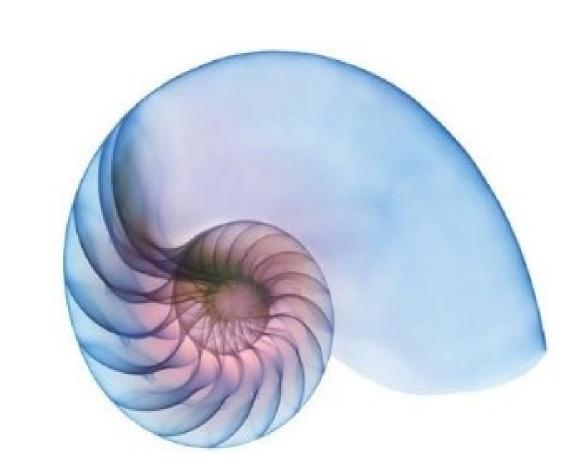


1505: CCI-MOBILE: COMPARATIVE ANALYSIS OF CNN-BASED MODELS VS HUMAN SOUND RECOGNITION AMONG CI AND NH SUBJECTS

Ram Charan M Chandra Shekar, John H.L Hansen **Center for Robust Speech Systems (CRSS), Cochlear Implant Processing Lab** Erik Jonsson School of Engineering & Computer Science, University of Texas at Dallas, Richardson, Texas, U.S.A. (ramcharan.chandrashekar, john.hansen)@utdallas.edu



Cochlear Implant Laboratory

1. INTRODUCTION

Environmental Sound (ES) Perception

- Important for hearing-specific quality of life (QoL) among CI users

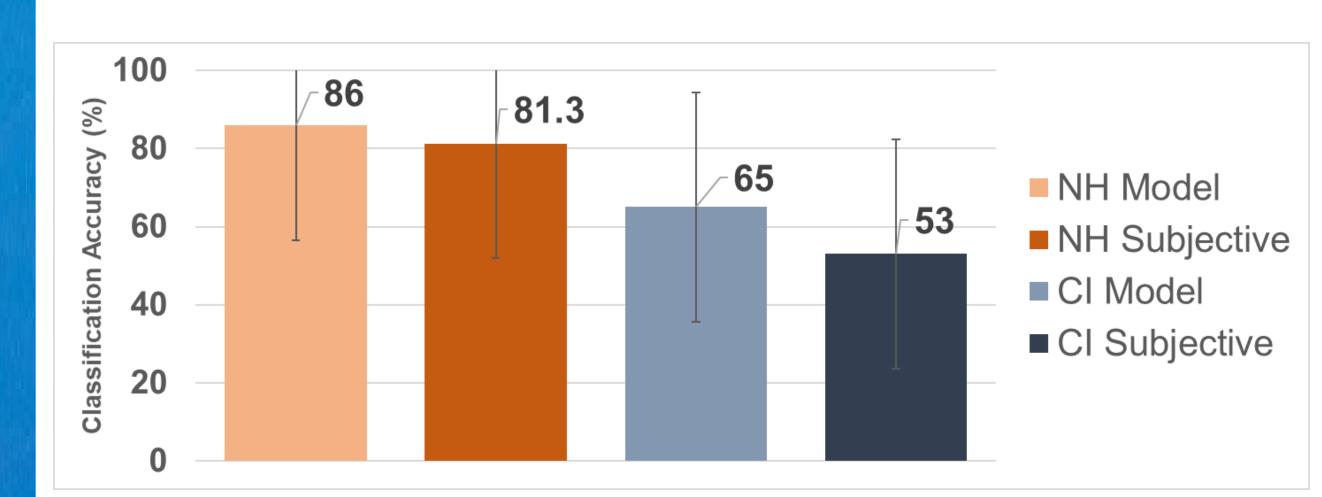
3. COMPARATIVE ANALYSIS

CNN Features for Sound Representation

- Fully convolutional VGG-based CNN
- Input: 128-band mel-spectrograms

4. RESULTS

Mean Classification Accuracy



- Limitations of ES perception: (i) limited number of studies, (ii) large reported variability in outcomes due to experimental factors, (iii) lack of CI subject recruitment (limited access to subjects)
- Solution However, many studies report no substantial improvement in ES for post perception implantation (CI users) when compared to CI candidates

Objective

Evaluate ES perception for CI users and assess the performance against a CNN-based ES identification model [1]

2. METHODS

Sound Battery/Audio Dataset

Section Sec

Output: 1024 dim sound representations

- S Layers: 2/1 conv layers | batch norm | max pooling | ReLU/Sigmoid
- Classifier: SVM Grid Search Algorithm

NH Machine Model Framework

CNN frameworks for CNN+SVM, CI stimuli, NH stimuli, respectively

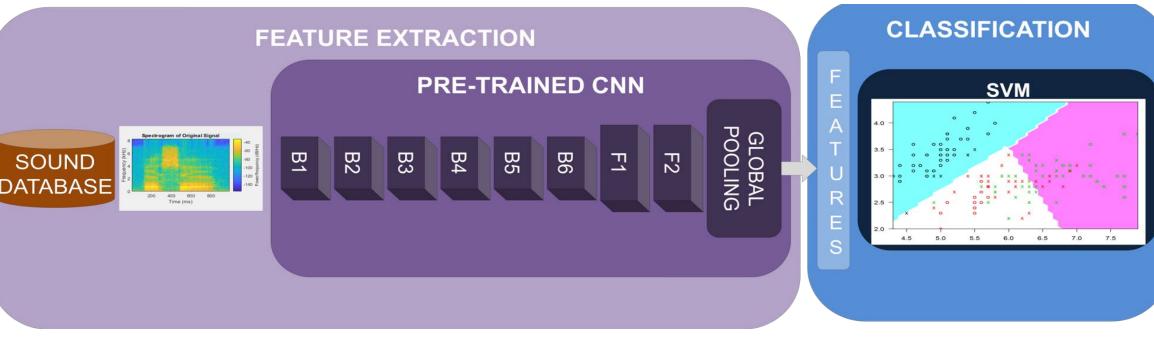


Fig. 2. Framework for sound classification using pre-trained CNN and SVM classifier.

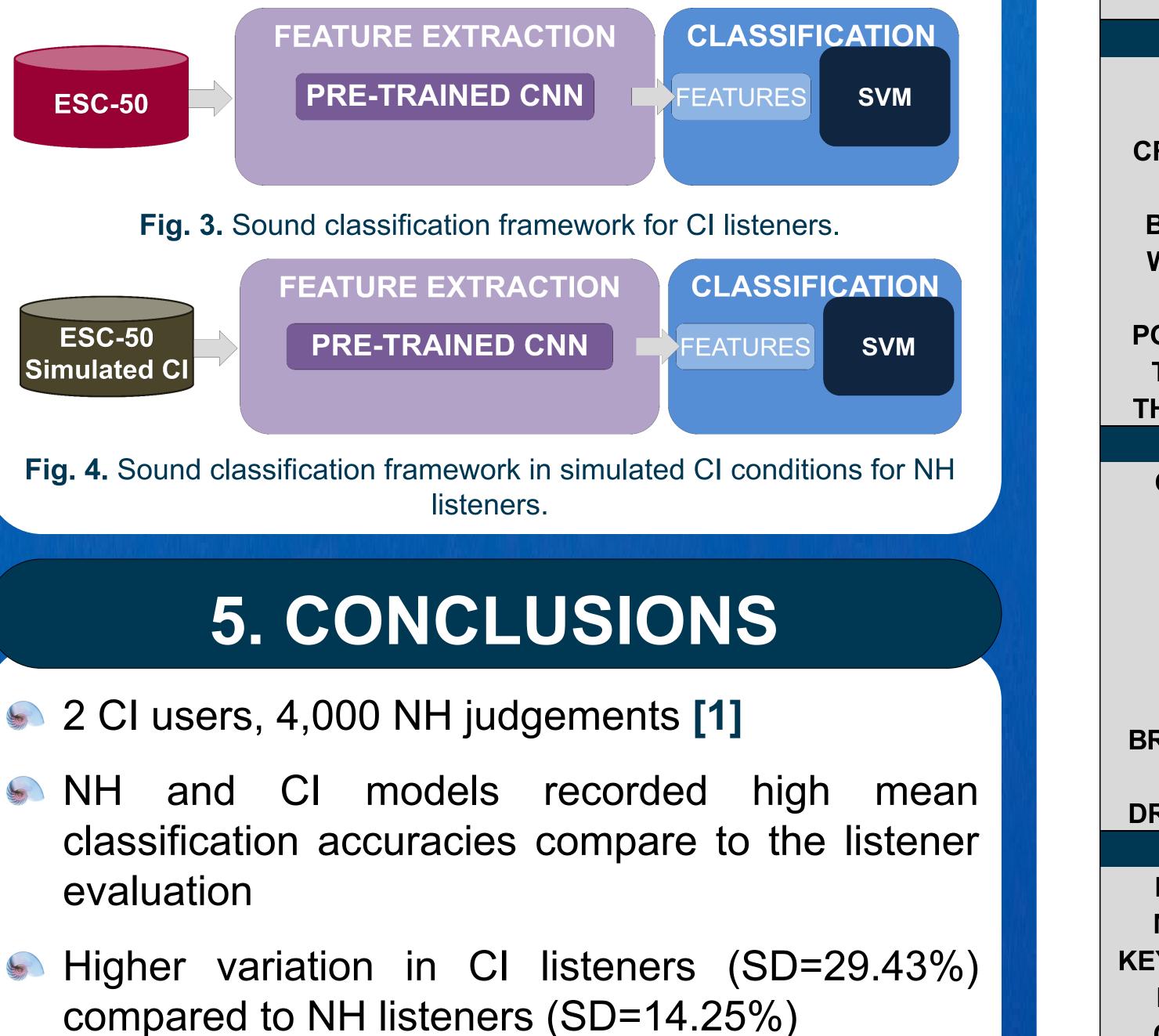


Fig. 5. Mean sound classification accuracy for model/subjective groups.

Identification Accuracy

	Normal He	aring (NH)	Cochlear	Implant (CI)
Sound Classes	Model	Subjective	Model	Subjective
	Animal Sou	nd Category	/	
DOG	88%	100%	75%	75%
ROOSTER	100%	71%	100%	100%
PIG	88%	89%	75%	50%
COW	75%	94%	75%	50%
FROG	88%	75%	88%	75%
CAT	50%	88%	50%	50%
HEN	88%	77%	62%	50%
INSECTS	100%	99%	50%	0%
SHEEP	100%	95%	88%	75%
CROW	75%	77%	62%	50%
Nature Sound Category				
RAIN	62%	78%	62%	25%
SEA WAVES	75%	68%	62%	25%
CRACKLING FIRE	100%	63%	100%	75%
CRICKETS	88%	52%	75%	50%
BIRD CHIRPING	100%	84%	62%	100%
WATER DROPS	100%	92%	25%	75%
WIND	100%	46%	88%	25%
POURING WATER	100%	75%	75%	100%
TOLIET FLUSH	88%	88%	62%	50%
THUNDERSTORM	100%	85%	<mark>62%</mark>	100%
	n Non-Speed			1000/
CRYING BABY	100%	99%	88%	100%
SNEEZING	100%	88%	62%	75%
CLAPPING	100%	92%	100%	25%
BREATHING	100%	89%	88%	50%
COUGHING	62%	94%	62%	75%
FOOTSTEPS	75%	83%	50%	75%
LAUGHING	62%	97%	25%	25%
BRUSHING TEETH	88%	89%	88%	50%
SNORING	100%	84%	100%	75%
DRINKING WATER	88%	80%	38%	25%
Interior Sound Category				
DOOR KNOCK	100%	90%	100%	100%
MOUSE CLICK	62%	65%	50%	25%
KEYBOARD CLICKS	100%	83%	100%	25%
DOOR CREAK	50%	90%	12%	50%
CAN OPENING	88%	80%	75%	50%
WASHING MACHINE	75%	34%	25%	25%
VACUUM CLEANER	100%	58%	88%	25%
ALARM CLARM	88%	92%	62%	50%
CLOCK TICK	88%	89%	62%	75%
GLASS BREAKING	100%	99%	62%	75%
	Exterior Sou			
HELICOPTER	62%	64%	y 25%	0%
	88%	83%	38%	75%
SIREN	88%	93%	62%	50%
CAR HORN	75%	90%	25%	25%
ENGINE	75%	82%	50%	25%
TRAIN	88%	67%	62%	0%
CHURCH BELLS	100%	95%	75%	75%
AIRPLANE	38%	68%	38%	25%
FIREWORKS	100%	68%	75%	0%
		90%	75%	100%

classes, 5 categories, 2000 sound samples, 40 samples per class

Cochlear Implant Signal Processing

- Solution CCi-MOBILE: Uses an '*n*'-of-'*m*' strategy (ACE, Cochlear Corp.), generates electric stimuli using a standard CI user MAP (200/100 MCL/THR for all 22 channels, n' = 8
- Vocoder: Uses a two-sided, Braecker with 2/3rd exponentially decaying function Gammatone filter bank, generates electric stimuli to synthesized (or auralized) stimuli

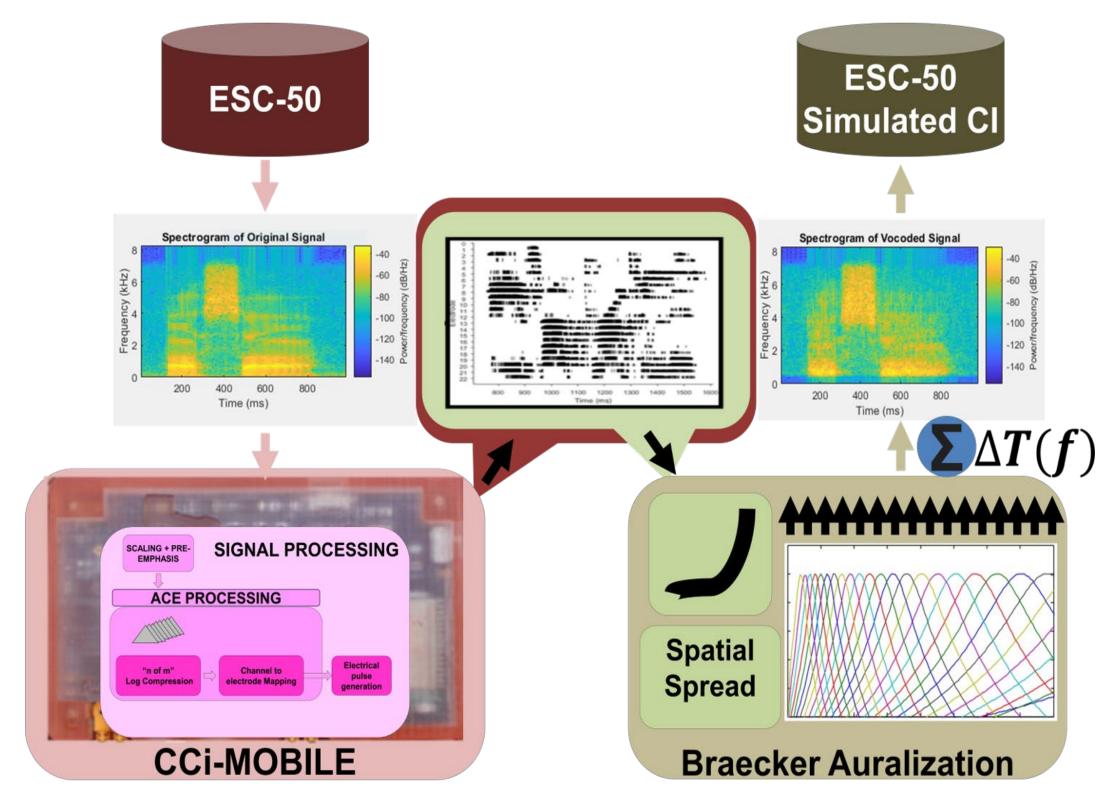


Fig. 1. Signal processing block diagram of simulated CI conditions using the CCi-MOBILE and Braecker Auralization process.

REFERENCES

[1] Shekar, R.C., Belitz, C., & Hansen, J.H.L. (2021). IEEE SLT-2021: Spoken Language Technology Workshop, pp. 728-733.

- Identification scores of CI users were found to be correlated (33.02%) with CNN model; more than three times as compared to NH listeners (10.07%)
- Cl users resulted in higher identification scores animal sound category (>50%) with the for exception of insects sound class
- Higher variation in sound identification among CI listeners could be attributed to other factors such as (but not limited to) familiarity, cognition, and memory

Fig. 6. Identification accuracies per category for NH/CI model/listeners.

This work was supported by the grant R01DC016839 from the National Institutes of Health, National Institute on Deafness, and Other Communication Disorders

2021 Conference on Implantable Auditory Prostheses Lake Tahoe, CA (Virtual), July 12 – 16, 2021

