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Abstract 

A new and improved iterative speech enhancement  technique 
based on spectral constraints is presented in this paper. The 
iterative technique, originally formulated by Lim and Oppenheim, 
attempts to solve for the  maximum likelihood estimate of a 
speech waveform in additive white noise. The  new approach 
applies inter- and intra-frame spectral constraints to ensure 
convergence to reasonable values and  hence improve speech 
quality. An extremely eficient technique for applying these 
consrraints is in  the  use of line spectral pair (LSP) coefi- 
ciertts. The inter-frame constraints ensures more speech-like 
formant trajectories than  those found in  the  unconstrained 
approach. Results from speech degraded by additive white 
Gaussian noise  show noticeable quality improvement. 

Introduction 

The successfulness of an enhancement algorithm  rests on the 
goals  and  assumptions  used in deriving the approach. Depending 
on the application, a  system  may be directed at  one or more 
objectives  such as improving  overall quality, increasing intel- 
ligibility, reducing listener fatigue, etc. Three assumptions 
normally made include: i) that the noise distortion be additive, 
ii) that only the degraded speech signal  is  available,  and  iii) 
that the noise and speech signals are uncorrelated. In general, 
constraints placed on  the speech  model  improve the potential for 
separating speech from background  noise. However, such  systems 
are also more sensitive to "deviations" from these constraints. 
The degradation considered is additive white Gaussian noise. The 
basis  of the technique is an iterative enhancement approach 
based on noncausal Wiener filtering originally formulated by Lim 
and Oppenheim [l]. This approach attempts to solve for the 
maximum likelihood estimate of a speech waveform in additive 
white  noise  using the constraint that the signal is an all-pole 
process.  Crucial to the success of this approach is the accuracy 
of the estimates of the all-pole speech parameters at each 
iteration. One advantage of the Wiener filtering approach is 
that no "musical tone" artifacts are present after processing as 
can be  observed in spectral subtraction techniques. In addition, 
under certain conditions, it can be shown that it is the optimal 
solution in the mean-squared sense for a  white  noise distortion. 
Although successful in a mathematical sense, this technique has 
received little application due to several  factors. First, it is 
an iterative scheme with  sizable computational requirements as 
opposed to a direct form such as spectral subtraction. Second, 
although the original sequential M A P  estimation technique was 
shown to increase the joint likelihood of the speech  waveform 
and  all-pole parameters, heuristic convergence criteria had to 
be employed. After an extensive  investigation [2], this approach 
was found to produce significant  levels of enhancement for white 
Gaussian noise in 3-4 iterations. The technique was  generalized 
to allow for colored aircraft noise. Various spectral estimation 
techniques where employed for securing estimates of the colored 
background  noise and although the noise  was not stationary, 
estimates were  performed  prior to application of the algorithm. 

With these assumptions, good enhancement took place in  2-3 
iterations. It is assumed that in a real-time environment how- 
ever, noise spectral estimates could be gathered and updated 
during silent intervals. An important observation  which  could be 
made from this  previous  work  was that as additional iterations 
were performed, individual formants of the speech  decreased in 
bandwidth (see fig.l), resulting in unnatural sounding  speech. 
Frame-to-frame pole jitter was  also  observed  which contributed 
to unnatural sounding results. Also, the original technique 
employs no explicit frame-to-frame constraints. Since the origi- 
nal algorithm already constrains the speech to be the response 
from an all-pole system,  applying further constraints on the 
pole movements may  improve the algorithms  performance. One set 
of constraints were applied directly to the LPC poles. These 
results were quite encouraging,  yet  computationally  intensive. A 
new approach for implementing the spectra1 constraints was 
formed by employing the line spectral pair (UP)  transformation 
as a method for representing the vocal tract spectrum. This 
method of specification  allowed constraints to be efficiently 
applied to the speech  model  pole  movements  across time (inter- 
frame) so that formants lay on smooth tracks. In addition, 
constraints could also be easily  applied  across iterations 
(intra-frame) on a frame-by-frame basis. 

Iterative Speech Enhancement 

Enhancement based on the estimation of all-pole speech 
parameters in additive white Gaussian noise  was  investigated by 
Lim and Oppenheim [l], and later for a  colored  noise degradation 
by Hansen and Clements [2] .  It was  shown that the estimation 
procedures which  result in linear equations without  background 
noise,  become nonlinear when  noise  is introduced. However by 
allowing  a suboptimal procedure, an iterative algorithm results 
which  possesses the property that the estimation procedure is 
linear at each iteration. 

Consider the statistical parameter estimation of speech in 
the presence of noise.  Over  a short-time basis, the speech 
signal can be represented as the following difference equation: 

s(n) = a' s(n-1,n-p) + g w(n) (1) 

where a T =[a,,%, ...,aJ represents the all-pole predictor 
coefficients. Substituting the degraded speech into the speech 
model  gives the following equation for the observation vector: 

Yo = y(N-1,O) = s(N-1,O) + d(PJ-1,O) (2) 
Yo = a' y(n-1,n-p) + g  w(n) + d(n) - a  d(n-1,n-p) 

where s(N-1,O) are N samples of original speech, and d(N-1,O) 
represents the additive background  noise. The 2p + 1 unknowns 
include the predictor coefficients a, initial conditions for the 
predictor given by Si = s(-1,-p), and the gain factor g for the 
input excitation. Consider the case where all unknown 
parameters are random with  a  priori  Gaussian  probability  density 
functions. The basic procedure used is a  maximum  a  priori ( M A P )  
estimator, which  maximizes the probability  density function of 
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the parameters given the observations. Therefore, a,g,Si are 
chosen to maximize the probability  density function 
p(a,g,SijY,). The procedure requires that a be chosen to 
maximize  p(ajYo),  noting that the estimate is conditioned on the 
noisy  observations Yo. Using  &yes’ rule, p(alYo)  can be written 
as a product of terms involving  p(Y,la,g,Si). When the Gaussian 
density function p(Yob,g,Si) is expanded, it can be shown that 
the mean and variance are functions of the predictor 
coefficients a. Therefore the resulting equations for maximizing 
p(alY,) are nonlinear, involving  partial  derivatives  with 
respect to  a. Lim and Oppenheim considered a suboptimal  solution 
employing a two step approach  based on MAP estimation of So 
given  Yo,  followed by M A P  estimation of a given So,where So is 
the result of the first estimation. Observations indicate that 
this algorithm  converges to a local  maximum of the joint  density 
p(a,S,IY,;g,Si). In particular, if the probability  density 
function is unimodal, and the initial estimate for a is such 
that the local  maximum equals the global  maximum, then the 
procedure is equivalent to the joint M A P  estimate of a and So. 
After some  simplification, the M A P  estimation of So, based on 
maximizing the probability  density function p(Soh,Yo) which is 
jointly  Gaussian in Yo, is equivalent to a minimum mean squared 
error (MMSE) estimate of S,. Therefore as the observation  window 
increases in length, the procedure for obtaining a MMSE estimate 
of s(n) approaches a noncausal Wiener filter. With this, the 
implementation of the algorithm  is  presented in Figure 2. This 
approach can also  be extended to the colored  noise  case as 
shown. As indicated, the background  noise  spectral  density  must 
be estimated during non-speech  activity. 

(a)  Disorted Original (b) 2 IIeratiom ( c )  4 Iterations id)  6 ilcrairons 

Figure 1: Variation in vocal  tract  response  across iterations. 

As indicated, the sequential MAP estimation technique 
increases the joint  likelihood of the speech  waveform and all- 
pole parameters, yet a heuristic  convergence criterion had to be 
employed. Also, as additional iterations were performed, 
individual formants of the speech  decrease in bandwidth as 
indicated in figure 1. Frame-to-frame pole jitter was  also 
observed.  Both  effects contributed to unnatural sounding speech. 
The goal, therefore is to impose constraints on the pole  move- 
ments across time (inter-frame) and iterations (intra-frame). An 
initial  approach  was to limit the poles from moving too close to 
the unit circle by performing an off-axis  spectral evaluation 
where the z-transform is evaluated on a circle further away from 
the poles of the spectrai  model. Other approaches considered 
included  applying constraints directly to the pole  radii  and/or 
angular  displacements in the LPC model. Performance of such 
inter and intra-frame constraints lead to encouraging results, 
but at the expense of a pth order root-solve and a pole ordering 
step per frame for each iteration. Since  root  solving  is not 
always  numerically accurate and ordering can be inconsistent 
across frames, a more robust  approach  was  sought to implement 
these constraints. Previous  success of the line spectral  pair 
(LSP) transformation in speech coding by Crosmer [3],  led to the 
use of LSP’s for this purpose. 

Line Spectral  Pair Representation of Spectral Characteristics 

The LSP transformation may  be  viewed as an alternative 
representation of the LPC spectrum. The LSP coefficients are 
obtained from the LPC prediction  coefficients by combining the 
forward and backward  predictor  polynomials as follows: 

P(z) = A(z) + B(z), Q(z) = A(z) - B(z). (3) 

The vocal tract transfer function is given  by g/A(z), and M is 
the order of the  LPC speech model. The resulting  polynomials 
P(z) and Q(z), are symmetric  and  antisymmetric,  respectively, 
with a root of P(z) at z=+1, and a root of Q(z) at z=-1. The 
remainder of the roots of P and Q all lie on the unit  circle. 
Since the roots occur in conjugate pairs, the original 
polynomial can be represented by M real numbers. The angles of 
the roots, {oi, i= 1,2, ..., M}, are called the line spectrum pairs. 

The LSP’s  possess several important properties  which make 
them attractive for use in applying  spectral  constraints. One 
important characteristic is that if the vocal tract polynomial 
A(z) has all its roots inside the unit  circle (Le., a stable 
filter), then the roots of P and Q will be interleaved around 
the unit  circle [3]. If two adjacent LSP frequencies are identi- 
cal, it indicates that a root of A(z) lies on the unit circle. 

In addition to their attractive representation of the LPC 
spectrum, the LSP  coefficients offer the possibility of a more 
direct representation of perceptually important information. 
Specifically, their is a firm statistical  relationship  between 
the locations and bandwidths of the speech formants and the 
locations of the roots of P and Q respectively.  Since roots of 
the P polynomial  correspond  approximately to locations of for- 
mant center frequencies (when a formant  is present), the P 
polynomials’ LSP coefficients are termed position coeflcients. 
It can be shown that the closer two L§P coefficients are 
together, the narrower the bandwidth of the corresponding  pole 
of the vocal tract filter. Therefore, formants are indicated 
when tw0  LSP  coefficients are close together. When U P  coeffi- 
cients are far apart, they indicate poles which contribute only 
to the overall  spectral shape. Because of their relationship to 
the presence or absence of a formant by their nearness to a 
position coefficient, the coefficients of Q are termed 
drfference coeflcients. Given the LSP  coefficients, the 
position  coefficients are simply the odd  index LSP coefficients, 
{pi=wzi-l, i=1,2, ..., W2}. The difference coefficients are given 
as  follows: 

{I di I = MIN ( I wacj - wa I ), i = 1,2 ,..., M/2} (4) 
j = -1,l 

where the sign of di  is  positive  if ua is  closer to and 
otherwise  is  negative. With this interpretation, a new enhance- 
ment technique based on Wiener filtering is now  possible  by 
imposing constraints on the LSP coefficients. 

Stcp 1: Estimate ai from Sei. 
Use either: i .  first P value; as  the initial condition vectoi 

or: ii.  always assume si = oT. 
Step 2: i. Using Si, estimate the speech spectrum: 

k= I 

ii. Calculate gain term using  Parseval’s theorem. 
iii. Estimate either  the degrading 

a.) white noise variance vi, or b.) colored noise spectrum P,,(co) 

iv. Construct the noncausal Wiener filter; 
from a period of silence closest to  the utterance. 

v. Filter the estimated spcech 5, to produce 
vi. Repeat until some specified error criterion is satisfied, 

AECrHRFsH0L.n. 

Figure 2: Enhancement Algorithm based on All-pole modclingiWiener 
filtering. a) a AWGN distortion b) a non-white distortion 

Enhancement with Spectral Constraints 

Consider the statistical parameter estimation of speech in 
the presence of noise,  where  all  unknown parameters are random 
with a priori  Gaussian  probability  density functions. It can be 
shown that MAP estimation of a, g,  and Si given the noisy 
observations Yo, results in a set of nonlinear equations. There- 
fore, instead of joint estimation of a and So, a suboptimal 
solution  is formulated employing a two step approach  based on 
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M A P  estimation of So given Yo, followed by MAP estimation of a 
given So, where So is the result of the first estimation. Since 
speech can be considered short-time stationary, frame-to-frame 
spectral constraints may  aid in enhancement. The new  approach 
imposes  such constraints on the vocal tract spectrum between MAP 
estimation steps. Th? procedure for obtaining the MAP estimate 
of a from MAX p(alS,g,Si) remains the same. The next step is to 
apply spectral constraints to Si which  will ensure that; i) the 
all-pole speech model  is stable, ii) it possess speech-like 
characteristics (i.e.,  poles are not too close to the unit 
circle causing narrow bandwidths), and iii) the vocal  tract 
characteristics do not vary  wildly  from frame-to-frame when 
speech is pFesent. Due to this constrained approach, an improved 
estimate Ai results. Given ,this  new estimate, the second M A P  
estimajion of So giyen 4 can be Famed out by maximizing 
p(Sobi,Yo;g,Si). Smce p(Sobi,Yo;g,Si) is still  jointly 
Gaussian in Yo, the resulting MAP estlmate is equivalent to a 
MMSE estimate of So. Again, in the limiting  case, the procedure 
for obtaining the MMSE estimate of s(n) apRroaches  a  noncausal 
Wiener filter. Once this new estimate of is formed, the 
iterative procedure continues by re-estimating $, applying 
cpnstraints to Ai, *and then forming the noncausal filter usmg 
$ to re-estimate So.. This continues until  some  convergence 
criterion is satisfied. The procedure for implementing these 
constraints will  now be addressed. 

Two classes  of spectral constraints are considered; inter- 
frame (across time), and intra-frame (across iterations). TWO 
approaches are considered:  a  fixed frame rate, and a  variable 
frame rate approach. In the first of these, the LPC predictor 
coefficients, a, are first converted to LSP  position  and 
difference coefficients. Next, each frame's  energy  is observed, 
and if it is above  some threshold, it is classified as voiced 
speech; if it is  below, then it is either noise or unvoiced 
speech. A  local running count &, is kept for the number of 
consecutive frames which  fall  below the energy  threshold. If Li 
reaches &, then all subsequent frames below the threshold are 
classified as noise. This allows for further smoothing for long 
periods of silence. The position  coefficients for each frame are 
smoothed  using  a  weighted triangular window  with  a  variable  base 
of support (1 to 5 frames). If a frame has been classified as 
noise,  maximum  smoothing is performed. In addition, the lower 
formant frequencies are smoothed over  a  narrower triangle width 
than for those  position coefficients at higher  frequencies. This 
preserves perceptually important speech  characteristics found in 
the lower formants. No smoothing is performed on  the difference 
coefficients  since they are more closely related to formant 
bandwidth than formant location. However, it is  possible that a 
difference coefficient falls  within  a "forbidden zone," (i.e., 
the region  within d,, of a  position  coefficient). When this 
occurs, the LPC  analys~s has most  likely  overestimated the Q of 
a particular pole.  Since this causes unnatural sounding speech, 
(as in the unconstrained approach), the value of ldil is set to 
dm.  Finally, the position and difference coefficients q e  
combined to form the constrained LPC predictor  coefficients $. 

The second inter-frame constraint approach considered  is  a 
variable frame rate technique which takes advantage of the 
interpolation properties of the LSP coefficients. The speech 
signal is first  divided into segments, where segments are chosen 
such that they are long when the speech spectrum is varying 
slowly and short when the speech  spectrum  is  varying  quickly. 
The U P  coefficients are reconstructed with linear interpolation 
used to compute the coefficients for intermediate frames. 

The segmentation algorithm begins  with  a step to determine 
the onset/offset of speech. This is carried out by thresholding 
the LPC residual energy, which produces relatively long seg- 
ments. Next, the long  segments are subdivided  based on the 
curvature of the position  coefficients. This is performed by 
computing a  gain-normalized Itakura-Saito measure of the spec- 
tral distance between the frequency response of two adjacent 
frames. The procedure continues by computing the distortion of 

position coefficients for successively longer segments  until the 
distortion exceeds a threshold T,,. At that point, a  subsegment 
boundary is set, with the intermediate position  coefficients 
reconstructed via linear interpolation. During  this step, the 
length of a  subsegment  is  also  limited to & to prevent 
excessively  long segments which  might contribute to muffled or 
unnatural sounding  speech. The advantage of this approach is 
that it incorporates more information from adjacent frames when 
the spectrum indicates similar  characteristics. Yet, it also 
reduces the effects of adjacent frames when the spectrum is 
significantly different as in the case of a transition from 
unvoiced  passages to noise. This in effect, distorts the 
position coefficients as little as possible when associated 
difference coefficients indicate the presence  of formants. 
Difference coefficients for each frame, (or an average  set 
across  a segment) are used to compute the predictor coefficients 
Pi. The difference coefficients are required to be at least dm 
or greater in distance from adjacent  position  coefficients to 
ensure that poles from the LPC filter do not move too close to 
the unit  circle. 

Inter-frame constraints are applied to a  single frame 
across iterations, and as such require the frames'  previous 
estimates to be available. The motivation for such constraints 
is that under certain conditions, pole locations for the same 
frame vary  significantly from their previous estimated values. 
Since the present-estimate of Ai affects the next estimate of 
So,i, sections  of SOi will  also  vary  significantly  across itera- 
tions. In addition, previous results based on objective speech 
quality measures indicated that the unconstrained  approach 
produced  minimum  objective  measures at different iterations for 
different classes of speech. For example, maximum  overall speech 
quality was observed for additive white  Gaussian  noise in three 
iterations. This was also true for vowels and fricatives. 
However, glides required two iterations, nasals, liquids, and 
affricates between five and six. It is therefore desirable to be 
able to affect the convergence rate so that the best  objective 
measure of quality occurs at the same iteration across  all 
classes of speech. Improved quality as measured by objective 
measures  may  also  result in improved estimation of Si. By 
constraining the vocal tract filter to be a function of its 
previous estimates, it may be  possible to accomplish this. Two 
approaches are considered, one applied to the autocorrelation 
lags, the other to the position  coefficients. The first approach 
simply  weights the present  set of autocorrelation lags  with the 
Same frame from previous iterations. This technique is very  easy 
to perform, since the autocorrelation lags  must  be computed in 
order to estimate the predictor coefficients a. The second 
approach  weights  position  coefficients  with  those from the same 
frame but  previous iteration. If the corresponding difference 
coefficient indicates the adjacent position  coefficient to 
represent a formant, this  approach  has the effect of 
constraining the formants to lie along smooth tracks across 
iterations. 

Results 

Speech degraded by additive white Gaussian  noise  was 
processed  using  various configurations of the new constrained 
enhancement algorithm. Energy thresholds for inter-frame 
constraints were obtained from frame energy  histograms at each 
signal-to-noise ratio.  Excellent enhancement resulted for a  wide 
range of threshold values. Intra-frame constraints were  applied 
across two to three iterations. hformal listening tests 
indicated noticeable quality improvement, although no intelligi- 
bility  testing has been performed. However, there has been 
extensive  work  carried out in  the area of objective  speech 
quality measures [4]. Good correlation has been shown to exist 
between  subjective quality and  objective  measures. Therefore, 
objective  measures including: the Itakura-Saito likelihood 
ratio, log area ratio, and  weighted spectral slope measure where 
used for evaluation. Figure 3 illustrates a  comparison of 
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typical results for the various constraint approaches. Itakura- 
Saito measure is plotted versus  signal-to-noise ratio for a 
white noise distortion. Plot a represents the original distorted 
speech. Plots b through e represent combinations of inter-frame 
constraints (both fixed and variable rate), and intra-frame 
constraints (applied to position coefficientdautocorrelation 
lags). All configurations  examined  showed  significant 
improvement in Itakura-Saito measures.  Threshold settings for 
the variable frame rate inter-frame constraint were  somewhat 
sensitive to varying  noise  levels. However, the fixed frame 
approach by itself, and with either autocorrelation or  position 
intra-frame constraints gave  impressive results with little 
sensitivity to varying  levels of SNR. In order to determine a 
limit on the level of enhancement, the original undistorted 
predictor coefficients a were used in the unconstrained 
algorithm. In essence, the two step M A P  estimation approach  is 
now reduced to a single MAP estimate of S,, and therefore 
represents the theoretical limit for enhancement using Wiener 
filtering. Plot f indicates this  limit. Although only Itakura- 
Saito measures are shown,  similar  improvement  was  also  observed 
for log area ratios and  weighted  spectral  slope  measures.  Figure 
4 compares the new  approach to existing  techniques.  Plot b shows 
results from spectral subtraction as formulated by  Boll [ 5 ] .  An 
evaluation was  performed for both half and full-wave 
rectification, along with one to five frames of magnitude 
averaging; where these points represent the best  results.  Plot c 
is from the unconstrained Wiener filtering technique. Plots d 
and e are typical  values for the inter-frame constraint (fixed 
frame rate), and inter plus intra-frame constraints (fixed frame 
and autocorrelation lags).  Again f indicates the limit for the 
Wiener filtering approaches. 

Sound Itakura-Saito Likelihood Measure 
Type Original 1 Lim-Oppenheirn j Hansen-Clernents I True L P C  

SNR=+SdB 
Table 1: Comparison of algorithms over sound  types for white Gaussian  noise. 

Itakura-Saito  Likelihood  Measure 
6 r  

0 
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Figure 3: Comparison of constraint algorithm over SNR. 
a.) Original Distorted Speech 

c.) Inter-Frame Constraint: Fixed Frame 
b.) Inter-Frame Constraint: Variable Frame 

e.) Inter & Intra-Frame Constraints: Fixed Frame, Autocorrelation 
d.)  Inter & Intra-Frame Constraints: Fixed Frame, Position 

f.) Theoretical limit: using undistorted LPC coefficients, a. 

Performance evaluation over  sound  classes  was  accomplished 
by hand partitioning speech into segments. Entire sentences  were 
processed, and objective  measures from each  class  were computed. 
Table 1 summarizes this comparison  between the unconstrained 
Lim-Oppenheim technique to that of the inter and intra-frame 
constraint approach. Measures for the theoretical limit  using 
undistorted LPC predictor  coefficients a are also indicated. 
Improvement  is indicated for all  types of speech. In addition, 
the constrained approach produced superior objective  measures of 
quality across  all  speech  classes at  the same iteration. These 
results  clearly indicate improvement  over the unconstrained 
approach as well as spectral subtraction for additive white 
Gaussian  noise. 

&nClUSiQllS 

The application of spectral constraints to noncausal Wiener 
filtering results in improved  speech enhancement. Informal 
listening tests along  with  objective  measures  such as Itakura- 
Saito and log-area-ratio's show improvement  over the 
unconstrained technique. By using the Line Spectral Pair 
transformation, a modest  increase in computational requirements 
results in significant  improvement in speech  quality. This 
approach to pole movement constraints is quite robust  over 
direct methods applied to pole radidangular movements. 
Finally, this approach  may be useful in enhancement for human 
listeners as well as a preprocessor for speech  recognition. 
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Figure 4: Comparison of enhancement algorithms over SNR. 
a,) Original Distorted Speech 
b.) Boll: Spectral Subtraction, using magoitude averaging 
c.) Lim-Oppenheim: Unconstrained Wiener filtering 
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