most murmurs lie below this 
threshold value. To counter for abnormal cases, a provision 
is given in the extent of overlapping of this murmur curve 
with its adjacent curve. Most of the murmurs are identified 
in this way and are differentiated from S3. For duration of 
envelopes, murmur threshold is set as 300 samples with an 
overlap region of 300 to 600 samples at a sampling  
 



Figure 3(a) PCG of a normal subject with its envelogram 

Figure 3(b) Bar Chart showing sequence of maximum 
amplitudes of the envelopes 

Figure 3(c) Histogram of the amplitude of lobes 

Figure 3(d) Clustering of amplitude levels of envelopes 

 
(i) Amplitude of envelopes (ii) Duration of envelopes 

 
(iii) Energy of envelopes (iv) energy/duration of envelopes

Figure 3(e) Input membership functions 

 
frequency of 11025 Hz as shown in figure 3e (ii). For 
energy of envelopes and ratio of energy of envelopes to the  
duration of envelopes, murmur thresholds are set as 0.25 
(with an overlap region of 0.25—0.30) and 0.1 (with an 
overlapping region of 0.1—0.15) respectively, on a scale of 
0—1, with original PCG and its features normalized to their 
absolute maximum. These threshold values can further be 
optimized by processing other PCG databases or a 
knowledge based optimization of thresholds may be 
performed so that every time a new PCG is processed, 
murmur thresholds are updated. 
 An important thing to realize at this stage is that since 
heart sound signals are highly nonstationary, if at times any 
sound is wrongly identified by a single input, rest of the 

three inputs would counter its effect, if they classify it 
correctly. This often happens in the analysis but the effect 
of four inputs helps the fuzzy inference system to classify 
according to the dominating characteristic of the signal. 
This is where fuzzy classifier reveals its potential to deal 
with uncertain cases very simply and effectively.   

4.3 Rules 
 If-then rule statements are used to formulate the 
conditional statements that comprise fuzzy logic. These 
rules are straightforward obvious statements used in order 
to direct the fuzzy system. For example, one such rule for 
the classification of S1 is: 
IF amplitude of the envelope is maximum, 
AND duration of envelope is maximum, 
AND energy of envelope is maximum, 
AND the ratio, (energy/duration of envelope) is maximum 
THEN envelope is “S1”. 
Similarly, other rules depending upon the relationship of 
membership functions of the inputs to the outputs are 
formulated. 

4.4 Ouput 
 Crisp values returned from the fuzzy system indicate 
degrees of association of an envelope with different heart 
sounds. At this stage, output would either be S1, S2, S3 or 
murmur. Output membership functions are Gaussian and 
overlap with each other. If an output lies in the overlapping 
region, it implies that envelope under inspection has 
characteristics of the both outputs and it may be further 
analyzed for accurate classification. Final classification of 
the output sequence is however made by comparing the 
output sequence with systole and diastole periods of the 
envelogram, which are usual markers for S1s and S2s. 
Systole, diastole identification itself is made by another 
fuzzy system which takes duration of zero segments of the 
envelogram as an input. Forward and backward chaining is 
utilized in order to classify S1s and S2s. Initial output is 
hence refined and more accuracy in results is achieved. 

4.5 Murmur Classification 
 If a murmur is identified from the output of the fuzzy 
system, PCG is further analyzed and passed through 
another fuzzy engine which categorizes murmurs according 
to their pathological nature.  Figure 4 illustrates simplified 
architecture of the murmur classifier. There are three inputs 
to the classifier each based on performance parameters of 
the PCG as discussed below. 

4.5.1 Relative Energy of murmurs 
Ratio of the total energy of murmur classified 

envelopes to the total energy of S1s, S2s and S3s gives an  
 



Figure 4 Fuzzy System for murmur classification.
 
idea of relative energy of the murmurs with reference to 
other major sounds. 
 

Energy of murmursRelative Energy =  
Total Energy of S1s, S2s, S3s 

Output would range from 0—1. Values closer to zero 
would imply low risk but values from 0.20 onwards may be 
pathological. 

4.5.2 Relative Intensity of murmurs 
Murmurs having high amplitudes usually indicate an 

alarming situation such as those in Systolic Aortic Stenosis, 
Mitral Prolapse and regurgitations. Ratio of mean murmur 
height to the mean of S1, S2 and S3’s height characterizes 
relative intensities of murmurs by comparing the intensity 
levels of murmurs to the major heart sounds. 
 
Mean Relative Murmur Intensity = 

Mean amplitude of murmurs                          
Mean amplitude of S1, S2 and S3 

 Values closer to 1 are critical than those closer to 0. 

4.5.3 Percentage of murmurs 
Ratio of total number of murmurs to the total number 

of major heart sounds detected by the classifier gives 
quantitative description of the kind of murmurs in the PCG. 
 
Percentage of murmurs = 

Total number of murmurs X 100
Total number of S1s,S2s,S3s and murmurs

 This value indicates total number of murmurs per cardiac 
cycle and helps in identifying percentage of murmur 
clustering which is very useful for the classification of 
severe aortic stenosis and regurgitations. 

5 Classifying Procedure  
 Figure 5 is a flowchart summarizing sequence of 
events undertaken in the classification of heart sounds. 

 
Figure 5. Classification of Heart Sounds 

6 Conclusion 
Fuzzy Classifier is an aboriginal approach for 

computerized identification of different heart sounds. The 
presented classifier design is simple and based on usual 
human interpretation of the signal but is intelligent enough 
to classify different heart sounds with good accuracy. 
Results for the normal and nearly normal cases are highly 
accurate up to 100 percent.  The design can be further 
improved by adding other membership functions according 
to the characteristics of the phonocardiograms. Moreover 
optimizing murmur threshold levels would be a major leap 
forward to differentiate murmurs from similar sounds e.g. 
S4. 
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Murmur Classification 



Table I. Results of phonocardiogram classification 

PCG Samples  S1s S2s S3s Murmurs 
 Correct 
Classification Analysis 

NORMAL 12/12 12/12 0/0 1/1 100% 1 innocent murmur 

PCG with S3 6/6 7/7 6/6 0/0 100% Sequence of S1s, S2s and S3s 

Early systolic 7/7 6/6 0/0 36/36 100% Highly pathological murmur(s) 

Ejection Click 6/6 6/6 0/0 10/10 100% Highly pathological murmur(s) 

Normal Split 6/6 6/6 0/0 0/0 100% Split not enhanced by envelogram 

Diastolic Fixed S2 Split 12/12 12/12 0/0 0/0 100% Split not enhanced by envelogram 

Early Aortic Stenosis 6/6 6/6 0/0 34/34 100% Highly pathological murmur(s) 

Diastolic Atrial Gallop 6/6 6/6 0/0 9/9 100% (Gallops identified as murmurs) 

Opening snap 7/7 7+5/14 0/0 0/0 82% 2 OS. incorrectly identified as S3 

Diastolic Phys. S2 Split 6/6 6+4/6+4 0/0 183/227 86% 4/4 Splits identified 

Pan Systolic 7/7 7/7 0/0 83/83 100% Highly pathological murmur(s) 

TOTAL 85/85 86/88 6/6 356/400 92.1% 

Relative Percentage 100% 98% 100% 89% 
  

Advanced intelligent classifiers can be made by 
merging different domains of classifiers. For example a 
knowledge based Neuro-fuzzy classifier would unite 
characteristics of three classifiers and will certainly result in 
better output. Finally, it is proposed that final sequence of 
classifier results be compared to a larger duration database 
of heart sounds so that an added advantage of accurate 
diagnosis of any pathology, if present, is made. 
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