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Physical task stress is known to affect the fundamental frequency and other measurements of the

speech signal. A corpus of physical task stress speech is analyzed using a spectrum F-ratio and

frame score distribution divergences. The measurements differ between phone classes, and are

greater for vowels and nasals than for plosives and fricatives. In further analysis, frame score distri-

bution divergences are used to measure the spectral dissimilarity between neutral and physical task

stress speech. Frame scores are the log likelihood ratios between Gaussian mixture models

(GMMs) of physical task stress and of neutral speech. Mel-frequency cepstral coefficients are used

as the acoustic feature inputs to the GMMs. A Laplacian distribution is fitted to the frame scores

for each of ten phone classes, and the symmetric Kullback–Leibler divergence is employed to

measure the change in distribution from neutral to physical task stress. The results suggest that the

spectral dissimilarity is greatest for the second level of a four level exertion measurement,

and that spectral dissimilarity is greater for nasal phones than for plosives and fricatives.

Further, the results suggest that different phone classes are affected differently by physical task

stress. VC 2011 Acoustical Society of America. [DOI: 10.1121/1.3647301]

PACS number(s): 43.70.Fq, 43.72.Ar [AL] Pages: 3992–3998

I. INTRODUCTION

Exercise affects speakers, and the literature documents

some of the resulting changes in the acoustic signal

(Johannes et al., 2007; Godin and Hansen, 2008). Exercise

impacts the performance of speech systems (Entwistle,

2003), and it is known that speech, in turn, affects exercise

(Meckel et al., 2002). The full effects of exercise on the

acoustic speech signal are not documented. This study

presents a measurements analysis and an experiment to

explore the effects of exercise on the speech spectrum, and

to compare the relative effects of exercise on the phone

classes of American English.

For consistency with related terminology, exercise is

known in this study as physical task stress. Classification of

the speaker related factors that affect the acoustic speech sig-

nal is nontrivial and motivated by varying contextual con-

cerns (Murray et al., 1996); thus, terminology has varied. In

the past, speech under stress denoted any source of variabili-

ty in the speech signal (Hansen, 1988). Several types of

speech variability were considered in that study, including

anger, shouting, Lombard effect, and workload stress. Solu-

tions for speech recognition systems were explored in that

study, and later studies also considered stress classification

systems (Cairns and Hansen, 1994; Womack and Hansen,

1996; Bou-Ghazale and Hansen, 2000). Contemporary study

of acoustic variability of speech focuses on one type of

speech variability at a time, and groups emotions into one

category, and situational speaker stressors into another,

including cognitive task stress (Lindstrom et al., 2008),

Lombard effect (Boril and Hansen, 2010), fatigue (Vogel

et al., 2010), and physical task stress.

Godin and Hansen (2008) showed that fundamental fre-

quency, and the percent of frames voiced in an utterance, are

affected by physical task stress, but that the standard devia-

tion of fundamental frequency in an utterance is not affected.

Johannes et al. (2007) demonstrated that while heart rate and

blood pressure increased linearly with increasing exertion

level, fundamental frequency exhibits a nonlinear increase,

characterized by multiple plateaus and abrupt transition

functions between them. In experiments with a physiological

microphone, a neck mounted contact transducer for signals

up to 2 kHz, Patil and Hansen (2010) showed that such sen-

sors afford both better speaker verification performance and

better stress detection performance under physical task stress

than typical acoustic close-talking microphones. Entwistle

(2005) demonstrated the extent of the impact of physical

task stress on the performance of speech recognition

systems.

Meckel et al. (2002) investigated the effect of speech

production on physiological variables, showing that, when

under physical task stress, the addition of a speaking task

results in increases in several physiological variables associ-

ated with exertion. Olson and Strohl (1987) accepted that

nasal resistance decreases during exercise and investigated

four possible causes, determining that none were the cause

of the observed decreases. The effects of decreased airway

resistance due to the use of helium-rich air mixtures is well

known to undersea divers, raising formant center frequencies

and voice pitch (Morrow, 1971), but the effects of decreased

nasal resistance on the acoustic speech wave have not been

investigated.

Rotstein et al. (2004) concluded that the perceived speech

production difficulty—a nonacoustic measure—increases
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linearly with increasing exercise intensity as measured by

three intensity metrics. Rotstein et al. (2004) also concluded

that the “talk test”—a speech production-based measure of

exercise intensity—is a “questionable substitute for the anaer-

obic threshold or [heart rate] for prescribing individual train-

ing exercise intensity.” Based on this prior work, it is

observed that while a given speech difficulty level may be

associated with a given level of exertion, measured changes in

speech production processes, or observed changes in the

acoustic speech wave, may not be associated with any particu-

lar level of exertion across speakers.

Only Johannes et al. (2007) and Godin and Hansen

(2008) analyzed the acoustic waveform of speech under

physical task stress. The speech signal was treated as a

whole; the impact of physical task stress on particular phone

classes was not considered by either study. Section III of this

study presents F-ratio measurements of the spectrum that

show that different phone classes are affected differently by

physical task stress, and that more sonorous phone classes,

such as the vowels, appear to be more affected. Based on

these observations, we hypothesize that a speech spectrum

dissimilarity measure will be greater for the sonorant phone

classes than for the nonsonorant phone classes. Based on the

results of Meckel et al. (2002), Rotstein et al. (2004), and

Johannes et al. (2007), we hypothesize that a speech spec-

trum dissimilarity measure will be greater for greater exer-

tion levels. Based on the observation of Johannes et al.
(2007) that fundamental frequency increases were character-

ized by plateaus separated by abrupt increases, four groups

of exertion levels will be formed for the experiment. The

experiment described in Sec. IV tests both of these

hypotheses.

Next, Sec. II discusses the speech corpus that was used

in this study. Section III presents measurements on the

speech spectrum that motivate our hypothesis that speech

spectrum dissimilarity will be greater for sonorant phone

classes than for nonsonorant phone classes. Section IV

presents an experiment to test both hypotheses in this study.

Finally, Sec. V discusses the results.

II. CORPUS: UT-SCOPE

The UT-Scope corpus encompasses speech under Lom-

bard effect, physical task stress, cognitive task stress, vocal

effort, and whisper. It was collected by the Center for Robust

Speech Systems (CRSS) at the University of Texas at Dallas.

The physical task stress portion includes speech from 77

speakers, 51 of whom are native speakers of American Eng-

lish, 42 female and 9 male speakers (Ikeno et al., 2007). For

each speech type, speech was collected using 35 sentence

prompts, prompted through headphones, and a 3 min sponta-

neous speech segment involving a conversation between the

experimenter and the subject. The prompted segments of the

recordings of the native speakers have full sentence and word

level segmentations available, with phone-level segmentations

available for 39 of the 42 female native speakers. The phone-

level segmentations were generated using forced alignment.

The experiments in this study employed the prompted

neutral and physical task stress segments of the 36 female

native speakers for which both phone segmentations and

heart rate data are available. Relevant aspects of the portion

of UT-Scope used in this study are described in Table I. All

speakers in UT-Scope were recorded with three micro-

phones. This study uses data recorded from a Shure Beta 53

head-worn close-talking microphone. Heart rate was

recorded using a Polar S520 heart rate watch with chest-

worn sensor. Audio was recorded at 44.1 kHz to a Fostex

D824 digital recorder, and downsampled to 16 kHz for this

study. The speech was collected in an American Speech-

Language-Hearing Association certified single-walled

soundbooth. Physical task stress was induced using a Stam-

ina Conversion II Elliptical/Stepper in the elliptical mode.

Subjects were instructed to maintain an approximate 10 mph

pace on the machine.

Some of the speakers in the corpus were more physi-

cally fit than others. Heart rate data (sampled at 15 s inter-

vals) and the age of each speaker are used to form an

estimate of the exertion level of each speaker. The formula-

tion of the estimate incorporates the overall fitness level of

the speaker by including the resting heart rate. Though it

will tend to overestimate the resting heart rate, an estimate

of the resting heart rate of each speaker is obtained by aver-

aging the speaker’s heart rate during the neutral segment.

The exertion level is estimated using the Karvonen method

(Davis and Convertino, 1975), which measures exertion

along a percentage scale, where the bottom of the scale is

the resting heart rate, and the top is an estimated maximum

heart rate for that subject:

HR ¼ ðMHR� RHRÞlþ RHR; (1)

where HR is the current heart rate, RHR is the resting heart

rate, l is the exertion level (ranging from 0.0 to 1.0), and

MHR is the person’s maximum heart rate (in beats/min),

estimated according to (Tanaka et al., 2001)

MHR ¼ 208:9� 0:7A; (2)

where A is the age of the person in years. Figure 1 shows the

exertion level estimates for each speaker in the corpus. Fig-

ure 1 shows that the task employed to induce the stress is of

medium difficulty for most speakers. The outlier in the graph

at age 19 demonstrates the limitations of estimating maxi-

mum heart rate using age (Tanaka et al., 2001), which result

from formulating the estimation method using averages

across many speakers. The average exertion level for the

TABLE I. Aspects of the subset of UT-Scope used in this study.

Gender of speakers Female

Number of speakers 36

Average age (years) 23.6

Age range 18–45

Sentences/task 35

Tasks Neutral, physical exertion

Native language American English

Microphone Close-talking

Speech style Prompted

Av. exertion level 45.7%

Sampling rate 16 kH
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speakers in this corpus is 0.457, or 45.7%. Having estab-

lished the utility of UT-Scope for the study of physical task

stress speech, the next section focuses on an analysis of the

changes in speech spectral structure.

III. F-RATIO MEASUREMENTS AND ANALYSIS

The following measurements were intended to provide

insight into the differences between the effects of physical

task stress on phone classes. For this purpose, F-ratio meas-

urements were taken on the short time speech spectrum in

order to examine qualitatively the effect of physical task

stress on the mean of each spectral bin. Measurements were

taken across all of the speech, as well as within subsets of

the speech corresponding to ten classes of phones.

In the speech literature, Fisher’s F-ratio has been applied

similarly to compare general intra-speaker variability to inter-

speaker variability (Lu and Dang, 2008), and has been applied to

the measurement of the discriminative capability of features for

speaker identification (Campbell, 1997). The F-ratio measure-

ments were taken for each speaker, and then the measurements

were averaged across speakers. An F-ratio measurement on the

short time speech spectrum of a speaker was accomplished by

forming the ratio of the variance between phone classes of each

frequency bin of a discrete Fourier transform analysis to the av-

erage variance of that bin within the phone classes. For speaker

j, spectrum bin i, the F-ratio is formulated in this study as

Fi;j ¼
1
M

PM
k¼1

ui;j;k � ui

� �2

1
M

PM
k¼1

1
Tj;k

PTj;k

l¼1

fi;j;k;l � ui;j;k

� �2

; (3)

where fi,j,k,l is the value of spectrum bin i for speaker j, cate-

gory k, frame l, Tj,k is the total number of frames from

speaker j, category k, M is the number of categories (two,

here), ui,j,k is the mean value of spectral bin i across all

frames in category k of speaker j, and ui,j is the mean of bin i
across all frames of speaker j. All analysis windows were 25

ms long, with a 10 ms window shift.

The F-ratio scales observed changes in the mean of each

spectral bin by the average variance within each category.

The F-ratio is sensitive to changes in the mean of a parame-

ter; larger observed differences in means relative to within-

category variance is associated with larger F-ratio measure-

ments. The distributions of each spectral bin are best

assumed multi-modal in this study, given, for example, the

varying magnitudes of speech, and that each phone class

contains multiple phones. This implies that the statistical sig-

nificance of the F-ratio here cannot be measured by applying

an F-distribution, because that would assume the underlying

parameter is Gaussian distributed. Instead, the F-ratio pro-

vides a qualitative view of the differing effects physical task

stress has across phone classes, as compared with neutral

speech. These results motivate the quantitative analysis of

the second experiment, discussed in Sec. IV.

The result of the F-ratio measurement taken across all

phones is shown in Fig. 2. From Fig. 2, it can be observed

that the effects of physical task stress are not concentrated in

specific areas of the spectrum, though greater effects may be

observed on very low and very high frequencies. The effects

observed at lower frequencies may be related to fundamental

frequency changes.

The spectrum F-ratio of the individual phone classes

reveals that physical task stress affects different phone

classes differently, and that all phone classes are affected.

Ten phone classes were studied: High vowels, low vowels,

FIG. 1. (Color online) Exertion

level for each speaker.

FIG. 2. (Color online) F-ratio showing change in mean of each spectrum

bin due to physical task stress.
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stops, fricatives, nasals, liquids, glides, diphthongs, and affri-

cates. A representative set of five is presented: Figs. 3 and 4

show the average F-ratio for high vowels and low vowels,

respectively, Figs. 5 and 6 show the average F-ratio for frica-

tives and stops, and Fig. 7 shows the average F-ratio for

nasal phones. While the spectrum F-ratio of the stop plosives

is similar to the overall F-ratio, appearing to vary little across

the spectrum, the high vowels, low vowels, and nasals show

not only greater overall change, but also a sharp peak at

lower frequencies. Generally, the F-ratio is greater for

voiced phones than unvoiced phones, and greater for more

sonorous phones than less sonorous phones. Concluding

whether these observed differences between the effects of

physical task stress on different phone classes are statisti-

cally significant is a purpose of the experiment presented in

Sec. IV.

IV. PHONE CLASS FRAME SCORE DISTRIBUTION
ANALYSIS

The following experiment tested two hypotheses. It was

hypothesized that speech spectrum dissimilarity between

neutral and physical task stress speech will be greater for

greater exertion levels, and that speech spectrum dissimilar-

ity between neutral and physical task stress speech will be

greater for sonorant phone classes than for nonsonorant

phone classes. Preliminary results for this experiment were

previously discussed in Godin (2009). In this experiment,

the speech was first preprocessed by computing Mel-

frequency cepstral coefficients (MFCCs) (Davis and Mer-

melstein, 1980), a frame-based acoustic feature, to reduce

the data dimensionality, thus facilitating statistical modeling

of the acoustic waveform. Next, a pair of statistical models

was employed to estimate the difference in log posterior

probabilities, a “score,” that represents an estimate of

whether the frame exhibits particular characteristics of phys-

ical task stress speech, or of neutral speech. Frames more

closely associated with physical task stress have higher

scores than frames more closely associated with neutral

speech.

It is from these frame scores that the measurement of

the effects of physical task stress on specific phone classes

was made. Scores from neutral speech for one phone class

FIG. 3. (Color online) F-ratio showing change in mean of each frequency

bin of high vowels due to physical task stress.

FIG. 4. (Color online) F-ratio showing change in mean of each frequency

bin of low vowels due to physical task stress.

FIG. 5. (Color online) F-ratio showing change in mean of each frequency

bin of fricatives due to physical task stress.

FIG. 6. (Color online) F-ratio showing change in mean of each frequency

bin of stop plosives due to physical task stress.
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for one speaker were compared with scores from physical

task stress speech for that same phone class for that same

speaker by estimating and comparing statistical models for

each. An analysis of variance (ANOVA) was employed to

determine the significance of these score comparisons. Some

details of the experimental design follow.

A. Estimating frame scores

Gaussian mixture models (GMMs) (Reynolds and Rose,

1995) were employed to model the distribution of acoustic

features for neutral and for physical task stress speech. The

GMMs were trained using the Hidden Markov Model Tool-

kit [(HTK), Young et al. (2006)]. From these, posterior prob-

abilities that a given frame is produced by the physical task

stress model and the neutral speech model were computed

and compared, resulting in the frame score.

A separate pair of GMMs was estimated for each

speaker in the experiment, in the sense that the GMM param-

eters are estimated by pooling all other speakers’ data as

training data for the model pair. The number of mixtures to

use for the GMMs was determined by treating the GMM

pairs as stress/neutral classification systems, applying the

classification system to the utterances of the left-out speaker,

and increasing the number of mixtures by a factor of 2 until

the classification error rate stopped decreasing. Details of the

resulting GMM set are shown in Table II.

B. Comparing phone class score distributions

Measuring the effects of physical task stress on a phone

class was achieved by comparing the estimated distribution

of frame scores for that phone class in neutral with an esti-

mated distribution of frame scores for that phone class in

physical task stress. This comparison of distributions was

performed using the symmetric Kullback–Leibler (KL)

divergence. The KL divergence was used because it is a gen-

eral, straightforwardly applied measure related to changes in

the respective probability distributions. All phone class

frame scores are assumed (justified below) to be Laplacian

distributed, and thus the KL divergence was computed ana-

lytically using the parameters of a fitted Laplacian

distribution.

The KL divergence compares two probability distribu-

tions p(x) and q(x),

DKLðP QÞk ¼
ð1
�1

pðxÞlog
pðxÞ
qðxÞ dx: (4)

In this form, the KL divergence is not symmetric. The KL

divergence is symmetrized by

DKLðP QÞ ¼ DKLðP QÞk þ DKLðQ PÞk : (5)

The Laplacian distribution is

pðxÞ ¼ 1

2b
exp � x� lj j

b

� �
: (6)

The comparison equation is found by substituting Eq. (6)

into Eq. (4), then substituting the result into Eq. (5). A com-

plete derivation may be found in Godin (2009).

The result is

DKLðN; SÞ ¼ bn þ bs � bn exp
� ln�lsj j

bn

� �

� bs exp
� ln�lsj j

bs

� �
; (7)

where parameters bn and ln are the parameters of the Lapla-

cian distribution for the neutral frame scores, and parameters

bs and ls are the parameters of the Laplacian distribution for

the physical task stress frame scores. The parameter l is esti-

mated as the median of the available data samples, and the

maximum likelihood estimate of b is

b̂ ¼ 1

M

X
n

sj ½n� � lj; (8)

where M is the number of frames for that phone class, and n
iterates through those frames.

Table III shows the number of speakers for whom

Kolmogorov–Smirnov (KS) tests supported the assumption

that the frame scores for that phone class are Laplacian dis-

tributed. For most phone classes, frame scores from a

FIG. 7. (Color online) F-ratio showing change in mean of each frequency

bin of nasals due to physical task stress.

TABLE II. Aspects of the classification system used in this study.

Value used

Parameter in experiment

Features used MFCCs

Number of mixtures 256

Number of cepstral coefficients 15

Delta coefficients H
Double-delta coefficients H
Training software HTK

Training speakers 41

Test speakers 1

Testing style Round-robin

Equal error rate 15%

Global threshold –0.1670
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majority of the speakers are consistent with a Laplacian dis-

tribution. This justifies the application of the assumption that

the frame scores for all phone classes for all speakers are

Laplacian distributed. KS tests for the fit of a Gaussian dis-

tribution to the frame scores found that assuming a Gaussian

distribution for frame scores was a reasonable assumption

for less than 10% of the speakers, for most phone classes.

C. Results

Figures 8 and 9 show the results of the experiment.

A two-way ANOVA, shown in Table IV, was performed on

the results, with phone class and exertion level as main

effects. Exertion level was grouped into four levels, rather

than modeled as a linear continuous parameter, consistent

with the hypothesis that the relationship between spectrum

dissimilarity and exertion level is nonlinear. Thresholds for

the exertion level categories were set to balance the number

of speakers in each group. The confidence level for the

ANOVA was set at 95%.

Table IV shows that both phone class and exertion

level are both significant main effects. The interaction

between phone class and exertion level was not significant.

Post hoc, pairwise comparisons were computed using the

Tukey–Kramer method, and the resulting confidence inter-

vals for comparison are shown in both Figs. 8 and 9. The

difference between the effects on nasals versus the effects

on both fricatives and plosives is statistically significant.

Pairwise comparison of exertion levels showed that the

frame score distribution changes for the second level are

significantly lower than for the other three levels.

V. DISCUSSION

Based on the results of the second experiment, we can-

not accept our hypothesis that spectral dissimilarity is greater

for the sonorant phone classes. Instead, we can conclude that

the average spectra of nasal phones are more affected by

physical task stress than the average spectra of plosives and

fricatives. One possible mechanism for this may be the

decrease in nasal resistance associated with physical task

stress as observed by Olson and Strohl (1987), which may

result in a change in center frequencies of nasal resonances

or anti-resonances. A future study could explore the hypoth-

esis that physical task stress results in changes in the

resonances observed in the acoustic wave of nasal phones.

We also cannot accept our hypothesis that spectral dis-

similarity is correlated with greater exertion levels. How-

ever, our results suggest a relationship between spectral

dissimilarity and exertion. One possible mechanism for this

difference may be differing choices of breathing strategy

among different exertion levels. A future investigation could

TABLE III. Results of statistical tests to determine whether frame scores

within each phone class for each speaker are Laplacian distributed at the

99% confidence level. Thirty-nine total speakers.

Number of speakers’ scores

Phone class Laplacian distributed

Neutral—low non-R vowels 33

Phy—low non-R vowels 34

Neutral—high non-R vowels 22

Phy—high non-R vowels 25

Neutral—laterals 38

Phy—laterals 38

Neutral—stop plosives 33

Phy—stop plosives 35

Neutral—diphthongs 35

Phy—diphthongs 33

Neutral—R vowels 36

Phy—R vowels 36

Neutral—fricatives 32

Phy—fricatives 29

Neutral—glides 35

Phy—glides 35

Neutral—nasals 31

Phy—nasals 34

Neutral—combo consonants 35

Phy—combo consonants 35

FIG. 8. Average effect of physical task stress on change in frame score dis-

tribution, grouped by phone class and ordered by sonority. Bars show pair-

wise comparison intervals.

FIG. 9. Average effect of physical task stress on change in frame score dis-

tribution, grouped by exertion level. Bars show pairwise comparison

intervals.
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explore the hypothesis that when faced with a task of me-

dium to low difficulty, speakers use a different breathing

strategy that involves pushing their breaths out to the edges

of a sentence, and thus maintaining less altered speech

production.

The statistically insignificant differences observed in

Fig. 8 suggest further investigation into the possibility that

the diphthongs and low vowels are more affected by physical

task stress than the plosives, affricates, and fricatives, by

exploring in particular the effects of physical task stress on

the voice production system. Nonacoustic measures of the

behavior of the voice production system could assist in fur-

ther exploring these effects in future work. An electroglotto-

graph, for example, could isolate the effects of physical task

stress on the fundamental frequency from acoustic measure-

ment errors related to increased noise in the vocal tract; it

could also be employed to compare speech under physical

task stress with pressed voicing, or be used to perform

inverse filtering to more precisely measure formant center

frequencies.
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