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ABSTRACT 
 
State-of-the-art speaker verification systems model speaker 
identity by mapping i-Vectors onto a probabilistic linear 
discriminant analysis (PLDA) space. Compared to other 
modeling approaches (such as cosine distance scoring), 
PLDA provides a more efficient mechanism to separate 
speaker information from other sources of undesired 
variabilities and offers superior speaker verification 
performance. Unfortunately, this efficiency is obtained at the 
cost of a required large corpus of labeled development data, 
which is too expensive/unrealistic in many cases. This study 
investigates a potential solution to resolve this challenge by 
effectively utilizing unlabeled development data with 
universal imposter clustering. The proposed method offers 
+21.9% and +34.6% relative gains versus the baseline 
system on two public available corpora, respectively. This 
significant improvement proves the effectiveness of the 
proposed method. 
 

Index Terms— Clustering, Speaker verification, PLDA, 
i-Vector, Universal imposter clustering 
 

1. INTRODUCTION 
 
Recent large scale speaker verification evaluations, such as 
the NIST Speaker Recognition Evaluation (SRE) [1] and 
DARPA RATS (Robust Automatic Transcription of Speech) 
[2], have shown that low dimensional feature vectors (that is 
i-Vector) and PLDA modeling is state-of-the-art speaker 
identification technology [3~12]. Compared to other 
modeling approaches (such as cosine distance scoring), 
PLDA provides a more efficient mechanism to separate 
speaker information from other sources of undesired 
variabilities. It can learn acoustic variations, such as channel, 
noise [19, 20], duration, vocal effort, age, and emotion [21, 
22], from multiple sessions recorded for each speaker 
(provided in the form of model development data,  which  is  
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different from enrollment data) [23]. Usually, the required 
development data can have more than 1000 speakers with 
potentially 10~100 sessions available for each speaker. 
Collecting such large amounts of labeled data is not only 
time-consuming but also expensive, and therefore unfeasible 
in many applications. In reality, researchers often collect 
recording sessions without knowing speaker or session 
specific information. The question here is: Can we still make 
use of such unlabeled / open data?  

There is already ongoing research in this direction. The 
domain adaptation challenge is among the most recent 
efforts, in which the focus is to use unlabeled data to adapt 
and apply i-Vector speaker recognition systems based on 
some out-of-domain labeled i-Vectors1. Some progress has 
been reported in this regard [13-15]. The NIST i-Vector 
Machine Learning Challenge has a similar goal, but without 
any out-of-domain labeled i-Vectors [18]. Despite all these 
efforts, few have investigated methods to utilize the potential 
information that is stored in enrollment data without having 
the luxury of labeled development data. We believe this is a 
crucial aspect of the speaker verification problem, since in 
most speaker verification tasks (pattern classification 
applications in general), one must deal with multiple 
speakers/classes with multiple samples/sessions for which 
labels are only provided for enrollment data (i.e., the 
controlled training data).  

To avoid confusion, we use the following definitions for 
the three categories of data available in our speaker 
verification framework: 1) enrollment data; includes 
thousands of speakers and several sessions for each speaker 
(sometimes called training data), 2) test data; data that is 
compared against enrollment models to form trials, and 3) 
unlabeled development data; used to train background 
models. 

This paper is organized as follows. The next section 
begins with a description of baseline system, followed by 
proposed methods in Sec. 3. PLDA is briefly reviewed in 
Sec. 4. In Sec. 5, experiment setup is detailed. Experiment 
results are summarized in Sec. 6. The study is concluded in 
Sec. 7. 

                                                 
1 http://www.clsp.jhu.edu/workshops/archive/ws13-summer-
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2. BASELINE 
 
In this study, we always assume the features, i-Vectors, 
instead of audio files, are already available. Thus, we will 
only focus on how we can make use of the given i-Vectors to 
improve system performance. Since PLDA is state-of-the-art 
technology in the i-Vector framework, it will be used as the 
baseline system. But to build an efficient PLDA classifier, 
we need speaker label information. We can either use 
enrollment data as training, or we can adopt clustering 
methods on development data to recover label information. 
As the baseline system, we will simply use enrollment data 
as PLDA model development data since we can assume the 
label information is very accurate. The exploration of 
clustering approach is delegated to Sec. 3. 
 

3. PROPOSED METHODS 
 
We begin by exploring two classical clustering methods in 
order to classify unlabeled development data, and 
subsequently apply this to the PLDA framework. 
Furthermore, we describe our proposed clustering technique. 
 
3.1. Two classical clustering methods 
 
After a series of pilot clustering experiments on potential 
clustering methods, we narrow down to two promising 
approaches [16]. 
 
3.1.1. K-means clustering 
The k-means algorithm is an iterative clustering method 
which partitions a given dataset into a user specified number 
of clusters, k. The algorithm operates on a set of d-
dimensional vectors { | 1,..., }iD X i N= = where d

iX R∈  
denotes the ith data point and N is the size of the dataset. The 
first iteration is initialized by picking k points in dR  as the 
initial k cluster representatives or “centroids”. There are 
several alternative techniques for selecting these initial seeds. 
Random sampling from the dataset is used in this study. The 
algorithm iterates between the following two steps until 
convergence [16]: 
Step 1: Data Assignment. Each data point is assigned to its 
closest centroid, with ties broken arbitrarily. This partitions 
the data samples. 
Step 2: Re-allocation of “means”. Each cluster 
representative is re-allocated to the center of all data points 
assigned to it. 

One open question is to decide the number of clusters: 
k. We resolve this issue through trial and error. Note that 
each iteration requires N × k comparisons, which signifies 
the time complexity of each iteration. Cosine similarity 
scores are used as the metric to measure the distance in this 
study due to its superior performance on i-Vector features. 
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3.1.2. Agglomerative hierarchical clustering (AHC) 
Hierarchical clustering algorithms can be either top-down or 
bottom-up. We adopt the bottom-up Agglomerative 
hierarchical clustering (AHC) approach, in which each 
observation starts in its own cluster, and pairs of clusters are 
merged as one move up the hierarchy. Cosine similarity is 
used as the distance metric. The inconsistency cutoff value is 
found through grid search. Cutoff is a threshold for cutting 
the hierarchical tree generated by AHC into clusters. 
Clusters are formed when inconsistent values are greater 
than cutoff2. The optimal cutoff value is determined via hill-
climbing method. 
 
3.2. Proposed method: Universal Imposter Clustering 
(UIC) 
 
As is known, for traditional universal background modeling 
(UBM), different speaker data are used collectively to model 
the generic speaker space. Along the same idea, we propose 
to use all the development data as if they belong to a single 
speaker/class and add this new class to the enrollment data 
(assume it has S speakers/classes) to form new development 
data, which has S+1 classes. Next, we build our PLDA 
model based on this new development data. This method is 
called Universal Imposter Clustering (UIC). The rationale 
behind this is as follows:  

a) Clustering by itself cannot draw a clear line between 
different speakers. For example, some data may be grouped 
together due to characteristics of channel instead of speaker. 
Potentially, this type of clustering result will mislead the 
modeling process. 

b) By taking the development data set as a whole without 
distinguishing speaker information, we consider this as the 
(S+1)th speaker class. This new super “speaker” will be used 
to represent the residual speaker information in the data. 
This can be interpreted as a “speaker” that has a relatively 
larger variation across different sessions (in the data 
investigated in this study, there are nearly 40,000 sessions).  
The efficiency of this method is validated in Sec. 6. 
 

4. PLDA 
 
The extracted i-Vector of each speech utterance contains 
both inter-speaker and intra-speaker variabilities. Therefore, 
the PLDA classifier is normally employed to separate out the  

                                                 
2  The clusterdata Matlab built-in function is adopted for the 
Agglomerative hierarchical clustering. To facilitate potential 
comparison, we report the usage here: speaker_label = 
clusterdata(unlabeled_data,'criterion','inconsistent','cutoff',0.8,'dist
ance','cosine') 
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Figure 1: Block diagram of i-Vector based speaker verification system. Enr=enrolmment data; dev.=development data; 
tst.=test data. Labeled development data is used to assist model developing. Enrollment data is used to register speakers. 
During testing phase, only test data is imputed. 
 
intra speaker variability caused by channel mismatch in the 
i-Vector system [4]. In the PLDA framework, a D-
dimensional i-Vector ω can be described as: 

mω β ε= +Φ + ,                                    (2) 
where Φ   is a D × R rectangular matrix that represents the 
subspace containing speaker specific information, β  is an 
R-dimensional latent vector assumed to have a standard 
normal distribution, and ε is the D-dimensional vector 
representing the full covariance of the residual noise. Here, 
the reduced dimension R denotes the number of columns in 
the matrix Φ . To train the PLDA model, we need labeled 
data. Note that length normalization is applied to all i-
Vectors before PLDA classification [17]. The 
implementation of scoring follows [4]. 
 

5. EXPERIMENT SETUP 
 
In this section, the configurations of the i-Vector based 
speaker recognition system used in our experiments are 
briefly described. The flow chart is illustrated in Fig. 1. 
 
5.1. Database 
 
Experiments are performed on two data sets: NIST 
SRE2012 and NIST i-Vector Machine Learning Challenge 
[18]. The data investigated here are all 600-dimensional i-
Vector feature vectors. Although the two data sets may share 
some similar raw audio data source, they differ in many 
implementation details, such as VAD, low-level feature 
extraction, noise introduction into the training file. We will 
focus on the relevant details and summarize in the following 
two sub-sections. 
 
5.1.1. NIST SRE2012 in house data set 
In preparing this data set, we maintained a close 
collaboration with the I4U consortium in the NIST SRE2012 
[11] challenge3. Only male speakers are used for simplicity. 
Recordings are collected from a total of 763 SRE 2012 
target speakers belonging to SRE’06-10 corpora. For these 
speakers, train/test-trials are prepared for the evaluation. The 
training list includes multiple sessions per speaker and the 
test list includes both known and unknown non-target 
speakers, following SRE 2012 protocol (Table 1). On 

                                                 
3 [online] http://cls.ru.nl/~saeidi/file_library/I4U.tgz 

average, each enrollment speaker has 39 sessions. To assist 
in a potential comparison, i-Vectors for this corpus can be 
downloaded online4.   
 
5.1.2. i-Vector Machine Learning Challenge data set 
This data set is provided by NIST as part of the i-Vector 
Machine Learning Challenge (noted as IVC) [18].  

The statistics of this data set are detailed in Table 2. 
There are a total of 12,582,004 (1306 by 9634) trails. Each 
enrollment speaker has exactly 5 sessions. These trials are 
divided into two subsets: 1) a progress subset; used to keep 
track of each participant’s progress, and 2) an evaluation 
subset; used for the final evaluation. The progress subset 
comprises 40% of the total trials and the evaluation subset 
contains the remaining 60%. The results reported in this 
paper are based on scores obtained from the progress 
subset5 . We also note that this data set may contain both 
male and female speakers, since gender information was not 
provided for the i-Vectors. 
 
5.2. i-Vector processing and PLDA 
 
The original dimension of all i-Vectors in this study is 600. 
LDA is applied to reduce the dimension to 400, which also 
removes some channel and noise distortion, followed by 
length normalization and PLDA modeling. 
 

6. EXPERIMENT RESULTS AND ANALYSIS 
 
To validate our proposed framework, experiments are 
performed on the two corpora introduced in Sec. 5.1. First, 
we explore the verification performance of classical 
clustering techniques, followed by an investigation of the 
proposed method. The results are reported in four different 
metrics; namely EER, and minDCF values extracted by 
applying protocols from 2008, 2010, and 2012 NIST SREs 
[1]. 

The baseline in this study uses enrolment data as the 
development set both for LDA and PLDA modeling. 

 

                                                 
4 [online] https://sites.google.com/site/gangliuresearch/codes 
5 It is noted that the evaluation rule in i-Vector Machine Learning 
Challenge forbids a collective use of different enrollment speakers. 
So, use caution when comparing the result of this study with that 
of the Challenge. But this is allowed in NIST SRE2012. 

i-Vector post-
processing 

PLDA Scores i-Vector  
enr. 
dev. 
tst. 

enr. & dev. 
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6.1. Verification based on classical clustering 
 
We start by evaluating the performance on the NIST 
SRE2012 data set. As mentioned in Sec. 2.1.1, the k-means 
algorithm requires specifying k, the number of clusters. A 
grid search is implemented to find the optimal k and detailed 
in Fig. 2. The grid search result of AHC is displayed in Fig. 
3. The optimal value for the cutoff is 0.8. Both clustering 
techniques fail to surpass the baseline system (see Fig. 2). 
This brute-force paradigm is unavoidable, since one does 
not have access to the number of speakers in unlabeled 
development data. So this is an apparent disadvantage of k-
means clustering method. 

For the i-Vector Machine Learning Challenge, k-means 
and AHC results are documented in Table 3 and 4, 
respectively. Compared with the baseline system, optimal k-
means only offers minor improvements. Optimal AHC, 
however, can offer +16.1% relative gain when the cutoff 
value is 0.8.   

In summary, the performance of k-means is relatively 
stable over a broad spectrum of k values. A relatively good 
candidate can be found for k by a brute-force grid search, 
but the actual improvement is minor. This also suggests the 
automatic determination of clustering number warrant 
further investigation [24, 25]. AHC may or may not help 
depending upon the actual corpus. Classical clustering may 
fail to provide sufficient meaningful information to help 
boost performance depending on both parameters and data 
specifications. Plus, some parameter may need heavy tuning 
before offering reasonable performance. 
 
6.2. Verification based on proposed universal imposter 
clustering 
 
The performance of the proposed universal imposter 
clustering (UIC) on the NIST SRE2012 data set is provided 
in Table 5. We show that the proposed method, UIC, offers 
significant improvements across all 4 metrics. This is 
especially true for the system which obtains +21.9% relative 
gain of minDCF2012, which was the metric adopted in the 
NIST SRE2012. The results for the i-Vector Machine 
Learning Challenge are detailed in Table 6. There, UIC 
offers +34.6% relative improvement against the baseline 
system, and +22.1% against the agglomerative hierarchical 
clustering approach. Overall, our proposed Universal 
imposter clustering solution can consistently offer superior 
results without requiring parameter-tuning. 

The results are very interesting. Given the goal of 
clustering is to discover potential environmental variation of 
individual speaker/cluster. However, the experimental 
results indicated that, the extra information, the speaker 
label of the development data recovered by clustering, does 
not help substantially. This may be caused by the fact that 
the clustering results are very noisy. The gain from speaker 
label recovering is actually severely undermined by the 

clustering noise. On the other hand, by grouping all the i-
Vectors of development data (close to 40 thousands), UIC 
can more effectively account for many unseen variation and 
therefore help boost the classification performance.  

We acknowledge that this is just some initial analysis, 
further exploration is warranted here. 

  
7. CONCLUSIONS 

 
In this study, we investigated a series of algorithms for 
speaker verification involving unlabeled development data. 
We explored two approaches to utilize the unlabeled 
development data. It was shown that traditional clustering 
methods may or may not provide reasonable improvements 
depending upon specifics of the data set and parameter 
configuration of the clustering algorithm in question. 
Compared with the baseline system which only uses 
enrollment data for model training, the proposed Universal 
imposter clustering (UIC) offers +21.9% and +34.6% 
relative improvements on the two data sets: our SRE 2012 i-
Vector development data, and the publicly available NIST i-
Vector Machine Learning Challenge data set. Even 
compared with the popular clustering methods, the proposed 
UIC also provides significant improvements. This study also 
confirms that the contribution from unlabeled / open data to 
boost the performance of speaker identification. 

This is only an initial exploration in this direction. 
Although the proposed methods can provide significant 
improvement, it still leaves much to be desired. Investigation 
on more efficient clustering method and decision weighting 
will be next step of this study. 
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Table 1. Details of data used for the NIST SRE2012 in-
house evaluation. 

data 
 

train 
(spk.#) 

test 
(spk.#) 

dev. 
 

trial 
 

target trial: non-
target trial 

# 
 

29961 
(763) 

21837 
(804) 

39375 
 

16661631 
 

15483:16646148 
 

 

Table 2. Details of data used for the NIST i-Vector Machine 
Learning Challenge. 

data 
 

train 
(spk.#) 

test 
 

dev. 
 

trial 
 

progress subset: 
eval. subset 

# 
 

6530 
(1306) 

9634 
 

36572 
 

12582004 
 

40% : 60% 
 

 

Table 3. Grid search of Kmeans on the NIST i-Vector 
Machine Learning Challenge. 

 baseline 
cluster # 

8k 10k 12k 14k 16k 
minDCF 0.454 0.459 0.454 0.454 0.443 0.589 
 
 

Table 4. Cutoff value grid search of AHC on the NIST i-
Vector Machine Learning Challenge. 

 
 

baseline 
cutoff 

0.5 0.7 0.8 0.9 
minDCF 0.454 0.39 0.389 0.379 0.381 

 

Table 5. Performance comparison of proposed UIC on the 
NIST SRE2012. 

 
baseline proposed UIC Gain 

EER 2.55 1.49 +41.6% 
minDCF2008 0.088 0.057 +35.2% 
minDCF2010 0.267 0.221 +17.2% 
minDCF2012 0.210 0.164 +21.9% 

 

Table 6. Performance comparison of proposed UIC on the 
NIST i-Vector Challenge. 

system minDCF 
System 1: baseline 0.454 
System 2:AHC (cutoff=0.8) 0.379 
System 3: UIC(proposed) 0.297 
Gain (system 3 vs. 1) +34.6% 
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Figure 2: Illustration of k-means on the SRE2012 (black 
line). The blue dash line is the optimal AHC performance. 
The red line is the baseline system. 
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Figure 3: Grid search of AHC on the NSIT SRE2012 data 
set. 
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