
  

  

Abstract—This paper presents design overview of a low cost 
prototype of Cochlear Implant developed from commercial off-
the-shelf components.  Design scope includes speech processing 
module implemented on a commercial digital signal processor, 
transcutaneous data and power transceiver developed from a 
single pair of inductive coils and finally a stimulator circuitry 
for cochlear stimulation. Different speech processing strategies 
such as CIS, SMSP and F0/F1 have been implemented and 
tested using a novel, indigenously developed speech processing 
research module which evaluates the performance of speech 
processing strategies in software, hardware and practical 
scenarios.  Design overview, simulations and practical results of 
an optimized inductive link using Class E Power Amplifier are 
presented. Link was designed at a carrier frequency of 2.5MHz 
for 100mW output power. Receiver logic design and stimulator 
circuitry was implemented using a PIC microcontroller and 
off-the-shelf electronic components. Results indicate 40% link 
efficiency with 128kbps data transfer rate. This low cost 
prototype can be used for undertaking cochlear implant 
research in laboratories. 

I. INTRODUCTION 
OCHLEAR Implant (CI) is one of the most popular and 
successful prosthetic devices in terms of performance 

and demand. It is a device which restores hearing to the 
patients with conductive as well as sensory-neural hearing 
loss. CI mimics functionality of a healthy cochlea by 
bypassing the natural hearing mechanism and directly 
stimulating the inner ear sensory cells of the auditory nerve 
by delivering electrical signals to an electrode array 
implanted inside the cochlea. Fig. 1 shows the block diagram 
of the complete CI system. 

Sound is acquired through a microphone which is then 
processed in a speech processor. Speech processor is 
essentially a digital signal processor programmed with 
different speech processing strategies. All speech processing 
strategies usually split the acquired sound signal into 
different frequency bands called channels, before 
compressing and converting them into biphasic pulses. 
Performance of these strategies varies from language, tone 
and person to person. Data from these channels is coded, 
multiplexed and modulated before it is finally transmitted 
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through a transcutaneous link in the form of electromagnetic 
waves to the inner ear. Logic circuitry at the receiver end 
receives the data, demodulates it, decodes it and finally de-
multiplexes it before sending the pulses to the stimulator 
circuitry which finally converts these logic signals into 
biphasic current pulses. These current pulses are provided to 
an electrode array implanted inside cochlea. 

Details of speech processing module, speech processing 
algorithms and their implementation in hardware are 
discussed in Section II. Section III provides design details of 
the inductive link and power amplifier. Receiver-stimulator 
logic and electronic circuitry is presented in Section IV. 
Simulation and practical results are then given in Section V 
followed by conclusion.  

II. SPEECH PROCESSING 
A speech processing strategy is one of the key features 

which affect the overall performance of CI [1]. Various 
strategies have been developed and reported in literature 
over time for cochlear prosthesis which include Continuous 
Interleaved Sampling (CIS), Spectral Peak (SPEAK), 
Advanced  Combination Encoder (ACE) , Spectral Maxima 
Sound Processor (SMSP) [1-4]. 

We implemented CIS, F0/F1 and SMSP for eight channel 
implant on TI C6713 DSP. Algorithms were initially 
developed and tested in MATLAB and SIMULINK and then 
finally coded in C using Code Composer Studio before they 
were finally realized on the processor. A considerable effort 
was done to keep the computation cost as low as possible by 
using multirate, multistage filters and by performing all 
computations in frequency domain which resulted in cost 
reduction by more than 70% as compared to the use of 
conventional FIR filters in time domain. Details of the 
algorithm implementation can be found in [5].  Data from 
each band was then coded using the coding scheme given in 
Fig. 2. This simple coding scheme not only enabled easier 
synchronization and decoding but also uniform radio 
frequency energy transmission. Finally all the channels were 
framed, time multiplexed and the output from the DSP was 
transferred to the transcutaneous link. 

In addition to this, a low-cost speech processing research 
module for the assessment and real-time evaluation of 
speech processing strategies and algorithms was developed 
using DSK TMS320C6713. This research module consists 
of three sub-modules: i) Software Evaluation Module, ii) 
Hardware Evaluation Module and iii) Real-time Patient 
Evaluation Module. This research module enables easy 
implementation, modification and assessment of any speech 
processing strategy or algorithm in software as well as its 
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Fig. 1.  Block diagram of complete Cochlear Implant system 
 

realization in hardware. Real-time operational performance 
of the developed algorithms in hardware can be easily 
studied and adjusted using this research platform. Details of 
this module have been given in our previous paper in [6]. 
 

 
Fig. 2.  Framing and coding scheme 

III. TRANSCUTANEOUS LINK 
Inductively coupled coils remain most popular choice for 

wireless data and power transmission. Design requirements 
of an inductive link for medical implant demands careful 
consideration of (i) bandwidth for supporting high data rates; 
(ii) efficiency for minimum power drop across the link; (iii) 
coupling insensitivity to coil misalignments; iv) form factor 
and v) biocompatibility. Data and power transmission have 
conflicting requirements in terms of efficiency. Wider 
bandwidth and high data rates are better supported at higher 
frequency. On the contrary, efficient power transfer is 
achieved using low operating frequency. Therefore, 
optimization of efficiency for power transfer is highly 
desirable due to low coupling in practical implants [7].  

A. Mathematical Link Modeling 
First step in the design and analysis of an inductive link is 

to compute link response at operating frequency. Primary 
circuit tuned in series resonance and secondary tuned in 
parallel resonance as shown in Fig. 3 is an ideal combination 
because phase of the inductor and capacitor voltage cancel at 
resonance and therefore a series-resonant primary network 
requires lower voltage swings at its input [8]. Equations 
governing the link efficiency and voltage gain are given by 
(1) and (2) respectively. 

 

  
Fig. 3.  Inductive link model 
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where,  
࡭ ൌ ሺܴ௅ଵܮଶଶ ൅ ܴ௅ଶܯଶሻ, ࡮ ൌ ሺܴ௅ଶଶ ଶ௣ܥ െ  ,ଶሻܮ2
࡯ ൌ ሺܴ௅ଶ ൅ ܴ௟௢௔ௗሻ, ࡰ ൌ ሺܯଶ െ  ,ଶሻܮଵܮ
ࡱ ൌ ൫ࡴ. ଶ௣ܴ௟௢௔ௗܥ െ ࡲ ,൯ࡰ ൌ ሺ࡯. ܴ௅ଵܥଵ௦ ൅  ,ଶሻܮ
ࡳ ൌ ሾܥଵ௦ሺࡵ. ܴ௟௢௔ௗ ൅ ሻࡴ ൅ ܴ௟௢௔ௗܥଶ௣ܮଶሿ, 
ࡴ ൌ ሺܮଵܴ௅ଶ ൅ ࡵ ,ଶܴ௅ଵሻܮ ൌ   ሺܮଵ ൅ ܴ௅ଵܴ௅ଶܥଶ௣ሻ 

 

B. Coil Design 
Second step is coil design, which plays a critical role in 

optimum data and power transmission. Design factors which 
contribute to link efficiency and voltage gain include 
coupling coefficient, quality factor, coil geometry, coil 
dimensions, type of wire used in windings, inductance and 
number of turns. Details about the optimization of these 
parameters for maximum link efficiency can be found in 
[17]. In a nutshell, coupling coefficient and quality factor of 
coils should be maximized for maximum link efficiency. 

1) Coil Design Process: Coil coordinates were first 
calculated in MATLAB and passed to Fast Henry, a Finite 
Element Analysis (FEA) software, to compute frequency-
dependent self and mutual inductances, as well as parasitic 
resistances of generic three-dimensional conductive 
structures in the form of Z matrix. Extracted z parameters 
were again passed to MATLAB to compute value of 
coupling coefficient. Finally, SPICE was used to simulate 
the inductive link on extracted value of k. Depending on the 
output of SPICE, coil parameters were changed until optimal 
k was extracted. 

 
TABLE I 

COIL PARAMETERS AT PRIMARY AND SECONDARY SIDE 
Primary Secondary 
L=80µH L=8µH 
Reffective=2.5Ω Reffective=1.4Ω 
Qunloaded=350 Qunloaded=89 
N=45 N=24 
Rexternal=13.5mm Rexternal=6.3mm 
Rinternal=7.5mm Rinternal=3.3mm 
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