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ABSTRACT

The lack of available large corpora of transcribed whispered speech
is one of the major roadblocks for development of successful whisper
recognition engines. Our recent study has introduced a Vector Taylor
Series (VTS) approach to pseudo-whisper sample generation which
requires availability of only a small number of real whispered utter-
ances to produce large amounts of whisper-like samples from easily
accessible transcribed neutral recordings. The pseudo-whisper sam-
ples were found particularly effective in adapting a neutral-trained
recognizer to whisper. Our current study explores the use of de-
noising autoencoders (DAE) for pseudo-whisper sample generation.
Two types of generative models are investigated – one which pro-
duces pseudo-whispered cepstral vectors on a frame basis and another
which generates pseudo-whisper statistics of whole phone segments.
It is shown that the DAE approach considerably reduces word error
rates of the baseline system as well as the system adapted on real
whisper samples. The DAE approach provides competitive results
to the VTS-based method while cutting its computational overhead
nearly in half.

Index Terms— whispered speech recognition, denoising autoen-
coders, generative models, Vector Taylor Series

1. INTRODUCTION

Automatic speech recognition (ASR) engines tend to break when pro-
cessing whispered speech. This is due to the substantial acoustic dif-
ferences between whisper and the normally phonated (neutral) speech
material used in the ASR training. Compared to neutral speech, whis-
per lacks periodic excitation from the glottal folds. Other differences
can be observed in prosodic cues [1], phone durations [2], energy dis-
tribution between phone classes, spectral tilt, and formant locations
due to different configurations of the vocal tract [3–10], resulting in
altered distributions of phones in the formant space [11].

A majority of studies on whispered speech recognition attempt
to reduce the acoustic mismatch through model adaptation [8, 9, 12,
13] or feature transformations [13]. Recently, discriminative training
and hidden Markov models (HMM) with deep neural network (DNN)
model states (HMM–DNN) [2], as well as an audiovisual approach
to speech recognition [14] were explored for whisper ASR.

Our previous studies [15, 16] focused on the analysis of speech
production differences between neutral speech and whisper cap-
tured in the UT-Vocal Effort II (VEII) corpus [17], design of af-
fordable front-end feature extraction strategies that would reduce the
speech variability unrelated to the linguistic content, and generation
of pseudo-whisper samples from neutral speech for acoustic model
adaptation. In [15], a front-end filter bank redistribution method
based on the subband relevance measure was proposed. In [16],
a Vector Taylor Series (VTS) based approach to pseudo-whisper
adaptation sample generation was investigated and shown to greatly
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reduce ASR errors compared to traditional model adaptation when
only small amounts of whispered samples were available. Efficiency
of vocal tract length normalization (VTLN) [18] and a Shift trans-
form [19] for whisper recognition was also investigated in [16].

Motivated by the recent advancements in generative modeling
with neural networks, and in particular, by the successful use of de-
noising autoencoders for noisy and reverberated speech recognition
[20,21], the present study explores the use of denoising autoencoders
(DAE) for pseudo-whisper sample generation. Two generative model
schemes are investigated – one which produces pseudo-whispered
cepstral vectors on a frame basis and another which generates pseudo-
whisper statistics of whole phone segments. Similar to [16], our goal
is to develop a system that requires availability of only a small amount
of actual whisper data to generate large quantities of pseudo-whisper
samples that can be subsequently used for acoustic model adaptation
in an ASR engine.

The rest of the paper is organized as follows. First, the Vo-
cal Effort II corpus is briefly described. Second, the VTS-based
pseudo-whisper generation is reviewed and the DAE-based genera-
tion schemes are introduced. Finally, a side-by-side evaluation of the
approaches is presented.

2. CORPUS OF NEUTRAL/WHISPERED SPEECH

The corpus used in this study, UT Vocal Effort II (VEII) [17], consists
of read and spontaneous speech from 112 speakers – 37 males and 75
females. Similar to [15,16], a subset of the read part from 58 speakers
(39 females and 19 males) is used in our experiments. Each speaker
read 41 TIMIT sentences [22] in neutral and whispered modes. To
train the acoustic models and provide the baseline evaluations, TIMIT
database is used. Speech samples utilized in the experiments were all
downsampled to 16 kHz. Detailed content of the VEII and TIMIT
experimental sets is presented in Table 1.

3. VTS-BASED PSEUDO-WHISPER GENERATION

The VTS-based [23] algorithm for pseudo-whisper sample generation
introduced in [16] assumes that neutral speech is the result of whis-
pered speech passing through a distortion channel with additive noise.
The VTS-based generation of pseudo-whisper samples comprises the
following steps. First, a whisper Gaussian mixture model (GMM)
is trained on the available limited whisper data. The whisper GMM
is then utilized in the VTS scheme to extract transforms for broad
phone classes (vowels and voiced consonants, unvoiced consonants).
The transforms are estimated individually for each input utterance.
Phone boundaries in the neutral utterances are estimated using forced
alignment (transcriptions for the adaptation data are available). For
each neutral sample, the utterance specific phone-class transforms are
applied to produce a corresponding pseudo-whispered sample. Once
all neutral samples are converted to their pseudo-whispered counter-
parts, they are used to adapt the neutral ASR acoustic models to whis-
per. The VTS-based method provided considerable recognition error
reduction compared to a traditionally adapted recognizer in [16] and
is used as a performance reference in this study.
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 # Sessions  
Corpus Set Style M F # Sents Dur 

Train Ne 326 136 4158 213 TIMIT
Test Ne 112 56 1512 78 

Ne 577 23 Adapt 
Wh 580 34 
Ne 348 14 

VEII 
Closed 

Speakers Test
Wh

19 39 

348 21 
Ne 766 30 Adapt 
Wh

13 26 
779 45 

Ne 351 14 

VEII 
Open 

Speakers Test
Wh

5 13 
360 20 

Table 1. Speech corpora statistics; M/F – males/females; Train – training
set; Adapt – model adaptation/VTS–GMM set; Ne/Wh – neutral/whispered
speech; #Sents – number of sentences; Dur – total duration in minutes. Closed
Speakers – same speakers (different utterances) in Adapt/Test; Open Speakers
– different speakers in Adapt/Test.

4. DENOISING AUTOENCODER

In this section, we introduce the use of a denoising autoencoder
(DAE) for pseudo-whisper speech generation. An autoencoder is a
form of an unsupervised discriminative graphical model that uses
backpropagation to reconstruct its input signal, i.e., z(i) = x(i) , in
which x(i) is the input node and z(i) is its corresponding output [24].
An autoencoder tries to find deterministic mapping between input
units and hidden nodes by means of a nonlinear function hW,b(x):

y = hW,b(x) = f1(Wx + b), (1)

in which W is a d× d′ weight matrix, b is the bias vector, and f1(.)
is a nonlinear function such as sigmoid or tanh. The resulting latent
representation is then mapped back to reconstruct the input signal
with:

z = hW′,b′(x) = f2(W
′x + b′), (2)

in which W′ is a d′ × d weight matrix, b′ is the bias vector, and f2(.)
is either a nonlinear (e.g., sigmoid, tanh) or a linear function. For the
purpose of training, a squared error objective function is defined:

J = ||x − z||2, (3)

in which ||.|| denotes the Euclidean matrix norm. Here, the goal
of training is to minimize the squared error function. To prevent
the autoencoder from learning an identity function, some constraints
are usually applied during the training, such as masking or adding
a Gaussian noise to the input data. An autoencoder trained in this
fashion is called a denoising autoencoder, as its task is to reconstruct
the original input from its corrupted version [25]. Denoising autoen-
coders have been recently successfully used in speech recognition for
denoising and dereverberation of speech [20, 21].

/aa/Wh,1 /aa/Wh,2 /aa/Wh,l /aa/Wh,L

/aa/Ne,1 /aa/Ne,2 /aa/Ne,k /aa/Ne,K/aa/Ne,3
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Fig. 1. Data segmentation for DAE fine-tuning – feature-based approach: (i)
neutral and whispered streams of concatenated phone segments are aligned;
(ii) sliding window selects pairs of neutral and whispered segments for DAE
fine-tuning. This is repeated for all phone classes.
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Fig. 2. Data segmentation for DAE fine-tuning – statistical-based approach:
(i) vector of cepstral means and variances is extracted from each neutral and
whispered phone segment; (ii) extraction is concluded when reaching the last
segment in the shorter of the two (neutral, whispered) streams.

In our study, both a single hidden layer DAE and stacked DAEs
are used for pseudo-whisper sample generation. Similar to the VTS
approach in [16], we consider neutral speech to be a statistically cor-
rupted version of whispered speech. The DAE’s goal is to reconstruct
whispered speech samples (pseudo-whisper) from their neutral coun-
terparts. Two approaches to pseudo-whisper generation are consid-
ered: (i) feature-based – the DAE produces pseudo-whisper cepstral
vectors on a frame-by-frame basis; (ii) statistical–based – the DAE
produces a vector of cepstral means and variances that are used to
transform whole input phone segments to pseudo-whispered ones.

Both approaches utilize transcribed neutral and whispered sam-
ples drawn from the Adapt set (see Table 1). Phone boundaries were
roughly estimated by means of phone alignment. Neutral sample
frames assigned by the alignment to a certain phone (e.g., /aa/) are
grouped together to form a single phone-specific stream. This is re-
peated also for whispered samples. In the feature-based approach
(see Fig. 1), in the pre-training stage, a DAE (or stacked DAEs)
are trained to reconstruct cepstral vectors extracted from individual
frames of the neutral phone stream. Two DAEs are trained at a time –
one for all unvoiced consonants and another for all voiced consonants
and vowels. Once the pre-training stage is completed, fine-tuning by
means of backpropagation with a stream of neutral phone frames at
the DAEs’ inputs and aligned stream of whispered phone frames as
targets is performed. It is noted that for each phone, different number
of neutral and whispered frames will be available. The phone-specific
training iteration stops when the last frame of the shorter stream is
reached. In each pre-training iteration, a voiced consonant and vowel-
specific DAE is exposed to all voiced consonants and vowels streams
in a sequence, and the same is conducted for the unvoiced consonant-

sil sil
C C C C CV V V

sil

sil sil
C C C C CV V V

sil

Unvoiced
Cons.

Pseudo-Whisper

Neutral

Voiced 
Cons. & 
Vowels

Fig. 3. DAE-based generation of pseudo-whisper samples using unvoiced
consonant-specific and voiced consonant & vowel-specific nets trained on
Adapt set. In feature-based approach, DAE directly generates pseudo-whisper
cepstral frames; in statistical-based approach, DAE produces phone segment
statistics that are then used to transform neutral phone segments to pseudo-
whisper.
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Fig. 4. Example of c0 temporal trajectory in neutral, whispered, and gen-
erated pseudo-whispered stream comprising concatenated instances of phone
/b/. Pseudo-whispered stream was produced using statistical approach; dis-
played neutral and whispered samples were used in DAE fine-tuning.

specific DAE with unvoiced consonant streams.
The statistical-based approach (see Fig. 2) employs a similar

pre-training and fine-tuning procedure, only rather than cepstral vec-
tors extracted from individual frames, vectors of cepstral means and
standard deviations (statistics) are extracted from each whole phone
segment. The voiced consonant/vowel- and unvoiced consonant-
specific DAEs are first pre-trained to reconstruct the neutral segmen-
tal statistics and later fine-tuned to transform neutral statistics to the
whispered ones.

Once the DAEs training is completed, they can be used to pro-
duce pseudo-whisper samples from previously seen and also unseen
neutral Adapt set samples (see Fig. 3). While the feature-based
approach produces pseudo-whispered frames directly for each input
neutral frame, the statistical-based approach processes statistics of a
whole phone segment at a time. The DAE-generated output statistics
are then used to adjust cepstral means and standard deviations of the
input neutral phone segment to produce a pseudo-whispered output
segment. An example of statistical-based pseudo-whisper generation
for concatenated segments of phone /b/ is shown in Fig. 4.

5. EXPERIMENTS IN NEUTRAL/WHISPERED ASR

Our experimental setup follows [16]. A gender-independent speech
recognizer was trained using the CMU Sphinx 3 toolkit [26] on 3.5
hours of TIMIT recordings (see Table 1). 3-state left-to-right triphone
HMMs with 8 Gaussian mixture components per state are used to
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Fig. 5. Impact of pseudo-whisper sample generation strategy on adapted
ASR performance – closed whisper speakers test set; Stat - statistical-based,
Fea - feature-based; C/V - transformation of unvoiced consonants/voiced con-
sonants & vowels; 300-3000 - # neurons in DAE’s hidden layer.

Speaker 
Scenario 

Test
Set MFCC PLP PLP-20Uni-

Redist-5800

PLP-20Uni-
Redist-5800

+ VTS 

PLP-20Uni-
Redist-5800
+ Stat DAE

PLP-20Uni-
Redist-5800 
+ Fea DAE 

Ne 5.2 5.4 3.9 4.0 3.9 3.5 Closed Wh 27.0 24.6 13.7 10.2 9.6 9.8 
Ne 6.3 7.1 5.0 4.5 5.2 5.0 Open Wh 38.5 35.4 23.4 18.9 18.1 17.6 

Table 2. Baseline vs. proposed VTS/DAE strategies; WER (%).

model 39 phone categories (including silence). Front-end features
are extracted using a 25 ms/10 ms windowing and consist of 39 static,
delta, and acceleration mean normalized coefficients.

The TIMIT-trained acoustic models are maximum likelihood
linear regression (MLLR) adapted in a supervised fashion towards
the VEII acoustic/channel characteristics using the neutral adaptation
sets detailed in Table 1. Based on the experiment, also the whispered
portion of the adaptation set is used. The experiments are carried
out on closed speakers (different utterances from the same group of
speakers appear in the adaptation and test set) and open speakers
test sets (different speakers in the adaptation and test set). In the
DAE setups, 13-dimensional cepstral features (mean-normalized per
utterance) are processed by the feature-based autoencoders and 26-
dimensional statistical features (13 cepstral means and 13 cepstral
standard deviations) are processed by the statistical-based autoen-
coders.

5.1. Performance of Baseline and DAE Setups

The first four result columns of Table 2 present performance of base-
line systems established in [15] and [16]. Besides traditional MFCC
and PLP, PLP-20Uni-Redist-5800 is tested. This front-end replaces
a trapezoid filter bank by a bank of triangular filters spanning 0–
5800 Hz, which were redistributed to better accommodate relevance
of individual frequency subbands to both neutral and whispered
speech recognition (see [15] for details). Finally, ‘PLP-20Uni-Redist-
5800+VTS’ denotes a setup where VTS-produced pseudo-whisper
samples were used in adapting the neutral acoustic model. This
setup provided superior performance to other systems in [16]. It can
be seen that the VTS setup yields substantial whisper recognition
gains in both closed speaker and open speaker scenarios. It is noted
that [16] successfully combined the VTS approach with vocal tract
length normalization (VTLN). To limit computational costs due to
the number of experiments required, VTLN was turned off in all
setups in this study. However, it is assumed that the benefits of com-
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Fig. 6. Impact of pseudo-whisper sample generation strategy on adapted
ASR performance – closed neutral speakers test set; Stat - statistical-based,
Fea - feature-based; C/V - transformation of unvoiced consonants/voiced con-
sonants & vowels; 300-3000 - # neurons in DAE’s hidden layer.
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Fig. 7. Comparison of model adaptation on whisper (MLLR) and on DAE-
generated pseudo-whisper samples; closed speakers test sets; DAEs with 300
hidden neurons; consonant transforms only.

bining VTS with VTLN would transfer also to DAE. All DAE setups
utilize ‘PLP-20Uni-Redist-5800’.

Fig. 5 and 6 summarize performance of several DAE-based se-
tups on neutral and whispered closed speaker test sets. All available
neutral and whispered Adapt samples (see Table 1) were used in the
DAE training and subsequent pseudo-whisper production. The hid-
den layer neurons used here employ the tanh activation function and
the output layer uses a linear function. The figures compare recogni-
tion results for ASR systems adapted to pseudo-whisper data pro-
duced by the statistical (‘Stat’) and feature (‘Fea’) based strategy
when only unvoiced consonant (‘C’) or voiced consonant and vowel
(‘V’) segments, or all segments (‘C+V’) were transformed with ded-
icated single hidden layer DAEs. The effect of the hidden layer size
(300–3000) was also studied. It can be seen that for whispered speech
recognition (Fig. 5), the pseudo-whispered samples where only con-
sonant segments were transformed provide the best results. In par-
ticular, 5 out of 8 DAE ‘unvoiced consonant-only’ setups outperform
the best VTS-based system. ‘Voiced consonant + vowel’ and ‘voiced
consonant + vowel + consonant’ DAE setups still significantly reduce
the error rates of the baseline MFCC and PLP systems but do not
reach the performance of the best VTS setup. Fig. 5 shows that us-
ing the DAE-generated pseudo-whispered speech in acoustic model
adaptation does not hurt neutral speech recognition and in fact, 21 of
the 24 DAE setups even somewhat reduce the error rates of the VTS
setup.

Adaptation to pseudo-whisper produced by stacked DAEs was
also evaluated. A DAE setup with two hidden layers (1000 neurons in
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Fig. 8. Comparison of model adaptation on whisper (MLLR) and on DAE-
generated pseudo-whisper samples; open speakers test sets; DAEs with 300
hidden neurons; consonant transforms only.

each) provided very similar ASR results to a single hidden layer DAE
setup with 2000 neurons (results in respective order): statistical-
based – 9.90 % vs. 9.86 % WER on whisper; 3.83 % vs. 3.46 % on
neutral; feature-based – 9.86 % both setups on whisper; 3.49 %
vs. 3.40 % WER on neutral. Effect of replacing the tanh activation
function in the hidden layer by sigmoid was also studied. The overall
performance was comparable to the tanh setups; the best setup with
2000 hidden neurons yielded 10.20 % and 10.24 % WER for statis-
tical and feature based approach on whispered speech and 3.69 %
and 3.35 % on neutral speech. In the rest of the experiments, single
hidden layer DAEs with tanh activation function are used.

5.2. Impact of Adaptation Set Size

In this section, we analyze the effect of the reduced size of the whis-
per adaptation set on the recognition performance. A traditional sys-
tem adapted directly to the available whisper samples is compared
to a DAE-based system. While the DAE system can see the same
amount of real whispered samples as the traditional system, and can
utilize only those to train the autoencoders, it is set to always trans-
form the complete neutral Adapt set – 577 closed or 766 open speaker
utterances (see Table 1) to pseudo-whisper. In that case, the DAE-
based ASR system is always adapted to the same amount of pseudo-
whisper samples, no matter the actual size of the provided whisper
adaptation set. This being said, the amount of available real whis-
per samples is expected to affect the accuracy of the learned DAE
transforms. To reduce the risk of overtraining on reduced whisper
adaptation sets, the number of DAE hidden neurons was fixed to 300
for all experiments.

Figures 7 and 8 compare performance on closed and open speak-
ers test sets for both neutral and whisper data. In both instances,
the feature-based DAE setups considerably outperform the tradition-
ally adapted system on whisper test sets when anywhere from 2 % to
100 % of the original whisper adaptation set is made available. The
statistical-based approach provides comparable performance bene-
fits when at least 8 % of the full whisper adaptation set is available.
Apparently, smaller amounts of adaptation data are insufficient for
the statistical approach to train reliable consonant transforms. Per-
formance of the traditionally adapted system on both whisper test
sets slowly approaches the DAE setups with increasing number of
available whisper samples. Somewhat surprisingly, adapting neutral
models to pseudo-whisper does not significantly affect neutral recog-
nition, a phenomenon observed also in [16].

Table 2 compares baseline WERs with the best VTS- and DAE-
based setups. The most successful DAE system configurations out-
perform the PLP WER baseline by 15 % absolute on closed and by
17.8 % on open speakers whisper task while providing competitive
performance to the best VTS-based pseudo-whisper system (0.4 %
and 1.3 % absolute WER reduction). It is noted that when executed
on the same machine, the DAE-based pseudo-whisper production re-
quired approximately 0.56 of time needed by the VTS system (DAE
training included). This is due to the fact that the VTS approach
establishes new phone class transforms for each incoming utterance
while the DAE transforms are determined at once on the available
training set and then applied to all processed samples.

6. CONCLUSIONS

This study has proposed a novel approach to pseudo-whisper gen-
eration for acoustic model adaptation in ASR engines. The method
utilizes unvoiced consonant and voiced consonant/vowel specific de-
noising autoencoders that require only a small amount of whisper
samples to establish feature and statistical based transformations be-
tween neutral and whispered speech. It was shown that the proposed
generation scheme can considerably reduce recognition errors of a
traditionally adapted recognizer and also provide competitive perfor-
mance to a VTS-based pseudo-whisper generation method while re-
ducing its computational costs by 44 %.
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