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ABSTRACT

Research in open-set language identification (LID) generally focuses
more on accurate in-set modeling versus improved out-of-set (OOS)
rejection. Unknown or OOS language rejection is a challenge, since
research developers seldom commit equivalent OOS corpus devel-
opment effort versus the desired in-set languages. To address this,
we propose an OOS candidate selection method for universal OOS
language coverage. Since effective selection always requires abun-
dant knowledge of inter-language relationships, three broad mea-
surements across world languages are considered. Finally, the ad-
vanced OOS selection method is evaluated on a database derived
from a large-scale corpus (LRE-09) with a state-of-the-art i-Vector
system followed by two back-ends. The baseline system is real-
ized using a random selection of OOS candidates. With the pro-
posed selection method and probabilistic linear discriminative anal-
ysis (PLDA) back-end, the OOS rejection performance is improved
with false alarm and miss rates achieving a relative reduction of
32.6% and 4.4%, respectively. In addition, the overall classifica-
tion performance are relatively improved 8.4% and 7.5% according
to the two back-ends based on an average cost function.

Index Terms: Open-set language identification, Out-of-set identifi-
cation, language distance, candidate selection, LRE-09, i-Vector

1. INTRODUCTION

Recently, language identification (LID) has experienced substantial
attention in the speech processing community [1,2]. Due to the con-
tribution in targeting interested languages, LID plays an essential
role in audio pre-processing which is typically followed by auto-
matic speech recognition (ASR). It is also critical for effective di-
arization and dialog system in spoken language. In recent years,
robust feature extraction [3] and various discriminative modeling
techniques which include both acoustic models (GMM-UBM [4],
JFA [5], i-Vector [6]) and phonotactic models(PPRLM [7], PRSVM
[8]) have been proposed with great success for language identifica-
tion/recognition. However, most research addresses closed-set LID,
where all the target languages are known. In real scenarios, open-set
LID is more general, where training data might not cover all possible
OOS languages. A system is still required to recognize in-set lan-
guages and effectively reject unknown/out-of-set(OOS) languages.
Here, our study is mainly focused on effective rejection for open-set
LID.

Notably, the key problem in dealing with open-set LID is to se-
lect effective and universal training data for OOS language model-
ing. Subsequently, system OOS rejection performance would be re-
duced by refining the boundary between in-set and OOS languages.
However, due to the financial constraints and geographical limita-
tions in data collection, it is essential to select the most efficient lan-
guages as candidates representing the entire OOS. The same issue
also exists in speaker identification (SID) which is explored using
cohorts [9] to leverage a wealth of available data as the impostor set.

978-1-4799-7129-9/14/$31.00 ©2014 IEEE

384

However, it is generally easier to find OOS speakers for open-set SID
than OOS languages for open-set LID. In this study, we propose a
method for compact OOS candidate language selection to boost LID
system classification performance.

Since accurate selection always requires knowledge concern-
ing subject content and inter-language relationships, three measure-
ments for the distance across world languages are considered here.
The most fundamental is from a linguistic perspective, which in-
volves the language origin and geographical factors. Also, selec-
tion of language require aspects related to prosody which contains
patterns of stress, rhythms and intonation. Accordingly, pitch pat-
tern distribution analysis is investigated here. Finally, a language
tree based on engineering perspective is an effective tool to express
classifier distance. With this knowledge, an efficient OOS candidate
selection method will be proposed.

The main purpose of this study is to seek an intelligent method
for OOS data selection through a comprehensive data analysis,
which has not been investigated before. The proposed method is
evaluated on a state-of-the-art i-Vector system followed by two clas-
sifiers: Gaussian back-end (GB) and probabilistic linear discrimina-
tive analysis (PLDA) back-end [10]. Performance analysis will be
based on two criteria.

This paper is organized as follows: Sec. 2 elaborates on the de-
sign database and the baseline system set-up. Three types of distance
based language tree partitions are detailed in Sec. 3. Based on this
estimated and combined knowledge, the proposed selection method
is described in Sec. 4. Sec. 5 analyzes the results and illustrates
performance. Finally, conclusions are summarized in Sec. 6.

2. EXPERIMENT SET-UP

2.1. Database

With no loss of generality, the data set design in this study is derived
from the large-scale corpus NIST LRE-09 [11] (40 languages in to-
tal). In order to include a second corpus test, and to be consistent
with NIST LRE-09, the DARPA-sponsored Robust Automatic Tran-
scription of Speech (RATS) [12] is used where five similar languages
are assigned as in-set targets and the remaining thirty-five languages
are defined as OOS candidates. Since the goal is to explore an effi-
cient method for OOS candidate selection, at this point, any single
language and combinations are accessible as training data for mod-
eling. To be fair, since we only have five in-set targets, the quantity
of OOS representatives used for training is also set to be five, which
is the same as the amount of in-set languages. In other words, the
proposed method seeks to find the best five out of thirty-five OOS
languages as candidates for modeling in order to achieve optimal
performance. The data partition and distribution are well organized,
especially for OOS data, which in theory would be approximately
uniform in distribution. The detailed information are showed in Ta-
ble 1.
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Table 1: Corpus statistics.

In-set 00S

Dari Amharic

Farsi Arabic
Language Hindi

Pashto  Ukrainian

Urdu Uzbek
Total number of languages | 5 35
Average duration(sec/file) 20.9 20.7
Count of training files 6566 3361
Count of test files 3550 1343

2.2. System set-up

In this study, modeling is based on a state-of-the-art i-Vector frame-
work. Voice activity detection [13] is performed prior to the extrac-
tion of Mel-frequency cepstral coefficients (MFCCs). In addition,
shifted delta cesptra [14] based processing [7-1-3-7], are applied
for all original MFCCs features to derive a 56 dimensional feature
set for further i-Vector extraction. After feature extraction, we fol-
low the i-Vector system paradigm for language recognition presented
in [6,15]. All training data is used to build a 1024-mixture Universal
Background Model (UBM) and estimate the total variability matrix
using EM algorithms for Eigenvoice as presented in [16]. To sup-
press redundant information, a dimensionality reduction based on
linear discriminative analysis (LDA) is applied to the 400 dimension
i-Vectors. In the end, two types of classifiers, Gaussian back-end and
PLDA, are explored.

3. LANGUAGE DISTANCE

Since the main purpose of this study is to select more effective OOS
candidates for modeling, the process is to determine whether a lan-
guage is typical in representing the entire OOS for discriminating the
in-set targets. Compared with target languages, the measurement of
confusability is needed for a reasonable decision. Therefore, knowl-
edge concerning the relationship or distance between various world
languages is essential for addressing this issue. Three types of dis-
tance criteria are investigated: (i) fundamental linguistic perspective,
(ii) classical prosodic knowledge, and (iii) engineering perspective.

3.1. Distance criteria #1: Linguistic language tree

Based on the origin of each language and the corresponding geo-
graphical position, a linguistic language tree for these 40 languages
is shown in Fig. 1 which includes two-tier language family infor-
mation. More specifically, the name of the corresponding language
family /sub-family is indicated at the end of each cluster. It can be
noted that all in-set targets we designed belong to the same branch
named Indo-Iranian.

3.2. Distance criteria #2 : Prosody based language tree

Prosody is one of most effective features previously employed for
speech/language related analysis and classification [17]. The pat-
terns of stress, rhythms and intonation across different languages
vary greatly. In addition, some tonal languages employ tone contours
to distinguish different meanings, are included in our data set. To
implement prosodic analysis, N-gram pitch pattern distributions are
considered [18]. Here, we extract pitch contours of each utterance
using WaveSurfer [19], then voiced islands that consist of nonzero
FO values are detected. Next, a median filter is applied for contour
smoothing. For exploring subtle variations on pitch, each island is
processed by a sliding window of length (7%,:, = 50ms) with a step
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Fig. 1: Language family based on linguistic knowledge.

Table 2: Frequency of pitch patterns for English (%).

Contour — || N [—|— — /T IAN N \/\\
American |37.7124.2(38.1]1206] 7 [11.5]73[89[84|126[ 0 |159
Indian 40.3124.4(354(23.1({7.7]108(7.8[8.8|8.1[12.1] 0 |13.6
Unknown [42.6120.2]37.2|1256| 7 [11.6]7.8]73[63]135[ 0 |15.1

(T'step = 25ms). We also employ a linear regression strategy to ob-
tain the actual pitch slope within each window. However, for sim-
plicity, only directions (rising/flat/falling) are retained by comparing
each to a given threshold. Theoretically, the statistics of the N-gram
pitch patterns in a language could express the unique prosodic char-
acteristics. In this study, only unigram and bigram based frequency
of patterns are considered as prosodic features. For example, it is
shown in Table 2, that even for the same language (English) with
different accents results in quite different pitch pattern distributions.
This is also consistent with human perception. A prosody based lan-
guage tree (similar to Fig. 1) is also developed. Here, hierarchical
clustering is based on the cosine distance (Eq. 1) between prosodic
feature vectors,

A-B

Cosine distance = ————

lAllIBI

where A and B are feature vectors. The cosine distance between

any two different languages is measured with normalization. The

sum distance across each in-set language provides a general distance

between every OOS language versus the whole in-set group. Finally,

a prosody feature based OOS confusability rank (shown in Table 3)
is generated according to the general distances.

Y]

3.3. Distance criteria #3 : Engineering language tree

Compared with the prosodic strategy, a more efficient and directive
way to investigate world language relationships is by evaluating each



OOS Rank |Prosody Acoustic
1 Georgian Spanish
2 Azerbaijani Creole_haitian
3 Hausa Ukrainian
4 Portuguese Bosnian
5 French Russian
6 Turkish Portuguese
7 Bulgarian Punjabi
8 Tagalog English_Unknown
9 English_Indian Ambharic
10 Croatian Tagalog
11 Arabic Turkish
12 Spanish Azerbaijani
13 Uzbek Japanese
14 Romanian Arabic
15 Korean Vietnamese
16 English_American |[Bulgarian
17 Italian Cantonese
18 Creole_haitian Croatian
19 Cantonese Bengali
20 Bengali Hausa
21 Bosnian Georgian
22 Belorussian Italian
23 Russian Tibetan
24 Tibetan Thai
25 Swahili Swahili
26 English_Unknown [Shanghai-wu
27 Ukrainian English_Indian
28 Punjabi Belorussian
29 Vietnamese English_American
30 Southern-min Uzbek
31 Japanese Southern-min
32 Thai Korean
33 Ambharic French
34 Shanghai-wu Romanian
35 Mandarin Mandarin

Table 3: OOS confusabilty rank.

language based on performance of the development data (here, this
is the same as training data).

To be specific, the confusabilities among languages which be-
long to the same language family are different. For example, the Chi-
nese languages Mandarin and Cantonese, are quite different based
on pronunciation, even though they share the same written form.
Therefore, it is easy to distinguish them base on acoustic features.
However, the Indian languages Hindi and Urdu, represent one of
most confusable language pairs in LRE-09 [11]. In a similar man-
ner, some languages belong to different language families according
to Wikipedia, however might be very similar, such as Vietnamese
and Thai. In brief, an assessment solution for restricted OOS lan-
guage selection that only depends on linguistic knowledge may not
provide consistent performance.

In addition, it is arbitrary to quantize the pair-wise confusabil-
ity, which is essential for both automatic LID performance and OOS
candidate selection. Since all in-set languages in our study are from
the same language sub-family, a more comprehensive and dedicated
relationship analysis is needed for effective OOS candidate selec-

386

tion. In addition, the ideal OOS model should be discriminative from
in-set models, while capturing a variety of unknown factors as much
as possible. From an engineering perspective, the score/probability
assigned for each utterance according to different models are ex-
pected to be the best explanation on their mutual relationship.

In this study, the system was based on a state-of-the-art i-Vector
system followed by two types of back-ends, GB and PLDA. More
specifically, for back-end processing, each in-set language possesses
a corresponding individual model, and one general model is used
for evaluating all OOS languages. Subsequently, each test utterance
is assigned 6 scores (score vector) according to each model. For
simplicity, only the average score vector is counted as the new fea-
ture for each language. Instead of single score, the score patterns
are adopted for distance calibration. Similar to Sec. 3.2, the cosine
distances across score vectors are employed as the strategy for clus-
tering and pair-wise distance calculation. A language tree similar to
Fig. 1 is form based on engineering distance which shows cluster
relationships between each OOS and in-set language. A pair-wise
relationship also was explored for precise information used for OOS
candidate selection. Similarly, the derived OOS confusability rank
table (shown in Table 3) is sorted according to the ascending general
distance.

4. PROPOSED SELECTION METHOD

This section proposes an efficient OOS candidate selection method.
Of course, any five out of thirty-five combination is possible. How-
ever the main purpose is to find an intelligent way to address this
selection issue. A good candidate combination is required to be dis-
criminative from each in-set target, meanwhile, it also needs to be
general to cover OOS diversity. The optimal five languages should
complement each other with a minimum redundant coverage. Ac-
cordingly, three requirements are proposed as follows:

e Linguistic family restriction: in general, all candidates
should come from different linguistic language families/sub-
families.

Prosodic restriction: from a prosodic perspective, all the can-
didates should scatter in terms of the prosody based OOS con-
fusability rank.

Engineering restriction: according to the engineering OOS
confusability rank , some candidates should be close to in-set
languages; while others far away to reflect more general OOS
properties.

To avoid selecting candidates that are too intensive in terms of
the general distance to the in-set languages, a prosodic restriction is
proposed to building a more diverse model set that covers the en-
tire OOS languages. In addition, some candidates may have similar
properties with in-set languages, so we need to refine the decision
boundary. Notably, if two languages are quite similar, it is very dif-
ficult to classify them accurately. Therefore, for better performance,
the most troublesome OOS languages should potentially be included
in model training. However, if the entire OOS model only represents
these in-set confusing languages, more general languages could be
mislabeled. Therefore, leveraging close/far trade-offs could reduce
both false alarm and miss rates in real scenarios. In order to demon-
strate the impact of three restrictions, a set of experiments are de-
signed for comparison.

5. RESULT ANALYSIS

This section analyses all open-set/closed-set LID system perfor-
mance for the particular scenario designed in Sec 2. To elaborate
experiments on different OOS training set-ups, two types of mea-
surement criteria were adopted here. The first one is evaluating the



Table 4: Experiments set-up.

Restriction 00S Comments on OOS Candidates™"™* Task type Abbr.
training/test candidate selection
lang. No.
35/35 all data closed-set 35 vs. 35
No 5/35 close to in-set Spanishl, Creole_haitian?, Ukrainian®, open-set 5 vs. 35(near)
restriction languages Bosnian®, and Russian®
5/35 far to in-set languages Southern—min%l, Korean?, French®?, open-set 5 vs. 35(far)
Romanian®*, and Mandarin®®
5/5 random selection Ukrainian®, Swahili®®, French®3, closed-set 5vs. 5
Mandarin®®, and Turkish*!
Only 5/35 random selection same as above open-set 5 vs. 35(random)
linguistic
family 5/35 close to in-set Spanishl, Creole_haitian?, Ukrainian®, open-set 5 vs. 35(near_1R)
restriction languages Punjabi”, English_Unknown®
5/35 far to in-set languages Belorussian®®, open-set 5 vs. 35(far_1R)
EnglishAmerican29,Uzbekéo,
Romanian®*, and Mandarin®®
Linguistic 5/35 close to in-set Spanish’, Creole_haitian?, Ukrainian®, open-set 5 vs. 35(near_2R)
family & languages Ambharic®, Turkish'*
prosodic 5/35 far to in-set languages Swahili®®, Belorussian®®, open-set 5 vs. 35(far_2R)
restriction English,Americanm, Romanian34, and
Mandarin®®
All three 5/35 proposed method (4 Spanish!, Creole_haitian?, Ukrainian®, open-set 5 vs. 35(proposed)
restrictions near & 1 far-away) Ambharic®, and Mandarin®®

overall classification performance using the standard criterion aver-
age cost function (Cqavg) [11]. While, to better analyze In-set/OOS
classification performance, a binary confusion matrix is employed
which illustrates details about false alarm and miss rates on OOS
rejection performance.

In addition, two close-set benchmark systems were evaluated for
comparison. More details are shown in Table 4, where any selection
scheme utilizes the optimal option defined by the OOS confusability
rank (see Table. 3). For an instance, the selection scheme is ”near to
in-set languages only with linguistic family restriction”. According
to confusability rank, the optimal candidates are the top 5 languages
which are not belong to same linguistic family. Similarly, random
selection was semi-supervised random generation only with linguis-
tic family restriction.

To illustrate all the experiments’ performance systematically, we
analyzed them in three perspectives as follows:

5.1. Analysis on linguistic family restriction

According to the linguistic language tree mentioned in Sec. 3.1,
the first requirement in proposed OOS selection is linguistic family
related restriction. Candidates without linguistic family restriction
might contain redundant information. Therefore, how does that im-
pact OOS selection? Two groups of comparable experiments are
shown in Fig. 2. It is interesting to note that linguistic family restric-
tion is effective on near selection package (comparing “near” and
“near_1R”) while relative futile on far selection package (compar-
ing “far” and “far_1R”). The near package is focused on making the
0OO0S model more discriminative from in-set languages, while the far
package could cover more diverse properties across the entire OOS.
Therefore the language family related redundancy is more sensitive
to near package. However, the impact of linguistic family restriction
is non-negative.
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Table 5: System performance (100%Clyg).

Experiment abbr. GB PLDA
35vs. 35 15.1 13.4
S5vs. 5 16.6 14.3
5 vs. 35 (random) 17.8 16.1
5 vs. 35 (near_2R) 17.0 15.6
5 vs. 35 (far_2R) 16.8 15.1
5 vs. 35 (proposed) 16.3 14.9

5.2. Analysis on prosodic restriction

Similarly, with the same distance based selection scheme, we com-
pare the performance between with and without prosodic restriction.
It can not noted that overall classification performance are relatively
improved 2.75% and 2.6% according to near and far-away selection
method, respectively. Therefore, the prosodic restriction can benefit
the performance with relatively diverse and comprehensive coverage
on prosody.

5.3. Benefits on proposed selection scheme

All the performance in this section are based on the non-negative
impact of first two requirements which have already been proved.
The main focus here is analyzing the benefits of proposed selection
scheme, especially compared with other engineering distance based
selection methods.

From overall classification performance perspective, Table 5
shows the corresponding performances based on two closed-set
benchmark systems and the system using four different OOS can-
didate selection schemes. Generally speaking, PLDA outperforms
GB across the different experiments settings. In addition, it can not
noted that the proposed selection scheme with 4 near and 1 far-away



0.2r
0.18} -
c (! . —
K} — -
€
2 0.16}
(2}
o
o
[0
30.14*
[
>
<
0.12f
01 DA A DA A
N
S L RS R
(,3\ ®‘Z§/ Q'bs/ ko) \'Z§/ s{?§/
o . X N\
. N\ $ & H P
& P o) ) . .
) . . ¥ ¥
© © %) )
“ “

Fig. 2: Analysis on Restrictions (near/far means distance
based selection scheme; suffix IR represents the selection
only with linguistic family restriction, and 2R means the se-
lection with both linguistic family and prosodic restriction).

Table 6: Confusion matrix based on PLDA(%).

35 vs. 35 S5vs. 5
true red. | jnget  OOS true red. | jpset  00S
in-set 88.5 11.5 in-set 80.1 19.9
00S 184 81.6 00S 15.8 842

5 vs. 35 (random) 5 vs. 35 (near_2R)

true red. | ipset 0OS true red. | jpset  0OS
in-set 84.0 16.0 in-set 83.7 16.3
00S 36.8 632 00S 27.5 725
5 vs. 35 (far2R) 5 vs. 35 (proposed)
wuo~Pred- | inset  00S quo~Pred- | inset 008
in-set 854 14.6 in-set 847 153
00S 29.2  70.8 00S 248 752

candidates achieves the best performance for the open-set experi-
ment. Assuming the open-set task based on random OOS candidates
selection is our baseline system, the best proposed method achieve
relatively 8.4% and 7.5% improvements according to GB and PLDA,
respectively.

Furthermore, instead of overall classification performance, the
OOS rejection performance also need to be optimize for effective
candidate selection. To better analyze binary (In-set/OOS) classifi-
cation task, a confusion matrix is employed to express false alarm
and miss rates. The performance based on PLDA is shown in Table
6. It is noted that the false alarm rate increases significantly from
15.8% (closed-set: 5 vs. 5) to 36.8% (open-set: 5 vs. 35(random))
when a five language trained model was evaluated on the entire OOS
languages. Again, this is the reason why this study is so meaning-
ful. Our goal is to optimize the open-set performance (5 vs. 35) to
approach the benchmark system (35 vs. 35) by choosing the most
effective OOS training data. The best proposed candidate selection
method reduces the false alarm from 36.8% to 24.8% and the miss
rate from 16.0% to 15.3%, with relatively 32.6% and 4.4% improve-
ment respectively.
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6. CONCLUSION

This study has focused on addressing a particular open-set LID prob-
lem: given data from several in-set languages and limited/none OOS
languages, how do you select the best limited number of OOS lan-
guages to achieve effective OOS language rejection? Solving this
problem is effectively asking which language is more important and
worth the time and resource to invest for data collection? We pro-
posed an OOS candidate selection method based on knowledge of
world-language distance. The baseline system was realized by a ran-
dom selection of OOS candidates. With the proposed OOS selection
method, OOS rejection performance false alarm and miss rates are
relatively reduced by 32.6% and 4.4%, respectively. In addition, the
overall classification performance are relatively improved 8.4% and
7.5% according to two back-ends based on average cost function.
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