
Nonlinear analysis and classification of speech under stressed 
conditions 

Douglas A. Cairns and John H. L. Hansen 
Robust Speech Processing Laboratory, Department of Electrical Engineering, Box 90291, Duke University, 
Durham, North Carolina 27708-0291 

(Received 22 October 1993; revised 2 January 1994; accepted 15 July 1994) 

The speech production system is capable of conveying an abundance of information with regards to 
sentence text, speaker identity, prosodics, as well as emotion and speaker stress. In an effort to better 
understand the mechanism of human voice communication, researchers have attempted to determine 
reliable acoustic indicators of stress using such speech production features as fundamental 
frequency (F0), intensity, spectral tilt, the distribution of spectral energy, and others. Their findings 
indicate that more work is necessary to propose a general solution. In this study, we hypothesize that 
speech consists of a linear and nonlinear component, and that the nonlinear component changes 
markedly between normal and stressed speech. To quantify the changes between normal and 
stressed speech, a classification procedure was developed based on the nonlinear Teaget Energy 
operator. The Teaget Energy operator provides an indirect means of evaluating the nonlinear 
component of speech. The system was tested using VC and CVC utterances from native speakers of 
English across the following speaking styles; neutral, loud, angry, Lombard effect, and clear. Results 
of the system evaluation show that loud and angry speech can be differentiated from neutral speech, 
while clear speech is more difficult to differentiate. Results also show that reliable classification of 
Lombard effect speech is possible, but system performance varies across speakers. 

PACS numbers: 43.72.Ar, 43.72.Kb 

INTRODUCTION 

Stress and its manifestation in the acoustic speech signal 
has been the subject of many studies. Researchers have at- 
tempted to determine reliable indicators of stress by analyz- 
ing acoustic variables such as fundamental frequency (Lie- 
berman and Michaels, 1962; Hecker et al., 1968; Williams 
and Stevens, 1969; Williams and Stevens, 1972; Streeter 
et al., 1983; Pisoni et al., 1985; Hansen and Clements, 1987; 
Hansen, 1988; Stanton et al., 1988; Hansen, 1989), ampli- 
tude (Lieberman and Michaels, 1962; Pisoni et al., 1985; 
Hansen and Clements, 1987; Hansen, 1988), concentration 
of spectral energy (Scherer, 1981; Hansen and Clements, 
1987; Hansen, 1988; Stanton etal., 1988), and others 
(Kuroda et al., 1976; Hansen and Clements, 1987; Hansen, 
1988; Stanton et al., 1988; Hansen, 1989). In these studies, 
stress refers to speech spoken under one (or more) of the 
following conditions; emotional (anger, fear, sorrow), task- 
induced (completion of a task with a time constraint), or 
environmental [high level of background noise as in the 
Lombard effect (Lombard, 1911)]. 

Fundamental frequency (F0) has been the most com- 
mon acoustic variable studied. Williams and Stevens (1969) 
performed an experiment on data collected from radio trans- 
missions of pilots experiencing flight problems (some of 
which were fatal). They found that F0 rose in stressful situ- 
ations. They also noted that F0 changes were smooth in 
normal speech, while F0 changes could be erratic in stressed 
speech. In another study, Williams and Stevens (1972) ana- 
lyzed the speech of professional actors simulating emotions. 
This study reinforced the finding that F0 is different between 
normal and stressed speech. However, they also found that 

each emotion had distinctive characteristics (i.e., sorrow-- 
low F0, flat F0 contour; anger--high F0, large range of F0 
values). Streeter et al. (1983) performed a study similar to 
the flight recording experiment of Williams and Stevens. 
They analyzed the recorded speech of system operators re- 
sponsible for electric power distribution before the 1977 
blackout of New York City. In contrast to Williams and 
Stevens, Streeter et al. could not find a consistent rise of F0 
under stress. Hecker et aL (1968) reported similar results in a 
task-induced stress experiment. 

In conjunction with F0, variables such as amplitude and 
the distribution of spectral energy have been studied. Analy- 
sis of speech produced in high levels of background noise 
has shown significant changes in several acoustic variables. 
The change in speech characteristics needed to communicate 
effectively in the presence of background noise is called the 
Lombard effect (Lombard, 1911). Pisoni et al. (1985) found 
that amplitude, duration, and pitch changed in Lombard 
speech. In addition, spectral energy shifted to higher fre- 
quency for consonants. In a similar study of loud and Lom- 
bard speech, Stanton et al. (1988) noted the same shift in 
spectral energy. Scherer (1981) suggested that this shift in 
spectral energy, along with pitch, were the two most prom- 
ising indicators of stress. 

Previous research directed at the problem of analysis of 
speech under stress has generally been limited in scope, often 
suffering from one to five problems. These include: (i) lim- 
ited speaker populations, (ii) sparse vocabularies, (iii) report- 
ing only qualitative results with little statistical confirmation, 
(iv) limited numbers and types of speech parameters consid- 
ered, and (v) analysis based on simulated or actual condi- 
tions with little confirmation between the two. To address 
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TABLE L A selected set of speech production features previously analyzed using slresscd speech from speakers 
in the SUSAS database. 

Speech production Speaking condition 
analysis domain Neutral Clear Lombard Loud Angry 

Fundamental 

frequency (llz) 

Glottal source-spectrum 
roll-off (dB/oct.) 

Duration (ms} 

Intensity (dB) 

Vocal tract spectrum (Hz) 

F0(vowel} 142 156 a 1634 209 • 283 • 

arm(vowel ) 15 22* 24 a 44 d 56 a 

-12.1 -11.9 -9.2 a -9.5 a -9.4 4 

d(word) 478 666 a 5722 650 • 662 • 
on(word) 18. 40? 24. • 28. d 41 .• 
d(vowel} 160 202 198 2533 271 a 

o•vowel) 7.9 17P 13. a 19. d 23. • 

d(diphthong) 192 199 249 a 294 • 315 a 
o•{diphthong) 3.3 3.3 3.5 5.6 7.0 
d(consonant) 71 128 • 73 73 62 
o•(consonant) 1.8 10. • 2.6 3.7 a 3.3 • 

/(word) 77.7 77.0 78.4 80.5 • 81.1 a 
/(vowel) 79.7 79.8 79.7 81.6 • 82.1 • 

/(diphthong) 80.1 80.3 80.8 83.4 a 83.42 
/(semivowel) 80.0 78.4 78.4 79.5 81.3 
/(consonant) 62.9 62.2 62.9 61.3 63.9 

• 1 {/IY/) location 411 387 • 412 43P 586 • 
•2(/1Y/) location 1970 2086 a 2006 a 2071 • 2078 a 
•3{,qY/) location 2607 2667 • 2644 a 2686 • 2661 • 
•4 (/1Y/) location 3368 3379 3376 3414 • 3357 

• 1 (/IY/) bandwidth 52 105 a 73 • 86 a 102 • 
/}2 (/IY/) bandwidth 222 3562 1393 174 • 166 • 
J•3{/IYf} bandwidth 496 613 a 250 a 355 • 464 
/}4(/IY/) bandwidth 366 53P 185 a 219 a 392 

•Indicates a statistically significant shift from neutral. 

these issues, Hansen and Clements (Hansen and Clements, 
1987; Hansen, 1988; Hansen, 1989) considered an analysis 
of acoustic and perceptual correlates of speech under various 
emotion and stress conditions. These studies included analy- 
sis of a database of simulated and actual stressed speech 
recordings using a predefined vocabulary set. [This database 
is called SUSAS, for Speech Under Simulated and Actual 
Stress; approximately half of which consists of style data 
from Lincoln Laboratories (Lippmann et aL, 1987; Hansen, 
1988, 1994).] The areas of speech under stress included vari- 
ous talking styles (slow, fast, soft, loud, angry, clear, ques- 
tion), tracking workload stress inducing tasks, speech spoken 
in noise, and subject motion-fear tasks. These studies were 
performed on five factors of speech production that include 
pitch, glottal source, intensity, duration, and spectral features. 
Well over 200 features were considered across simulated and 

actual stress conditions. Results showed that such features as 

glottal source spectral slope to be significantly different un- 
der loud, angry, and Lombard effect speaking conditions. 
Individual phoneme duration varies significantly under clear, 
angry, and loud conditions. Formant structure was shown to 
vary significantly for a number of stressed speaking condi- 
tions. Table I summarizes selected speech production fea- 
tures from previous studies (Hansen, 1988) for the five 
speech conditions (neutral and four stressed speaking styles) 
used in this study. Features that are different from neutral in 
a statistically significant manner are appropriately marked. 

The results show that when a speaker produces speech under 
stressed conditions, a variety of production domains are used 
to indicate the presence of stress. 

These studies showed that though certain production do- 
mains are traditionally modified when a speaker is under 
stress, not all speakers exhibit the same level of production 
variation for a given stressed speaking condition. In addition 
to the five reasons listed above, there is another potential 
explanation for the inconclusiveness of past acoustic studies. 
In the speech production process, there is a net airflow 
through the glottis. The linear acoustic model of speech pro- 
duction says that this flow only causes sound when forced 
through a constriction (i.e., fricative production). However, if 
the propagation of the glottal flow through the vocal tract 
created vortices of air in the region of the false vocal folds, 
sound could be actively produced from a source other than 
the glottis. This phenomena of sound creation by vortex ac- 
tion is nonlinear and cannot be measured by any of the tech- 
niques employed to date. Teager (Teager and Teager, 1983a), 
who suggested that these vortices modulated airflow in the 
vocal tract causing sound, developed the Teaget Energy op- 
erator. The operator was used to show modulation patterns in 
the energy of individual formants. In this study, we propose 
to utilize the Teager Energy operator to measure the energy 
of the first formant. Experimental evidence has shown that 
the energy of the first formant could be a useful basis for 
classifying speech as normal or stressed. The next section 
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FIG. 1. Nonlinear model of sound propagation along the vocal tract (Kaiser, 
1983). 

gives the formulation and motivation of the Teaget Energy 
operator. 

I. TEAGER ENERGY OPERATOR 

The Teaget Energy operator, which provides a measure 
of the energy of a speech signal, was motivated by experi- 
ments in speech and hearing by Teaget and Teager (1980, 
1981, 1983b, 1990). In these experiments, H. Teaget demon- 
strated that the airflow in the vocal tract is separated and 
adheres to the walls of the vocal tract. Given these observa- 

tions, the geometry of the vocal tract, and the results of some 
experiments with whistle cavities, Teaget proposed the 
model of speech production shown in Fig. 1. In this model, 
air exits the glottis as a jet and attaches to the nearest wall of 
the vocal tract. As the air passes over the cavity between the 
true vocal folds and the false vocal folds, vortices of air are 
created. The bulk of the air continues propagating towards 
the lips while adhering to the walls of the vocal tract. 

The key element in this model is the vortex action. A 
traditional model of speech production allows sound to be 
actively produced in an unconstricted vocal tract only at the 
glottis. Teaget asserted that vortices in the region of the false 
vocal folds are also actively producing sound that causes 
modulations in the speech signal. Teager's view of speech 
production is supported by the work of Thomas (1986) and 
McGowan (1988). Thomas numerically simulated fluid flow 
in the vocal tract and found that vortices are created. 

McGowan, using principles of fluid mechanics, showed that 
vortices exist. He also showed that the vortices are capable 
of actively producing sound. 

Teager developed an energy measurement motivated by 
his speech research and some experiments in hearing to find 
evidence of speech modulation patterns. J. Kaiser (1990) first 
documented the form of the energy operator as follows, 

•[x(n)] =x2(n) -x(n + l )x(n- 1), (1) 

where •{,} is the Teaget Energy operator, and x(n) is the 
sampled speech signal. 

The Teaget Energy operator has been shown to contain 
significant cross-terms when applied to multicomponent sig- 
nals (Kaiser, 1990). Therefore, to determine the Teaget En- 
ergy profile for a single component of a multicomponent 
signal, the other components of the signal must be filtered 
out. For speech, this means that a bandpass filter must be 
applied to a formant to remove the influence of the other 
formants. When applied to a single formant, the output of the 
operator has shown multiple excitation pulses within a pitch 
period (Maragos et al., 1991; Teaget and Teaget, 1990). Tea- 
get has suggested that the multiple excitation pulses repre- 
sent evidence of a nonlinear speech production phenomena 
(Teaget and Teaget, 1990). 

In this study, it is suggested that speech production con- 
sists of both linear and nonlinear components. In other 
words, speech is a combination of linear acoustic production, 
and sound generated by vortex action [McGowan (1988) 
makes a similar argument]. It is further hypothesized that the 
nonlinear component changes appreciably between normal 
and stressed speech. To quantify the changes between neutral 
and stressed speech, the Teaget Energy operator was used. 
As a result of speech production experiments, Teaget sug- 
gested that the flow in the vocal tract switches walls at the 
first formant frequency. Since the nonlinear component of 
speech arises from this flow, the proposed system extracts the 
first formant over an entire voiced speech segment. In an 
effort to eliminate the effect of variable pitch on the results, 
an analysis frame that is pitch synchronous is used, and 
frame duration is normalized using the Mellin Transform. 
The following section describes the proposed nonlinear 
normal/stressed classification system. 

II. CLASSIFICATION SYSTEM 

The system developed for the normal/stressed speech 
classification task is shown in Fig. 2. As can be seen, there 
are four main processing steps. When an utterance is pre- 
sented to the system, two assumptions are made: (1) the sys- 
tem knows the text of the word spoken, and (2) the word is a 
vowel-consonant (VC) or a consonant-vowel-consonant 
(CVC) utterance. The first assumption eliminates the uncer- 
tainty of which word is presented to the system. If this as- 
sumption was not made, speech recognition would have to 
be performed prior to speech classification. Since the perfor- 
mance of speech recognition has been shown to degrade on 
stressed speech (Hansen, 1988; Hansen and Clements, 1989; 
Calms and Hansen, 1992), this would introduce an additional 
source of error to the system. The second assumption is re- 
quired in order to eliminate voiced production variability due 
to varying levels of lexical stress in multisyllable words. 

The processing proceeds in this manner: pitch informa- 
tion is extracted from the word. An analysis window of two 
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FIG. 2. Speech classification system flow diagram. 

pitch periods is selected and the first formant located. The 
Teager Energy profile is extracted and parameterized by the 
Mellin Transform. A vector quantizer is used to map the 
feature data to a codebook entry. The analysis window is 
shifted by one pitch period and the procedure repeated. 
When pitch information is exhausted, the sequence of vector 
quantized observations is submitted to a hidden Markov 
model classifier. Each of the main processing steps will now 
be discussed. 

A. Pitch detection 

A pitch detector is necessary for one important reason. 
The Teager Energy profile has been observed to exhibit a 
modulation pattern for each pitch period. It is hypothesized 
that this modulation pattern, and the evolution of the modu- 
lation pattern across an utterance, characterize a speaking 
style. It is therefore necessary to track the modulation pattern 
of the Teager Energy profile at the scale of a pitch period. 
The pitch detector used was a derivative of the algorithm by 
Kadambe and Boudreaux-Bartels (1990, 1992). Though 
.other pitch estimation schemes exist (Hess, 1983), the rapid 
and varied movement of pitch under stress required a robust 
method with limited user supervision. The pitch detector de- 
veloped was based on the Dyadic Wavelet Transform 
(DyWT), which has the form 

] f•x,t)•*(t---•) Dy WT(b'2j) = •7 at. (2) 

Here, b is the time index, x(t) is the signal, ½*(t) is the 
complex conjugate of the wavelet, and 2 j is the scale param- 
eter. In realizing the above equation, the DyWT for a given 
scale was computed by convolving the time-reversed wavelet 
with the speech. This procedure was followed for the three 
scales that correspond to the range of fundamental frequency 

of the human voice. The DyWT for the three scales were 
then windowed by a 128 point (16 ms) rectangular window. 
Maxima were compared across scales, and matching maxima 
indicated pitch epochs. The window was shifted by 64 points 
(8 ms) and the procedure was repeated. This process contin- 
ued until the DyWT information was exhausted. This ap- 
proach was tested and found to mark pitch epochs consis- 
tently in neutral speech. However, for erratic pitch under 
some stressed conditions, it would sometimes miss pitch pe- 
riods. After several experimental trials, a two-pass version of 
the algorithm w as implemented. In the two-pass approach, 
the first pass is the original algorithm. The second pass uti- 
lizes the original algorithm with a 64 point (8 ms) rectangu- 
lar window and a 32 point (4 ms) skip rate. This pass is 
applied to portions of an utterance that fall within previously 
marked pitch epochs, but have a pitch greater than 150% of 
the median pitch of the first pass. This version of the pitch 
detector was found to satisfactorily mark pitch epochs across 
neutral and stressed speech. 

After successfully determining the pitch profile, each 
pitch epoch was migrated to the location of the previous zero 
crossing in the speech waveform. This was implemented be- 
cause pitch epochs were not marked in the same location in 
a pitch period from utterance to utterance. This approach was 
found to give a consistent pitch period and hence a consistent 
Teager Energy profile across words. 

B. Formant tracking/Teager Energy operator 

Once pitch boundaries have been determined, the modu- 
lation pattern of the first formant could be considered. To 
track and isolate the first formant, a Teaget Energy based 
formant-tracker developed by Hanson, Maragos, and Potami- 
anos (1993a,b) was used. This work was based on an 
AM-FM model for speech. Maragos, Quaffeft, and Kaiser 
(1992) found that the Teaget Energy operator could be used 
to separate the AM and FM contributions via 

1 ( •[y(n)]+•[y(n+l)]) f(n) •- • arccos 1- 4•[x(n)] , (3) 

[ 4•[x(n)] 
(4) 

where y(n)=x(n)-x(n-1), •[•] is the discrete Teager 
Energy operator, f(n) is the FM contribution at sample n, 
and a(n) is the AM contribution at sample n. Hanson et al. 
found that, given an approximate estimate of a formant loca- 
tion, the FM contribution could be used to iteratively refine 
the formant center frequency via 

N 

fi+l 1 (5) 
n--I 

Here, N is the length of the speech segment, and f ',':+ • is the 
formant center frequency on iteration i + 1. When the average 
instantaneous frequency (f •+ •) changed by less than 10 Hz, 
the formant center frequency was located (see Appendix A 
for exact details of the formant tracking procedure). Using 
this approach, the first formant was tracked for the vowel 
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FIG. 3. Teager Energy profile for neutral, loud, and angry speaking styles. 

section of a VC or CVC utterance, and the Teager Energy 
profile extracted for each analysis window. It should be noted 
that the Teaget Energy operator gives the instantaneous "en- 
ergy" of a signal, so the Teager Energy profile contains an 
energy value corresponding to each sample in an analysis 
window. Figure 3 shows examples of Teager Energy profiles 
output by the formant tracker. 

C. Mellin Transform 

As documented in the Introduction, several researchers 
have shown a link between fundamental frequency (F0) and 
stress. However, no consistent relationship has been shown 
across speakers between stress and F0 for any given stress 
condition. For this reason, we chose to effectively neutralize 
the influence of F0 on the analysis so that the nonlinear 
component of speech could be studied. A pitch synchronous 
analysis with a scale invariant transform removes duration 
variability caused by a changing pitch contour. The scale 
invariant transform utilized here is the Mellin Transform. 

The Mellin Transform was chosen because it showed consid- 

erable discriminatory power in a similar shape classification 
task (Zwicke and Kiss, 1983). The Mellin Transform has the 
form (Zwicke and Kiss, 1983) 

M{f( e•)}: f ;•f( e•)e•'dx, (6) 
where f(e •) is the signal 1o be transformed (i.e., the Teager 
Energy profile). Equation (6) can be shown to be equivalent 
to (Zwicke and Kiss, 1983) 

N 

a(to): j • [cos(to In n)-j sin(to Inn)] 

X[f(n)-f(n+ l)], (7) 

where f(n) is the Teager Energy profile for a given analysis 
window at sample n, N is the length of the analysis window, 
and G(to) is the Mellin Transform coefficient at frequency to. 
This form of the Mellin Transform is called the Direct Mellin 

Transform (DMT). Taking the magnitude of both sides of Eq. 
(7), and dropping the 1/to term yields 

= cos(to In n)A n + Z sin(to In n)A n 
n=l n=l 

(8) 

Here, A,•=f(n)-f(n+ 1), represents the rate of change of 
the Teaget Energy profile. The form shown in Eq. (8) has 
been called the Modified Direct Mellin Transform (MDMT). 
This form is very ameniable to discrete-time signals. Using 
the MDMT, the value of the transform was computed at in- 
tervals of 2,r/32 from 0 to 2,r. Through the use of the 
MDMT, similar Teaget Energy profiles will not be misclas- 
sifted simply because the pitch based analysis window size is 
different. 

D. Vector quantizer/hidden Markov model classifier 

The final processing step involves data reduction and 
classification. Data reduction was accomplished by a 128- 
state vector quantizer. Vector quantization is a widely used 
technique in the areas of speech and image processing. For 
further details, the reader is referred to the study by Gray 
(1984). Classification was performed by an algorithm based 
on hidden Markov models. For these experiments, a five- 
state, discrete observation, left-to-right hidden Markov 
model was used. This type of algorithm has been used ex- 
tensively in the area of speech recognition (Rabiner et al., 
1983). Since the proposed classification framework re- 
sembles a speech recognition task, it was deemed appropriate 
to use this approach. However, other classification schemes 
based on neural networks or other statistical pattern recogni- 
tion techniques are equally valid. For more details on hidden 
Markov models for speech applications, see (Jelinek et al., 
1975; Jelinek, 1976; Levinson et al., 1983; Rabiner and 
Juang, 1986). 

III. EXPERIMENT 

In the hypothesis from Sec. I, it is suggested that the 
nonlinear component of speech undergoes a fundamental 
change between neutral and stressed speech. The data used to 
test this hypothesis comes from the SUSAS (Speech Under 
Simulated and Actual Stress) database. The SUSAS database 
was established for the purposes of stress research (Hansen 
and Clements, 1987; Hansen, 1988; Hansen, 1989; Cairns, 
1991; Cairns and Hansen, 1992; Hansen and Bria, 1992). 
The database is partitioned into five domains, encompassing 
a wide variety of stresses that include: various talking styles 
(slow, fast, soft, loud, angry, clear, question, in noise), single 
and dual tracking workload stress inducing tasks, emotional 
speech from psychiatric analysis sessions, and subject 
motion-fear tasks. A total of 32 speakers were employed to 
generate in excess of 16,000 utterances. From the database, 
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nine native speakers of English were chosen. For each 
.speaker, there were twelve neutral utterances of each word, 
and two utterances of the following stress speaking styles; 
loud, angry, Lombard effect, and clean The Lombard speech 
data was obtained by having speakers wear headphones with 
85 dB SPL of pink noise played while speaking (i.e., all 
recordings are noisefree). A total of six VC or CVC words 
were chosen for each speaker resulting in a total of 120 ut- 
terances per speaker. 

Evaluations were conducted in the following manner. 
Three examples of neutral speech along with one example of 
each of the stress styles for each word were chosen to train 
the vector qaantizer. The three neutral examples used to train 
the vector quanfizer, along with three additional neutral ex- 
amples for each word were used to train the hidden Markov 
models for each speaker. This approach yields a hidden Mar- 
kov model that is speaker dependent. The training tokens 
were excluded from the final evaluation (i.e., an open recog- 
nition evaluation), which consisted of testing the remaining 
neutral and stressed speech. The final evaluation involved 
submitting the remaining neutral and stressed speech to the 
system. The hidden Markov model classifier outputs a prob- 
ability for each utterance that was processed according to the 
following heuristic algorithm: 

(1) Determine decision boundary for given VC or CVC 
(a) thresh=min[LP(neutral)• ..... LP(neutral),] 

(i) MAXCR(1)=0, 
(ii) compute classification rate (CR) for each talk- 

ing style, 
(iii) TOTCR = CR(neutral) + CR(loud) + CR(angry) 

+ CR(Lombard) + CR(clear), 
(iv} If TOTCR>MAXCR(1), MAXCR(1) 

=TOTCR and THRESH(1)=thresh, 
(v) thresh=thresh- e. 
(vi) If thresh>-?.0, return to l(a)ii, 

(b) thresh=min[LP(neutral)• ..... LP(neutral)n]+ e, 
(i) MAXCR(2)=0, 
(ii) compute classification rate (CR) for each talk- 

ing style, 
(iii) TOTCR = CR(neutral) + CR(loud) + CR(angry) 

+ CR(Lombard) + CR(clear), 
(iv) If TOTCR>MAXCR(2), MAXCR(2) 

=TOTCR and THRESH(2)=thresh, 
(v) thresh=thresh+e, 
(vi) If thresh<0.0, return to l(b)ii. 

(c) ff MAXCR(1)>MAXCR(2), THRESHF 
=THRESH(l). Otherwise, THRESHF 
=THRESH(2). 

(2) Compute final classification rates using THRESHF 
as the decision boundary. 
Here, LP(i) is the log-probability for the ith neutral utterance 
of a given word. 

Application of the Teaget Energy operator across the 
selected speaking styles revealed a difference in the Teaget 
Energy profile of the first formant for neutral versus stressed 
speech. Figures 3 and 4 show examples of the Teaget Energy 
profile for neutral, loud, Lombard, angry, and clear utter- 
ances of "on." These figures illustrate the different forms of 
the Teager Energy profile across speaking styles. The goal in 

TEAGER ENERGY PROFILE FOR NORMAL SPEECH 

,'.25 '25 ;5 
]]]EAGER ENERGY PROFILE FOR LOMBARD SPEECH 

TEAGER ENERGY PROFILE FOR CLEAR SPEECH 

1.25 2.5 3.75 5.0 625 7.5 8.75 10.0 11.25 1 .5 

TWO PITCH PERIODS OF SPEECH (in msec) 

FIG. 4. Teager Energy profile for neutral, Lombard. and clear speaking 
styles. 

this experiment is to determine whether the change in the 
Teaget Energy profile can be used to classify speech as neu- 
tral or stressed for a given speaker. 

IV. DISCUSSION 

The results of the classification evaluations are shown in 

Table II and Fig. 5. From the data, several conclusions can be 
drawn. First, loud and angry stress styles are differentiated 
from neutral speech as evidenced by the overall classification 
rates of 98.1% and 99.1% respectively. This result shows that 
there is a clear difference in the Teaget Energy profile be- 
tween neutral and loud or angry speech. It is our contention 
that the change in the nonlinear component of speech causes 
the change in the Teager Energy profile. However, our ex- 
perimental framework is not capable of proving this conten- 
tion. 

The second conclusion supported by the data is that 
Lombard effect speech is not as reliably differentiated from 
neutral speech as loud and angry speech. As shown in Fig. 5, 
there is a wide range in classification results for Lombard 
effect speech. tIowever, if the results from speakers S3 and 
S4 are removed, the mean classification rate increases from 
86.1% to 94.0%, and the range of classification rates shrinks 
considerably. The preceeding observation suggests several 
possibilities. First, that production variability due to the 
Lombard effect was not as pronounced in speakers S3 and 
S4 as it was in the other speakers. If this is the case, the 
relatively low classification rates are understandable. An- 
other possibility is that the Teaget Energy profile alone is not 
sufficient to reliably separate Lombard effect speech from 
neutral speech. It may be necessary to incorporate other fea- 
tures relating to spectral shape to reliably differentiate Lom- 
bard effect speech. There may be still other possibilities. 
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TABLE II. Classification results for nine speakers. 

Classification rate (%) 

Speaker Neutral speech Loud Angry Lombard Clear 

S1 100.0 100.0 1130.0 83.3 50.0 

S2 100.0 100.0 100.0 100.0 58.3 

S3 100.0 100.0 100.0 50.0 58.3 

S4 91.6 91.6 91.6 66.7 66.7 

S5 100.0 100.0 100.0 83.3 83.3 

S6 97.2 100.0 100.0 100.0 75.0 

S7 97.2 100.0 100.0 100.0 50.0 

S8 94.4 91.6 100.0 100.0 66.7 

S9 97.2 100.0 100.0 91.6 75.0 

Mean 97.5 98.1 99.1 86.1 64.8 

More research is required to resolve which of the above ex- 
planations is the correct one. 

The last conclusion supported by the data is that clear 
speech is not easily differentiated from neutral speech. It is 
suggested that the nonlinear component of speech is more 
pronounced in loud, angry, and Lombard effect speech as 
compared to clear speech. If the nonlinear component of 
speech is the dominant factor in the change in the shape of 
the Teaget Energy profile, our contention explains the clas- 
sification results for clear speech. However, it is noted that 
other factors could explain the change in the Teaget Energy 
profile. 

It has been hypothesized that speech production consists 
of a linear and a nonlinear component, and that the nonlinear 
component changes markedly between neutral and stressed 
speech. While the results presented here show a promising 
application of the Teaget Energy operator, we cannot conclu- 
sively state that our hypothesis has been validated. It is pos- 
sible that factors such as vocal fold vibration or vocalic reg- 
ister could have contributed to changes in the shape of the 
Teaget Energy profile. Further research in this area may be 
required before a conclusive statement can be made about 
the nature of speech production. 

In this study, it has been shown that the Teager Energy 
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FIG. 5. Mean classification rates across speaking styles. 

profile of the first formant is useful for differentiating neutral 
from loud, angry, and Lombard effect speech. The system 
developed to perform this task is independent of traditional 
acoustic features such as pitch, intensity, spectral energy, etc. 
Incorporation of traditional features could lead to further im- 
provements in classification performance. Looking beyond 
the current classification task, this research has implications 
for the fields of speech synthesis and speech recognition. For 
speech synthesis, incorporation of Teager Energy profile in- 
formation could aid in producing more natural sounding 
speech in text-to-speech systems. Speech recognition could 
benefit by using this classification scheme as a front end 
processor to determine the state of the speaker. The correct 
stress-dependent recognition model could then be selected 
based on the speaker's state. This approach could improve 
the accuracy of speech recognition under stress which has 
traditionally deteriorated under task-induced stressed speak- 
ing conditions (Hansen, 1988; Hansen and Clements, 1989; 
Cairns, 1991; Cairns and Hansen, 1992). 

V. SUMMARY 

This study has focused on evaluating the hypothesis that 
a nonlinear component of speech changes noticeably be- 
tween speech spoken under neutral and stressed conditions. 
To evaluate this, a speech processing approach was devel- 
oped to classify speech as being spoken in either neutral or 
stressed styles. The system employs the Teager Energy op- 
erator to quantify the nonlinearity (i.e., modulation pattern) 
of the first formant within vocalic sections of VC and CVC 

words. Results show that loud and angry speech can be dif- 
ferentiated from neutral speech, while clear speech is more 
difficult to differentiate. Results also indicate that Lombard 

effect speech can be reliably classified, although system per- 
formance varied across speakers. It is therefore suggested 
that the nonlinear component during speech production is 
more pronounced for loud and angry stressed speaking 
styles, hence a resulting improvement in classification per- 
formance. Though the experimental framework cannot con- 
clusively prove the existence of a nonlinear component, the 
results do suggest a promising application of the Teaget En- 
ergy operator and its ability to represent nonlinear speech 
dynamics. However, more research is required in the area of 
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speech production dynamics to determine the contribution of 
the linear and nonlinear speech production components. 

APPENDIX 

The formant tracking procedure is as follows: 

(1) Extract two pitch periods of speech with rectangular 
window. 

(2) Obtain initial estimate of formant center frequency 
for analysis window (an LPC-based formant tracker 
was used to give initial estimates of F1 (McCand- 
less, 1974). 

(3) Filter frame of speech data with Gabor bandpass 
filter 

g(n)--exp[-(anT)2]cos(2rrfcTn), In[<N, (All 

where 3/is the length of the analysis window, T is 
the sampling interval, and fc is the center frequency 
found on the previous iteration, or the estimate of 
F1 obtained from the LPC formant tracker for the 

initial pass through the algorithm. Choose ot based 
on the following criteria (a) If If it+t_ F21 >500 Hz 
and f ic+t>1000 Hz, ot=ll00. (b) Otherwise, 
or=800. 

(4) Using Eq. (3), compute f(n). 
(5) Compute new estimate of first formant center fre- 

quency, •' i+t using Eq. (5). 
(6) if II' +t_f '1<10 Hz, terminate procedure. Other- 

wise, returh to (3). 
(7) Move analysis window forward one pitch period and 

return to (1). 
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