1479: CCI-MOBILE: AUTO-LSP BASED SPEECH ENHANCEMENT WITH COCHLEAR IMPLANT **LISTENERS USING CONVOLUTIONAL NEURAL NETWORK CONSTRAINT MAPPING**

Nursadul Mamun, John H. L. Hansen

Center for Robust Speech Systems (CRSS): Cochlear Implant Processing (CI) Lab Erik Jonsson School of Engineering & Computer Science, University of Texas at Dallas, Richardson, Texas, U.S.A.

(Nursadul.Mamun, John.Hansen)@utdallas.edu

Cochlear Implant Laboratory

1. INTRODUCTION

Observation: Cochlear (CI) Implant recipients enjoy near-to-normal speech intelligibility (SI) in quiet conditions [1].

3. METHODS cont.

Method#3: Deploy a CNN network to predict enhanced LSP parameters

Method#4: A constrained Weiner filter is used to predict the clean speech signal from the enhanced time-frequency speech constrained LPC parameters.

Sets:

5000/500

4. RESULTS

Challenge: CI recipients generally experience reduced speech intelligibility in environmentally rich spaces due to limited frequency resolution [2].

lterative Wiener Filter: traditional iterative Wiener filtering is not always stable [3,4]

♦ Auto-LSP based SE: apply speech auditory production and based timefrequency spectral constrains to achieve improved speech quality [4,5].

considers temporal-spectral local speech signals structures Of and effectively dis-integrates the clean LSP parameters and noise from noisy input.

CNN Parameters:

Training/Testing

utterances

Convolutional Layer: 5. Epochs: 100. Kernels: 17 Activation Function: 'ReLu'

Test Corpora:

Oatabase: TIMIT sentence corpus ♦ SNR: 10 and 5 dB.

♦ Noise: Speech shape noise (SSN).

$\widehat{\mathbb{N}}$ $4 + 4$	Nqisy	Spectrogram					
EX ,							
neuc.							
E O	Enhance	ed Spectrogran	1				
(ZHX) 4							
Sucy(
0 500	1000	1500	2000	2500 3000			
Time (ms)							
Intelligibility/Quality scores:							
	IS	STOI	SOPM	PESQ			
Noisy	4.19	0.722	0.717	1.432			
Noisy Enhanced	4.192.42	0.722 0.757	0.717 0.965	1.432 1.941			
Noisy Enhanced	4.19 2.42	0.722	0.717 0.965	1.432 1.941			
Noisy Enhanced Effect of Wien	4.19 2.42 er filter r	0.722 0.757 Daramete	0.717 0.965	1.432			

STOI

IS

SOPM

PESQ

Proposed networks: deploy a CNN to predict the enhanced line-spectral pair (LSP) parameters from their noisy version.	VINDISE. Speech shape hoise (SSN).	Beta = 0.5 Beta = 1.5	3.34 0.742.42 0.757	0.91 0.965	1.63 1.941
2. METHODS			nced signal provi	des improv	ved
 Method#1: Calculates LPC and LSP parame Method#2: Apply Inter- and Intra-frame constructions 	eters from each input signal frame over time straints to LPC parameters.	5.	CONCLUS	SIONS	
Windowing + Spectral Energy calculation Input Speech Signal	Intra-frame constraints LPC to LSP conversion Noisy parameters	 Proposed algorithms shown to successfully enhanced signals under noisy conditions for CI users. Advancements show processing time requirements are less for system 			
o ⁴ → Signal	LSP to LPC	convergen	ce to optimum e	enhanced	signal

Fig.1. Basic block diagram of Auto-LSP based SE algorithm.

Fig.2. (a) Intra-frame constraints[4,5]

Fig.2. (b) Inter-frame constraints [4,5]

anced signal Wiener filter coefficient values have a great impact on output enhanced signal quality Sest Intra-frame constraints are found for the combination: 0.3 and 0.7.

REFERENCES

F.G. Zeng; S. Rebscher (2008). IEEE reviesw in Biomedical Engineering 1, 115.

- L. M. Friesen, R. V. Shannon, (2001) J. Assoc. Res. in Otolaryngology 110(2):1150.
- J. S. Lim, A.V. Oppenheim, (1978) *IEEE Trans. ASSP*, 26(3):197-210.
- J.H.L. Hansen; M. A. Clements (1987). *IEEE ICASSP-1987, 189-192.*
- J.H.L. Hansen; M. A. Clements (1991) *IEEE Trans. Signal Proc.,* 39(4), **795-805.**

2021 Conference on Implantable Auditory Prostheses Lake Tahoe, CA (Virtual), July 12 – 16, 2021

This work was supported by the grant R01 DC016839 from the National Institute on Deafness and Other Communication Disorders, National Institutes of Health.