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Abstract 
 

Various kinds of classifiers based on ANN, 
Hidden Markov and other methods have been designed 
for the detection of different heart sounds. These 
classifiers either have a complex design or they compare 
the signal with a database of phonocardiograms and 
classify accordingly. This paper proposes a novel 
approach for classification based on statistical properties 
of the envelograms of the PCG. The idea is to analyze 
features of the envelopes and zero segments in an 
envelogram the same way a clinician does by visually 
interpreting the signal and its envelogram. Approach used 
for the analysis is based on set of fuzzy rules governed by 
statistical features of the envelogram. Since heart sound 
signals are highly nonstationary, often a signal segment 
shows characteristics of two or more than two heart 
sounds at the same time which makes classification very 
difficult. Fuzzification of features is done so to remove 
absolute boundaries and assign a degree of association to 
every segment of the signal with the corresponding heart 
sound. Mamdani-type fuzzy inference system is used as a 
backbone to map input characteristics of the envelogram 
to the classifier output. 

First of all sequences of different features of the 
envelogram are worked out which are then statistically 
manipulated and used as input to the inference system. 
Rules for the classification are created and output is 
computed. The crisp results represent degree of 
association with the correct heart sound.  The algorithm 
identifies major heart sounds with high accuracy. 

Keywords: Phonocardiogram (PCG), envelogram 

1. Introduction 

In digital phonocardiography, the correct identification 
and classification of heart sounds automatically is still a 
complex and difficult problem due to highly 
nonstationary nature of the heart sounds and its variability 
from person to person. The two major audible heart 
sounds in a normal cardiac cycle are the first and second 
heart sounds, S1 and S2 respectively. A normal cardiac 
period thus comprises of S1, the systolic period, S2 and 

the diastolic period in this sequence in time. Pathological 
conditions and abnormalities may add other sounds such 
as S3, S4, opening snaps, ejection clicks, splits, murmurs 
or stenosis into the normal cycle.  

Feature extraction of PCG initiates from envelogram 
computation, i.e. segmenting the PCG into envelopes and 
zero segments. Various methods for envelogram 
computation have been reported in literature such as mean 
Shannon Energy, AM demodulation, Hilbertz Transform, 
Wavelet decomposition, rectification and low pass 
filtering of the PCG. Thresholds are set in order to limit 
noise and clarify zero segments as well as envelope 
boundaries. In our work we have computed envelogram 
from average Shannon Energy of the signal. After an 
efficient segmentation of the PCG, different properties of 
the envelogram are analyzed which include amplitude of 
envelopes, duration of envelopes, mean frequency of 
envelopes, average energy of envelopes and duration of 
zero segments. These properties form a set of sequences 
which are used as inputs for the fuzzy inference system. 
Fuzzy Inference System is based on general properties of 
various heart sounds such as: usual intensity and duration 
of S1 is greater than that of S2 and etcetera. The crisp 
output of the system gives degree of association of the 
inspected segment with the theoretical one. Based on this 
association, classification is done. Murmurs, on the other 
hand, can occur anywhere in the cardiac cycle. If a 
murmur is classified, it is again fed to another fuzzy 
system which classifies it as innocent, pathological or 
highly pathological. Final classification however is 
performed by comparing the sequence classified by the 
fuzzy system with the actual cardiac cycle. Here, it is 
tested that no same segments (except murmurs) are 
classified adjacent to each other (e.g. after S1 there should 
be S2). If classifier identifies the next lobe again as S1, 
then either the first or second lobe is misclassified or a 
split is indicated. This case usually occurs in split sound 
pathologies, and correct identification is made at this 
stage. The objective of the final stage is simply to filter 
out the sequence of events classified by the fuzzy system 
by a more astringent criterion. 

Finally it is proposed that final sequence of classifier 
results be compared to a database of heart sounds so that 
an added advantage of accurate diagnosis of any 
pathology, if present, is made. 
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2. Database 
 

The database of normal and various pathologies of 
heart sounds have been taken from “e-general medical”.  
The data is sampled at 11025Hz and low pass filtered out 
using Chebyshev (type 1) filter with a cutoff frequency of 
882 Hz [1]. Frequency components higher than this cutoff 
value are usually associated with noise. 

 
 

3. Signal Processing 
 
3.1  Envelogram Computation 
 
 Average Shannon Energy of the signal is computed as 

Eୟ୴ ൌ െ
1
N
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where N is window size and is taken to be duration 
between two zero crossings of the signal. This variable 
window size rather than fixed window size as in [1] 
enhances signal characteristics by computing distinct 
envelograms for major heart sounds and murmurs which 
results in classification based on envelogram features. 
Figure 1(a) shows PCG of a normal subject while Figure 
1 (b) gives Shannon Energy envelogram computed using 
adaptive windows. Here the horizontal axis is changed 
from total number of windows to the total sample size of 
the signal and it is assumed that every sample of the 
window has a constant energy equal to the energy of 
respective window. This representation makes feature 
extraction simpler and data from the envelograms 
manipulative. 
 

 
  Figure 1 (a) Original PCG of a normal subject 
 

 
  Figure 2(b) Shannon energy envelogram of the PCG 
 

3.2 Feature Extraction 
 
 Envelogram features are the physical characteristics of 
the envelogram. These characteristics help in categorizing 
heart sounds and indentifying pathologies. Following 
features are used as inputs for the fuzzy system. 
 
3.2.1 Amplitude of Envelopes. Amplitude of envelopes 
corresponds to the intensity of heart sounds. Usually S1 
has highest intensity followed by S2, S3 and S4. 
Envelopes of innocent murmurs and some cases of mild 
aortic stenosis have least intensity. This criterion is used 
as one of the inputs to the fuzzy classifier to separate out 
major heart sounds from the minor ones. A sequence of 
amplitudes of all the envelopes of an envelogram is 
formulated and fed as an argument to the fuzzy classifier. 
 
3.2.2 Energy of Envelopes. Total Shannon Energy of the 
individual envelopes gives a fair clue for the identification 
of different heart sounds. The best thing about taking total 
energies of the envelopes is that it clearly differentiates 
every heart sound. However, in cases of sound splits total 
energy of the envelope may not be a useful feature. For 
example if there is a split in S1 sound, S1 is detected in 
the form of two envelopes in the envelogram. Here total 
energy of S1 is divided into two halves and energy 
computed from a single envelope is in fact a fraction of 
the total energy of S1. In such cases ratio of total energy 
of individual envelopes to the duration of respective 
envelopes is a useful argument for classification. This 
ratio however blurs boundaries between S2, S3 and 
murmurs. 
 
3.2.3 Duration of Envelopes.  Duration of envelopes is 
an indirect measure of frequency of the envelopes. In 
typical cases S1 has longest duration followed by S2, 
S3/S4 and finally murmurs, which have highest frequency 
content. This feature is very helpful in the identification 
of murmurs and stenosis since intensity of a murmur may 
be close to major sounds but its duration would never be. 
 
3.2.4 Duration of zero segments. Zero segments are 
parts of the envelogram where energy of the signal is 
nearly zero. In noisy conditions a threshold is often set, 
below which energy of the envelopes is forced to zero; 
hence rejecting extra envelopes. Duration of zero 
segments correspond to systolic (zero segment following 
S1) and diastolic (zero segment following S2) periods. 
Generally diastolic period is much greater than systole; 
therefore they are used as reference indicators for S1 and 
S2. However in cases where diastole contains S3/S4 and 
pathologies like severe stenosis, correct differentiation 
between systole and diastole is difficult to make. Here, on 
the other hand, S1s and S2s are used as reference 
indicators for systole and diastole. 
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Figure 2. Complete Fuzzy inference system with four distinct inputs, i) Maximum amplitude of each of the envelopes; ii) 
Duration of envelopes; iii) Total energy of envelopes; iv) Ratio of energy of envelopes to the duration of envelopes. Four 
outputs  extracted  from  the  output  of  the  fuzzy  classifier  are  S1,  S2,  S3  and  murmur/Stenosis.
 
4. Fuzzy Classifier 
 
 Figure 2 shows schematic of the fuzzy inference 
system based on Mamdani’s method. Inputs to the system 
are the features discussed in section 3.2 namely amplitude 
of the envelopes, duration of the envelopes, energy of 
envelopes and ratio of energy to the duration of the 
envelopes. For each of these inputs, rules are formulated 
through which output is inferred. These inputs are 
sufficient to differentiate between S1, S2, S3 and 
murmurs/stenosis.  
 
4.1 Membership Functions 
 
 Membership functions of all the inputs are described 
by asymmetric curves to map input space to resulting 
membership value. Leftmost membership functions of 
each of the inputs are polynomial based Z curves which 
are open to the right while the rightmost are sigmoidal 
membership functions, open to the left. Membership 
functions between leftmost and rightmost functions need 
to be asymmetric and closed in nature and are thus 
modeled by product of two sigmoidal curves. Overlapping 
of these curves depend upon the extent of clustering of the 
input values. Note that our algorithm changes the shape of 
these membership functions with every new input 
depending upon the statistical nature of the input data. 
Overlapping, smoothness and duration of these 
membership functions is governed by distribution of the 
data and is therefore unique for every case. Our algorithm 
is therefore adaptive and proves very efficient for 
different cases. All four input membership functions for 
the normal case are shown in Figure 3(e). 
 Output membership functions are all Gaussian in 
nature with approximately 20 percent overlapping on each 
side. Rarely an output lies in the overlapping region 
which implies that envelope under inspection has a degree 
of both the sound types and it may need further analysis. 

 
4.2 Clustering 
 
 Figure 3(a) shows PCG of a normal subject along with 
its envelogram. Figure 3(b) plots maximum amplitude of 
each of the envelopes. At this stage inference can be made 
about S1, S2 and one murmur found in envelope number 
6. However there are cases where this distinction is 
difficult to make. In order to pass arguments to fuzzy 
system, data clustering is done. Figure 3(c) shows a 
histogram of the sequence of maximum amplitudes shown 
in Figure 3(b). Histogram makes three clusters of the data. 
These clusters tell us that six envelopes have highest 
amplitude levels (which correspond to S1), six have 
medium amplitude levels (corresponding to S2) and only 
one has lowest amplitude (corresponding to an innocent 
murmur). Ranges of amplitude levels (upper and lower 
bounds of each of the bar) indicated on the horizontal axis 
determine input arguments for the membership function 
curves, which are duration and intersecting points of the 
curves. Data clustering is done for all the inputs. 
Generally three data clusters are formed but for cases 
where more than three clusters were made, manipulation 
of the histogram was done in such a way that data was 
sectioned into three clusters. This manipulation was not 
only based on the relative distance of the bar from the 
other in histogram but was based on the fact that number 
of S1s, S2s and S3s would be equal (with plus minus 1 
deviation, if a cycle was not complete). This manipulation 
helped in forming distinct clusters for the data. Figure 
3(d) shows this clustering effect of maximum amplitude 
levels in order to compute upper and lower bounds for 
each of the membership function curves of the fuzzy 
system. 
 A case of interest is where S3 and murmurs occur in 
the same PCG. In such a case four clusters each for S1, 
S2, S3 and murmurs would initially be formulated. 
Manipulating these four clusters into three would make 
S3 fall in the category of S2 or murmurs. In order to deal 
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by another fuzzy system which takes duration of zero 
segments of the envelogram as an input. Forward and 
backward chaining is utilized in order to classify S1s and 
S2s. Initial output is hence refined and more accuracy in 
results is achieved. 
 
4.5 Murmur Classification 
 
 If a murmur is identified from the output of the fuzzy 
system, PCG is further analyzed and passed through 
another fuzzy engine which categorizes murmurs 
according to their pathological nature.  Figure 4 illustrates 
simplified architecture of the murmur classifier. There are 
three inputs to the classifier each based on performance 
parameters of the PCG as discussed below. 
 
4.5.1 Relative Energy of murmurs. Ratio of the total 
energy of murmur classified envelopes to the total energy 
of S1s, S2s and S3s gives an idea of relative energy of the 
murmurs with reference to other major sounds. 
 

Relative Energy ൌ
Energy of murmurs

Total Energy of S1s, S2s, S3s
 

 
Output would range from 0—1. Values closer to zero 

would imply low risk but values from 0.20 onwards may 
be pathological. 
 
4.5.3 Relative Intensity of murmurs. Murmurs having 
high amplitudes usually indicate an alarming situation 
such as those in Systolic Aortic Stenosis, Mitral Prolapse 
and regurgitations. Ratio of mean murmur height to the 
mean of S1, S2 and S3’s height characterizes relative 
intensities of murmurs by comparing the intensity levels 
of murmurs to the major heart sounds. 
 
Mean Relative Murmur Intensity

ൌ  
Mean amplitude of murmurs

Mean amplitude of S1, S2 and S3
 

Values closer to one are critical than those closer to zero. 
 
4.5.2 Percentage of murmurs. Ratio of total number of 
murmurs to total number of major heart sounds detected 
by the classifier gives quantitative description of the kind 
of murmurs in the PCG. 
 
Percentage of Murmurs

ൌ
Total number of murmurs

Total number of S1s, S2s, S3s and murmurs
ൈ 100 

  
This value indicates total number of murmurs per 

cardiac cycle and helps in identifying percentage of 
murmur clustering which is very useful for the 
classification of severe aortic stenosis and regurgitations. 

 
 
Figure 4 Fuzzy System for murmur classification. 
 
 
5. Classifying Procedure 
 

Figure 5 is a flowchart summarizing sequence of 
events undertaken in the classification of heart sounds. 

 

 
 

 Relative Energy

Relative Intensity

Percentage of Murmurs

Murmur Classification

Mamdani 
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6. Results 
 

 

PCG Samples  S1s S2s S3s Murmurs 
 Correct 
Classification Analysis 

NORMAL 12/12 12/12 0/0 1/1 100% 1 innocent murmur 

PCG with S3 6/6 7/7 6/6 0/0 100% Sequence of S1s, S2s and S3s 

Early systolic 7/7 6/6 0/0 36/36 100% Highly pathological murmur(s) 

Ejection Click 6/6 6/6 0/0 10/10 100% Highly pathological murmur(s) 

Normal Split 6/6 6/6 0/0 0/0 100% Split not enhanced by envelogram 

Diastolic Fixed S2 Split 12/12 12/12 0/0 0/0 100% Split not enhanced by envelogram 

Early Aortic Stenosis 6/6 6/6 0/0 34/34 100% Highly pathological murmur(s) 

Diastolic Atrial Gallop 6/6 6/6 0/0 9/9 100% (Gallops identified as murmurs) 

Opening snap 7/7 7+5/14 0/0 0/0 82% 2 OS. incorrectly identified as S3 

Diastolic Phys. S2 Split 6/6 6+4/6+4 0/0 183/227 86% 4/4 Splits identified 

Pan Systolic 7/7 7/7 0/0 83/83 100% Highly pathological murmur(s) 

TOTAL 85/85 86/88 6/6 356/400 92.1% 

Relative Percentage 100% 98% 100% 89% 
 
 
 
7. Conclusion 
 

Fuzzy Classifier is an aboriginal approach for the 
identification of different Heart Sounds. The design is 
simple and based on usual human interpretation of the 
signal but is intelligent enough to classify different heart 
sounds with good accuracy. Results for the normal and 
nearly normal cases are highly accurate up to 100 percent.  
The design can be further improved by adding other 
membership functions according to the characteristics of 
the phonocardiograms. Moreover optimizing murmur 
threshold levels would be a major leap forward to 
differentiate murmurs from similar sounds e.g. S4. 

Advanced intelligent classifiers can be made by 
merging different domains of classifiers. For example a 
knowledge based Neuro-fuzzy classifier would unite 
characteristics of three classifiers and will certainly result 
in better output. 
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