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Abstract-It is well known that the introduction of acoustic 
background distortion into speech causes recognition algorithms 
to fail. In order to improve the environmental robustness of 
speech recognition in adverse conditions, a novel constrained- 
iterative feature-estimation algorithm, which was previously for- 
mulated for speech enhancement, is considered and shown to 
produce improved feature characterization in a variety of actual 
noise conditions such as computer fan, large crowd, and voice 
communications channel noise. In addition, an objective measure 
based MAP estimator is formulated as a means of predicting 
changes in robust recognition performance at the speech feature 
extraction stage. The four measures considered include 

i) NIST SNR 
ii) Itakura4aito log-likelihood 
iii) log-area-ratio 
iv) the weighted-spectral slope measure. 

A continuous distribution, monophone based, hidden Markov 
model recognition algorithm is used for objective measure based 
MAP estimator analysis and recognition evaluation. Evaluations 
were based on speech data from the Credit Card corpus (CC- 
DATA). It is shown that feature enhancement provides a con- 
sistent level of recognition improvement for broadband, and 
low-frequency colored noise sources. Average improvement across 
nine noise sources and three noise levels was +9.22%, with a 
corresponding decrease in recognition rate variability as repre- 
sented by standard deviation in recognition from 12.4 to 6.5. 
As the ~ t a t i o ~ r i t y  assumption for a given noise source breaks 
down, the ability of feature enhancement to improve recognition 
performance decreases. Finally. the log-likelihood based MAP 
estimator was found to be the best predictor of recognition 
performance, while the NIST SNR based MAP estimator was 
found to be poorest recognition predictor across the 27 noise 
conditions considered. 

I. INTRODUCTION 

A. An Overview to Robust Speech Recognition 
The issue of robustness in speech recognition can take on a 

broad range of problems. A speech recognizer may be robust 
in one environment and inappropriate for another. The main 
reason for this is that performance of existing recognition 
systems which assume a noise-free tranquil environment, 
degrade rapidly in the presence of noise, distortion, and stress. 
In order to discuss the signal processing needed to achieve 
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robust speech recognition, we consider the potential sources 
of distortion that are introduced into a speech signal under 
adverse conditions. In Fig. 1, a general speech recognition 
scenario is presented which includes a variety of speech signal 
distortions 

Clearly, the distortions illustrated may not be present in 
unison. For this scenario, we assume that a speaker is exposed 
to some adverse environment, where ambient noise is present 
and a usel task is required. Such scenarios include a noisy 
automobile environment where cellular communications is 
used, noisy helicopter or aircraft cockpits, noisy factory envi- 
ronments, and others. Since the user task could be demanding, 
the speaker is required to divert a measured level of cognitive 
processing. leaving formulation of speech for recognition 
as a secondary task. Workload task stress has been shown 
to signific,mtly impact recognition performance [51], [9]. 
[28]-[30], [32], [53]. Since background noise is present, the 
speaker will experience the Lombard effect [48]: a condition 
where speech production is altered in an effort to communicate 
more effectively across a noisy environment. The level of 
Lombard effect will depend on the type and level of ambient 
noise d l ( n ) .  In addition, a speaker may also experience 
situational stress (i.e., anger, fear, other emotional effects), 
which will alter the manner in which speech is produced. If we 
assume s(r!) to represent a neutral, noise-free speech signal, 
then the acoustic signal at the microphone is written as 

+&(n) .  (1) 1 U’ORKLOAD TASK 

S(n) STRESS { I  LOMBARD EFFECT(d1) 

In general, the acoustic background noise d l ( n )  will also 
degrade the speech signal. Next, if the speech recognition 
system is trained with one microphone and another is used 
for testing, then microphone mismatch will cause a distor- 
tion. This can be modeled as a frequency mapping with the 
impulse response I L M I K E ( ~ ) .  If the speech signal is to be 
transmitted over a telephone line or cellular phone channel, 
another level of distortion is introduced (modeled as either 
additive noise & ( n ) ,  or a frequency distortion with impulse 
response ~ C ~ H A K K . E L  (n)). Further noise could also be present 
(or modeled) at the receiver &(n). Therefore the neutral noise- 
free distortionless speech signal s( n), having been produced 
and transmitted under adverse conditions, is transformed into 
the degraded signal y(n), as shown in (2),  at the bottom of 
the next page. 
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LOMBARD 
EFFECT 

Fig. 1. General framework for the types of distortion which may be  addressed for robust speech recognition. 

Approaches for robust recognition can be summarized under 

i) better training methods 
ii) improved front-end processing 
iii) improved back-end processing or robust recognition 

These recognition approaches have in tum been used to 
address improved recoedtion of speech in 

the following three research areas 

measures. 

a) noisy environments 
b) Lombard effect 
c) workload task stress or speaker stress 
d) microphone or channel mismatch. 
To formulate automatic speech recognition algorithms 

which are more effective in changing environmental con- 
ditions, it is important to understand the effects of noise 
on the acoustic speech waveform, the acoustic-phonetic 
differences between normal speech and speech produced in 
noise, and the acoustic-phonetic differences between normal 
speech and speech produced under stressed conditions. Several 
studies have shown distinctive differences in phonetic features 
between normal and Lombard speech [4], [43], [25], [281, 
[23], [54], [56], and speech spoken in noise [19]. Other studies 
have focused on variation in speech production brought on 
by task stress or emotion [25], [28], [29], [35], [5]. The 
primary purpose of these studies has been to improve the 
performance of recognition algorithms in noise [42], Lombard 
effect 1431, (371, [55], stressed speaking styles [46], [51], [91, 
noisy Lombard effect [28], [31], [33], [341, [7], and noisy 
stressful speaking conditions [53], [28], [30], [34], [35]. 

Approaches based c m  improved training methods include 
multi-style stress training [46], [51], simulated stress token 
generation [5], training and testing in noise [14], and others 
[42]. Improved training methods have increased recognition 
performance, however as suggested by Juang, recognition 
performance degrades as testing conditions drift from the 
original training data. A solution which has been suggested 
is fast update methods for recognition models under varying 
noise environments. 

Another area which has received much attention is front-end 
processinghpeech feature-estimation for robust recognition. 

Here, many studies have attempted to uncover that speech 
representation which is less sensitive to various levels and 
types of additive, linear filtering, or convolutional distortion. 
For example, some studies focus on identifying better speech 
features [391, [37], or estimation of speech features in noise 
[27], or processing to obtain better speech representations [38]. 
If the primary distortion is additive noise, then a number of 
speech enhancement algorithms can be used such as 

i) short-time spectral amplitude estimation (spectral sub- 

ii) model based optimal filtering (Wiener filtering) [45], 

iii) adaptive noise canceling [60]. 

traction) [3] 

U71, 1181, [261, [27l 

Other front-end processing incorporates feature processing for 
noise reduction and stress equalization [35], [7], [33], additive 
and convolutional noise [38]. 

The last approach for robust recognition is in improved 
back-end processing or robust recognition measures. Such 
processing methods refer to changes in the recognizer formu- 
lation such ils the hidden Markov model (HMM) structure, or 
developing better models of noise within the recognizer [59]. 
Robust recognition measures are included here because they 
seek to project either the test data space closer to the trained 
recognition space, or trained space toward test space [36], [49], 
[8]. Studies related to robust metria include those processing 
for linear filtering or microphone mlsmatch distortion [47]. 

B. Outline of Paper: Robust Recognition Under Additive Noise 

In this study, we focus on the area of robust features 
with respect to additive background noise. The method under 
consideration is a previously formulated scheme based on 
sequential maximum a posteriori (MAP) estimation of the 
speech waveform and speech modeling parameters followed 
by the application of inter and/or intra-frame spectral con- 
straints between iterations [24], [27]. The paper is organized as 
follows. In Section 11, three objective speech quality measures 
are discussed in the context of quality assessment for automatic 
recognition in noise. In Section 111, a simple objective measure 
based MAP estimation approach for recognition performance 
is presented, followed by a discussion of constrained-iterative 

*   MIKE:(^) + d z ( n )  
WORKLOAD TASK 

LOMBARD  EFFECT{^^} 
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0B.JECTIVE SPEECH Q U A L I T Y  MEASURE 
S N R  
Segmental S N R  
LPC Baned Measures 

Linear Predictor Coefficient 
Log Predictor Coefficient 
Linear Reflection Coefficient 
Log Reflection Coefficient 
Log Area Ratio (LAFt) 
Log Likelihood Ratio (IS: Itakura-Saito) 

Weighted Spectral Slope (WSSMKlatt) 
~ 

TABLE I 
COMPARISON OF THE AVERAGE CORRELATION COEFFICIENT 111 BETWEEN OBlECTlVE AND SUBIECTIVE SPEECH QUALITY 

AS MEASURED B Y  COMF'OSITE ACCEPTABILITY OF DAM [52 ] .  CORRELATION COEFFICIENTS ARE FOR OVERALL 
DISTORTION ALL: 322 TYPES OF DISTORTION, AND SPECIFIC DISTORTION CLASSES: W K D :  66 WAVEFORM 

CODER DISTORTIONS. WBD.' 126 WIDEBAND DISTORTIONS FROM WAVEFORM CODERS AND 
CONTROLLED DISTORTIONS, NBD: 36 NARROWBAND FREQUENCY DISTORTIONS, 

FDD: 36 DIFFERENT COLORED FREQUENCY DEPENDENT DISTOFXIONS 

D A . M .  C O R R E L A T I O N  
IPIWFCD = 0.24 
1 3 1 ~ ~ ~  = 0.77 

131~1,~ = 0.06 
131~1,~ = 0.11 

PIALL = 0.11 
[$[ALL = 0.46 

l p l ~ ~  = 0.62 1 3 1 ~ ~ ~  = 0.65 ~ P ~ M D  = 0.91 
= 0.59 1 3 1 ~ ~ ~  = 0.61 1 3 j j  = 0.80 

lj3lu = 0.74 1 8 1 ~ ~ ~  = 0.61 1 3 1 ~ ~ ~  = 0.90 

robust feature-estimation using the (Auto:I,LSP:T) algorithm 
in Section IV. This procedure is evaluated using CCDATA and 
TIMIT data for a number of noise conditions. The transformed 
(Auto:I,LSP:T) estimated features are then employed within a 
monophone model based speech recognition algorithm across 
actual noise conditions in Section VI. Finally, the MAP 
recognition rate estimator is evaluated in Section VII, and 
conclusions drawn in Section VIII. 

11. NOISE AND OBJECTIVE SPEECH QUALITY 

When noise is introduced into a speech utterance, its impact 
on speech quality is nonuniform. As a result, the impact 
of additive background noise on speech recognition perfor- 
mance will depend on how each phoneme for an input text 
sequence is effected. In this section, three objective speech 
quality measures are considered as a means of representing the 
impact of various additive noise sources on speech quality for 
recognition. A fourth measure based on SNR is also discussed. 
For this study, the focus is on distortion which primarily 
introduces an additive spectral mismatch into the frequency 
response of the speech signal across time. This, of course, 
only reflects a small portion of the potential types of distortion 
which may be introduced for voice recognition applications. It 
1s suggested that the change in quality could be used to predict 
the robustness of feature enhancemenuestimation front-ends 
for automatic speech iecognition in noise. 

The choice of an objective measure rests on its ability to 
predict quality for a particular distortion. Research has been 
performed in the formulation of objective quality measures for 
coding [52], [l  I], [SSI, and the application of these measures to 
speech enhancement [24] and recognition [ 131, [20]-[22], [36], 
[40]. In one study of over 2000 different objective measures 
using the multidimensional diagnostic acceptability measure 
(DAM) [57], several measures were identified which have a 
noticeable degree of correlation to subjective quality for a 
broad range of distortions [52]. 

The following three objective measures are considered in 
this study, log-likelihood ratio (Itakura-Saito) d ~ s ( ~ ) ,  log-area- 
ratio dLAR(I), and the weighted-spectral slope measure (Klatt) 
~ w s ~ ~ ( ~ ) .  Table I summarizes correlation results from [52] 
for the objective measures considered, along with several 

others for comparison. Here, i l j 1 . 4 ~ ~  refers to correlation 
with composite acceptability of the DAM across all 322 
tested distclrtions and therefore reflects the objectives measures 
overall performance. Some of these distortions included 

i) coding (e.g.. ADM, ADPCM. LPC, MPLPC, etc.) 
ii) controlled distortion (e.g., additive noise, clipping, echo, 

iii) frequency variant (e.g., narrowband noise, pole distor- 

Other correlation values reflect more specific distortion classes 
such as 

lowpass filtering, etc.) 

tion;, etc.). 

i) WBD: wideband distortion 
ii) NBD: narrowband distortion 
iii) WFCD: waveform coder distortion 
iv) FDD: frequency dependent distortion. 

From this !tudy, the log-likelihood ratio (IS) resulted in one 
of the higier LPC based quality measures, and of those 
measures employing an aural model, the weighted spectral- 
slope meas Ire Watt)  possessed the highest correlation coef- 
ficient with subjective quality. This table shows that the three 
selected me a w e s  possess good degrees of correlation across 
overall distortion types; and higher degrees of correlation for 
narrowband and frequency dependent distortion classes. 

The method in which each measure is estimated will now 
be considered. The measures have the property that if the 
degradeafeature-enhanced and original speech spectra are 
identical, th:. resulting measure is zero. Each distance measure 
represents a measure of distortion between a frame of original 
and degradedprocessed speech. Global quality measures are 
obtained by averaging individual frame distances d, over a 
sentence or database. 

One of tke more successful quality measures based on the 
magnitude spectrum is the log likelihood ratio [40], [20], [lo]. 
This measure is based on the dissimilarity between all-pole 
models of the reference .T and processed speech 9 as follows: 

where Z~9; a'< are the all-pole model coefficients from the ith 
frame of the original and feature-enhanced signals respec- 
tively, and R.4 is the corresponding autocorrelation matrix 
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TABLE I1 

CALCULAT~ON OF THE WEIGHTED SPECTRAL SLOPE MEASURE 
SUMMARY OF CRITICAL BAND FREQUENCY bCATIONS AND BANDWIDTHS FOR 

I Cnlical  Bond Center Freauencu Locations and Bandwidihs /Hz) I 

of the feature-enhanced signal. The measure has been shown 
to assign a high weight when an error due to mismatch in 
formant location occurs, and a lower weight for error in 
spectral valleys. This is desirable, since the auditory system 
i h  more sensitive to errors in formant location, then to the 
spectral bandwidths or valleys between peaks. 

Other objective measures can be formed based on linear 
prediction coefficients (LPC). A variety of coefficients can 
be used to represent the LPC model, though it has been 
shown [52] that of all LPC based measures, the log-area-ratio 
measure has the highest correlation with subjective quality. 
The log-area-ratio parameters are obtained from the reflection 
coefficients T,  as 

LAR, = log [$:I = log [E] 1 5 i 5 P (4) 

where P represents the order of the LPC analysis. The 
objective quality measure is formed as follows: 

where LARsX is the set of log-area-ratios from the original 
speech (ith frame), LA Rg, the log-area-ratios for the feature- 
enhanced frame, and .M the number of parameters for each 
frame. Since spectral distance measures have perhaps been 
the most widely investigated quality measure, many variations 
exist [6], [lo], [20], [311, [521. 

The third measure, entitled weighted spectral-slope measure 
(WSSM) by Klatt [44], is based on an auditory model in which 
overlapping filters of progressively larger bandwidth are used 
to estimate the smoothed short-time speech spectrum. The filter 
bank bandwidths are chosen to be proportional to the ear's 
critical bands so as to give equal perceptual weight to each 
band. Once the filter bank is formed (see Table 11), the measure 
tinds a weighted difference between the spectral slopes in each 
band. The magnitude of each weight reflects whether the band 
is near a spectral peak or valley, and whether the peak is the 

decibels is found using 

25 

dWSSh?(%) == KspliK - a + U ' a ( k ) { S ( k )  - S(W2 (6 )  
k=l 

where K ,  are related to overall sound pressure level of 
the reference and processed signals. Kspl is a parameter 
which can be varied to increase overall performance. The 
resulting measure is therefore sensitive to differences in for- 
mant location, yet less sensitive to differences in the height 
of those peaks or differences in spectral valleys. Next, we 
consider the various sources of distortion in this study for 
robust speech recognition, and present the final measure of 
recognition performance estimation. 

The last nieasure is based on the U ell-known signal-to-noise 
ratio (SNR) Two definitions of SNK are employed. The first 
will be referred to as SNR or SNRGI~OBAL, and is represented 
as 

where the siimmation is over the entire utterance. The second 
SNR definition will always be referred to as NIST SNR, and 
is determined as, 

(8) 
Peak Signal Power 
Mean Noise Power ' SNRNIST = 10 log - 

where power refers to the signal variance computed over 
20-ms windows.' 

The basic framework for introducing distortion into the 
CCDATA speech corpus will now be considered. CCDATA 
consists of 1737 files from two-way spontaneous telephone 
conversations concerning credit cards. A subset of CCDATA 
was selected and degraded with preselected levels of degrading 
background noise as 

(9) 

where g is adjusted to achieve an average SNR level of 5, 
10, or 15 dl3 as in (7). The nine noise sources summarized in 

:dn)  = 4 n )  + 9 . 4 n )  

largest in the spectrum. Klatt computes the weight for each 
spectrum then averages the two sets Of weights to 'Formulation of the NIST SNR measure is discussed in further detail in 

documentation provided by National Institufe of Standards and Technology -. 
obtain w, ( k ) .  Next, a per-frame spectral distance measure in (NIST) with speech corpus data base (i.e.. stnr.doc); also see [12]. 
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Noise 
WGN 
FLN 
SUN 
PS2 
EEL 
LCT 

I73 

3 
3 

1 
1 

Stationarity Description 
computer generated white Gaussian n o h  
noise from a flat communications channel 

noise recorded from a helicopter fly-by 
noise recorded from a large citv 

LCR 
5 
9 

5 
noise recorded inside an automobile traveling 
noise recorded under multiple speaker babble 

noim recorded from a large crowd 

20 

18 

16 

J I 4  

c 
9 12 

I O  

E 
O 

0 

(a) (h) 

Time versus power spectral response for two background noise distortions: (a) Flat noise; (h) highway noise Fig. 2. 

Table I11 were considered in this study. Each noise source was 
sampled at 8 kHz. A brief first and second moment analysis 
across 4 seconds of noise data was also conducted to determine 
the degree of stationanty for each source. A subjective score of 
stationarity (i.e., 1: for wide sense stationary, to 10: nonstation- 
ary) was assigned to each noise source based on this analysis. 
Sample time versus power spectral estimates are shown for 
two of the background noise sources in Fig. 2. Noise sources 
are grouped as broadband (WGN, E N ) ,  low frequency band 
(SUN, PS2, HEL, HWY), time varying colored (LCI, LCR, 
BAB). 

111. OBJECTWE MEASURE BASED 
MAP RECOGNITION ESTIMATION 

In this section, we formulate a simple estimation procedure 
of output recognition rate based on observed objective speech 
measures. The motivation for such an estimator is clear; since 
it provides a basis for obtaining a quantitative measure of 
recognition performance for a selected speech feature, given 
a noise source and SNR band, without the need of additional 
recognition simulation. Such an estimator would also indicate 
the impact level of a noise source for a given speech feature 
based recognizer, or the level of robustness for a speech feature 
under consideration for that adverse environment. 

Assume that the following is known for a speech recognition 
application in a given adverse environment: 

i) an example noise sequence is available 
i i )  an operating SNR range is specified 

iii) that the noise source possesses a known level of sta- 

Further assume, that a predetermined speech corpus exists 
which is representative of the required recognition task. Let the 
random variable .r represent the resulting objective measures 
from a degraded or feature-enhanced speech corpus. Also, 
let the random variable y represent the resulting recognition 
rate for a finite test set of utterances from that corpus. We 
assume that in the region of interest, both random variables are 
Gaussian distributed.’ With this, the joint probability density 
function (ptlf) for objective measure n: and recognition rate y is 

tionaui t y. 

The following conditional pdf can then be written 

where pry. cy, my, and m, are estimated from our previ- 
ous simulations. The resulting maximum a posteriori (MAP) 

’The joint Gaussian awmption IS reasonable if the performance of 
recognition algonthm doe\ not vary too wildly for the given noise source 
and SNR band 
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INTER-FRAME CONSTRANTS 

Step 1. Convert LPC predictor coefficients ti , , ,  (frame n. iteration i )  

Step 2. (i) Perform voiced or unvoiced/silence speech frame classification 

to LSP position P;,, and difference d , ,  parameters. 

(based on frame energy E,. and energy threshold E v p v )  
(ii) Maintain count L, of consecutive frames below E v p .  
(iii) I f  L, reaches L M A X ,  

(iv) If a single frame rises above E v l v v ,  

Step 3. LSP Position Smoothing Constmints: 
In general, LSP position parameters P;,, more closely related to  formant location. 
e Apply a speech adaptive smoothing constraint across a triangular base of support 

classify a l l  subsequent frames below EvlUv as silence/noise. 

reset frame energy count L, t o  zeio and continue. 

which is position (i.e., frequency) dependent as follows 

Here, H ( E , , p , )  represents smoothing window height, WI:E,,  p , )  the weighted 
window base width. (In general, both dependent on frequency and frame energy.) 

Step 4. Update even LSPs using constrained position parameters as: 

LSP,,,(Zj + 1) = h ( j ) .  

Step 5. LSP Diflerence Constmintj: 
LSP difference parameters d ,  more closely related to formani bandwidth. 

e If I d , /  < d,,,, then LPC analysis has underestimating a Ipole bandwidth 
Therefore, set 

LSP,,,(Zj) = p..,(j) + d ,  = p;,,(j) + SIGN(d,)d,., 

e I f  Jd,l > d,.,, then model pole corresponds to overall vocal tract shaping. 
Allow bandwidth to varying naturally. Set LSP differerice parameter as, 

LSP,,,(Zj) = &(j )  + d ,  = P,,,,(J) + SIGN(d,)- 

If d,,,,, 5 ld,l 5 d,.,, then model pole corresponds to a formant. 
Apply smoothing constraint only to  corresponding position coefficient p , , , , ( j )  

Step 6. Form new set of constrained model parameters &,, from constrained .L?fP,,,,(j) parameters 

Fig. 3. Procedure for application of inter-frame spectral constraints. 

estimator for recognition rate given an objective measure is 
found as 

$ M A P ( ~ C : ~  = argmaxfYl,(yo I zo). (12) 
Y 

Since we assume that the recognition rate and objective 
measure are both Gaussian distributed, this resulting MAP 
estimator i j ~ ~ p ( z )  is equivalent to the mean square error 
estimator ijrnse(z) = J'yfyl,(yo I z,)dy. The resulting MAP 
estimation equation which maximizes the conditional pdf in 
I 11) for recognition rate is 

where [ . la  and [.I, ice used for notation purposes. This 
estimator will be evaluated in Section VII. 

IV. (AuTo:I,LSP:T) CONSTRAINED FEATURE-ESTIMATION 
In this section, we consider the feature enhancement based 

recognition system. It should be noted that this algorithm 
was previously formulated as one of a number of constrained 
iterative methods for speech enhancement [27]. Consider a 
noise corrupted speech vector &, . It is assumed that the input 
speech signal can be modeled by a set of all-pole model 

parameters a' and gain g. A sequential maximup-a-posteriori 
(MAP) estimation of the cleaq speech vector So is obtained 
given the noisy input speech Yo, followed by MAP estimation 
of the model parameters a' given 2,3, where so is the result 
of the first MAP estimation. The process iterates between the 
following two MAP estimation steps: 

i) MAXp(2, I go,,, Fo: g ,  $1) which gives & 
ii) M.$Xp(,!?o , I &, Po; g, 2, ) which gives $ Q , ~  

until a convergence threshold is reached. This general sequen- 
tial MAP estimation approach was first considered for white 
Gaussian noise conditions by Lim and Oppenheim [45]. In the 
current feature enhancement approach, constraints are applied 
to & to ensure the following: 

i) The all-pole speech model is stable; 
ii) It possesses speech-like characteristics (e.g., poles are 

in reasonable places with respect to each other and the 
unit circle); 

iii) The vocal tract characteristics do not vary by more than 
a prescribed amount from frame to frame when speech 
is present. 

Fig. 4 illustrates a flow diagram of the sequential MAP esti- 
mation procedure. 
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1 I APP; CONSTRAINTS: 7 

I '  ' I  
CONSlRUCT NONCAUSAL WIENER FILTER: 

FILTER: TO FORM: 

Fig. 4. Framework for the (Auto:I,LSP:T) feature-enhanced recognition algorithm. 

Inter--ume spectral constraints are applied to line-spectral- 
pair parameters across time on a fixed-frame basis. These 
constraints are applied to ensure that vocal tract characteristics 
do not vary wildly from frame to frame when speech is present. 
This method allows constraints to be efficiently applied to 
speech model pole movements across time so that formants lay 
along smooth tracks. In order to increase numerical accuracy, 
reduce computational requirements, and eliminate inconsisten- 
cies in pole ordering across frames, the line spectral pair (LSP) 
transformation [40] is used to implement inter-frame constraint 
requirements across time. The procedure for application of 
LSP inter-frame constraints are outlined in Fig. 3 .  

Znfraframe spectral constraints are applied to autocome- 
lation parameters across iterations on a single-frame basis. 
Application of the intra-frame constraints is achieved by 
weighting the present set of autocorrelation parameters at time 
frame n with the samc frame from previous iterations as 

m =O 

with the condition that xEz0 t/q =1 (here, m represents auto- 
correlation terms from previous iterations). Given the present 
autocorrelation estimate, this weighting process re-introduces 
a controlled level of distortion from previous iterations which 

HMM RECOGNmON 

CONTINUOUS DISTRIBUTION 
MONOPHONE BASED 
DIAGONAL COVARIANCE 
HMM 

yk 

slows the rate of improved estimation for phoneme sections 
less sensitive to additive noise. 

\'. FEATURE-ENHANCEMENT EVALUATION 
In this scction, performance of (Auto:I,LSP:T) feature en- 

hancement is presented. First, evaluations are presented where 
the algorithm is adjusted to achieve improved subjective 
performance for a particular noise source. In the second 
section, the algorithm features are fixed and applied to the 
nine noise sources for robust feature enhancementhecognition 
evaluation. These results therefore, represent the default level 
of improvement for a general recognition algorithm. 

A. TIMIT Sentence Evaluation 

The general feature estimator possesses several algorithm 
values which may be adjusted for improved estimation in the 
presence of different noise sources. For example, the power 
exponent in the filter and weighting terms in the intra-frame 
spectral constraints work together to effect the choice for the 
best terminating iteration for enhanced features. In general, as 
the value of @ is decreased (i.e., in the range /3 E [0.1, OS]) ,  the 
optimal terminating iteration increases. The best improvement 
in objective speech quality for each of the nine noise sources 
for a single sentence is shown in Fig. 5 .  Informal listening 
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TABLE IV 
SUMMARY OF ITAKL-RA-SAITO (IS) QUALITY MEASURES ACROSS PHONEMES FOR 100 TIMIT SPEECH SENTENCES. 
DE.: DEGRADED WITH WGN (lODB SNR), FE.: FEATURE-ENHANCED (AUTO:I,LSPT), Cnt.: FRAME COUNT 

Phoneme DE. FE. Cnt. 

C O N S O N A N T S  - nasals 
/ml me 6.563 1.483 683 
1.1 no 8.225 1.323 1153 
/ngl s i y  7.990 1.820 159 
/U/ m a w  5.625 0.506 77 
/em/ problem 5.575 1.324 33 
/en/ subtract= 9.224 1.925 135 
/eng/ greaalng 3.423 0.908 18 
CONSONANT,$ - unvoiced frrcatiues 
/a/ zip 0.664 1.126 
/th/ &ing 1.009 0.836 
If/ lan 0.881 1.108 

/Eh/ show 0.905 0.964 
C O N S O G N T , ?  - voiced fricatives 

0.880 1.435 / a /  4 P  
/ah/ garaQe 0.924 1.232 
/dh/ &at 3.338 1.038 
1.1 - 3.574 1.163 
CONSONANTS ~ afftcates 
/ jh/  pke 1.041 1.398 
/.a/ C ~ O P  1.276 1.506 

1433 
203 
796 

673 

1054 
66 

270 
273 

263 
336 

VOWELS ~ front 
jihl h>d 1.478 0.426 947 
/eh/ h a d  1.745 0.375 856 
/=/ had 1.275 0.222 977 
/ux/ tg  buy 1.975 0.584 636 
VOWELS ~ inzd 
/a./ odd 2.748 0.615 1339 
/er/ 6.244 1.319 562 
/ah/ 3 2.088 0.480 625 
/a./ all 4.528 1.291 750 
VOWELS - back 
/uw/ boot 3.622 1.250 197 
/uh/ foot 2.164 0.534 116 
VOWELS - front schwa 
/ix/ h g d  2.785 0.646 1043 
VOWELS - back schwa 
/ax/ aton 3.418 1.014 628 
VOWEL; - retroflexed schwa 
/axr/ after 8.519 2.141 594 
VOWELS - voiceless schwa 
/ax-h/ svbtraction 2.951 1.634 35 

tests and objective measure results show that quality improve- 
ment occurs for the following noise conditions: WGN, HEL, 
HWY, PS2, and SUN computer cooling fans, and (FLN) flat 
communications channel noise. Little improvement or change 
was noted for LCI, and LCR. Finally, the feature-estimation 
procedure introduced further distortion for BAB noise. This 
i\ to be expected, since the assumption of a stationary noise 
source has been violated for the single channel method. 

Next, a detailed evaluation was considered across individual 
phonemes. Since phonetic label data is not available for the 
CCDATA corpus, TIMIT [l] sentence data was used for 
analysis. For this evaluation, 100 sentences were selected 
from a representative sampling of dialect across TIMIT. Each 
sentence was down-sampled to 8 kHz, and degraded with 
white Gaussian noise (WGN) at an SNR of 10 dB. Next, 
feature enhancement was applied to each degraded utterance. 
Using phonetic label data provided by NIST, individual frames 
were grouped into NIST labeled phonemes. The IS objec- 
tive quality measure was obtained for each degraded and 

Phoneme DE. FE. Cnt. 
C O N S O N A N T S  - unvoiced stops 
/PI pan 2.228 0.890 508 
It/ lan 1.233 0.701 542 

2.118 0.982 559 
CONSONANT::  - voiced slops 
/b/ 6e 2.206 0.698 135 
/d/ dawn 1.164 0.817 186 
/g/ give 2.217 0.782 142 
CONSOTVANT:; - closure stops 
/tcl/ it pays 1.869 1.395 999 
/kcl/ podets  2.013 1.221 655 
/bcl/ t o h y  3.857 1.432 399 
/dcl/ sandwich 3.424 1.443 636 
/gcl/ ipanas 3.055 1.327 241 
/pcl/ accomplish 1.553 0.935 779 
CONS ON AN^?; - glottal stop, Pap 
/q/ _allow 3.998 1.481 661 
/ d x /  put-in 4.299 0.721 142 
C O N S O N A N T S  - unvoiced whisper 
/hh/ bad 3.532 1.054 143 
CONSONANT:;  - voiced whisper 
/hv/ y o u h ~ ~ e  6.235 0.832 103 

/ay/ W e  1.509 0.300 1033 
/oy/ co2n 3.519 0.654 171 
ley/ p.en 1.043 0.331 725 
/OW/ code 2.193 0.649 660 
/awl PoVt 1.727 0.325 288 
/iy/ new 1.581 0.887 1220 
SEMIVOWELS - laqurds 
/r/ I;m 8.137 1.875 747 
/1/ !awn 3.783 1.672 1079 
/el/ chemic& 4.667 2.480 356 
SEMIVOWEL: ~ glides 
/ w /  E t  5.545 1.853 289 
/Y/ you 1.743 1.142 318 
Sdence 
/# / extended 1.700 0.947 5087 
/pau/ pause 2.552 1.284 175 
/epi/ epenthetic 4.358 2.930 98 

Overall 

/k/ lay 

DIPHTXONGA- 

enhanced phoneme class (see Table IV). After application of 
(Auto:I,LSP:T) feature-enhancement, improvement in objec- 
tive quality is obtained for 55 of the 61 NIST phonemes, 
with significant improvement for nasals, vowels, diphthongs, 
glides, and liquids. Fricatives and affricates comprised the six 
phonemes which did not see signiticant improvement. This 
however, does not adversely effect c'verall performance, since 
these phonemes were not originally effected by this noise 
source to the same extent as other:, (i.e., compare degraded 
fricatives which did not show improvement with overall test 
average). These results show that (Auto:I,LSP:T) is able to 
adapt its feature enhancement across changing vocal tract 
phoneme structure. It is thus suggested. that such improvement 
could contribute to improved recognition performance. 

B. CCDATA Feature Enhancement Evaluation 

Next, we consider the performance of the feature- 
enhancement algorithm for degraded CCDATA corpus. Results 
for several objective quality measures are reported to i) 
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Fig. 5. Enhancement using the (Auto:I,LSP:T) enhancement algorithm for 
nine noise sources at 10 dB SNR. Improvement is shown with respect to IS 
distance measures. 

illustrate the improvement in feature representation in varying 
levels and types of additive background noise, and ii) to 
provide the necessary a priori information to formulate a 
MAP estimator for output recognition performance. Though 
results have shown that adapting (Auto:I,LSP:T) processing 
characteristics such as terminating iteration, inter- and intra- 
frame constraint setlings, and power exponent effect the 
resulting quality of the optimal features, an average algorithm 
configuration was used across all noise types and levels. 
Therefore, further improvement in the estimated features 
employing further knowledge of the noise source should 
improve the actual recognition rates. This has already been 
demonstrated using it phoneme class directed constrained 
iterative enhancement technique [2]. The results obtained by 
fixing the feature enhancement algorithm therefore represents 
the level of recognition performance improvement which 
should be expected from an unknown input noise source (i.e., 
no a priori noise training data). 

Time Waveform Analysis: As discussed previously, noise 
influences speech quality and recognition feature parameters 
differently across time. To illustrate this, see the first IS objec- 
tive measure plot of in Fig. 6 for a female CCDATA sentence 
degraded with WGN. Since WGN has a uniform frequency 
response, its' impact on speech quality and recognition feature 
representation will be approximately uniform. However, noise 
sources such as SUK, PS3, HEL, and HWY effect some 
phonemes more than others. This results in a nonuniform level 
of speech quality and !>peech feature representation for recog- 
nition. However, after application of the feature-enhancement 
algorithm, output speech quality is shown to be more uniform 
(see Fig. 6). Here the average IS measure is reduced from 2.80 
to 0.87, with a significant reduction in IS variance. This result 
suggests that feature enhancement will increase the quality 
of extracted speech features for robust speech recognition. 
Next, we illustrate the effect of additive noise and feature 
enhancement with objective quality measures. 

NISTSNRAnalysis: Next, we consider the effect of noise 
and feature-enhancement on NIST SNR, since improvement 
in NIST SNR may be a more meaningful numerical mea- 

sure of improvement for some researchers in robust speech 
recognition. For this evaluation, 60 CCDATA sentences were 
degraded at SNRCLOBAL of 5, 10, and 15 dB, and processed 
with the feature-enhancement algorithm. Fig. 7 summarizes 
NIST SNR3 improvement for nine noise conditions and 5-15 
dB SNR range (i.e., each scatter plot entry represents a 
NIST SNR measure for a single degraded input and feature- 
enhanced ,mtput sentence). NIST SNR improvement however, 
is only meaningful if the background resting noise level is at 
least staticnary with respect to frame-to-frame signal strength. 
Therefore, for short-time stationary noise sources such as flat 
communications channel, computer cooling fan, or highway, 
improvement in NIST SNR is meaningful. However, for such 
noise sauces as large crowd noise (LCR) and background 
babble (B4B), NIST SNR measurements may be prone to 
error. This occurs since the non stationarity of the background 
noise will ?ush individual signal frames into the speech region 
of the franie density function. Scatter plots between input and 
feature-enhanced NIST SNR are also shown for WGN, FLN, 
HWY, and HEL noise. Since an increase in the output feature- 
enhanced NIST SNR signifies improvement, all entries above 
the equal iiiput-output line represent improvement. The results 
show that when additive noise is introduced at 5,  10, and 15 dB 
SNR values, NIST SNR is concentrated at 12.3, 16.9, and 21.6 
dB. After employing (Auto:I,LSP:T) feature enhancement. 
average N[ST SNR increased to 27.0, 31.0, and 35.8 dB. 
This repre!.ents an improvement of' 14.1 to 14.7 dB in NIST 
SNR for the non speech-like noise distortions (i.e., excludes 
LCR and €{AB). More importantly, some noise sources such 
as WGN, E N ,  HEL, SUN, LCI. resulted in concentrated 
regions of output NIST SNR, while others (HWY, LCR, BAB) 
showed a wider range of output NIST SNR. This notion is 
clearly illustrated if NIST SNR scatter plots are compared for 
FLN and H W Y  noise sources in Fig. 7. The concentration for 
each of thc 60 CClDATA sentences at each input SNR for 
WGN, F L P J ,  and HEL suggest a high degree of confidence 
in (Auto:I,LSP:T) performance. Though the level of feature 
enhancement was not as consistent for HWY noise, this may 
be expected, since the impact of highway noise on speech 
quality varies more across individual phoneme classes than for 
FLN or WGN. The table of N E T  SNR measures in Fig. 7 for 
the seven non speech-like noise sources show improvement at 
each input SNR level. 

Objective Quality Analysis: It has been shown that feature 
enhancement improves resulting objective quality across non 
speech-like noise sources. The three objective quality mea- 
sures (IS, LAR, WSSM) were obtained for the 60 CCDATA 
sentences used in the previous evaluation for both degraded 
and feature- enhanced conditions. These results will be used 
to obtain the necessary a priori information for the objective 
quality based MAP recognition rate estimator. In this section, 
we briefly discuss the three objective measure results. 

Fig. 8 presents a partial summary of IS objective quality 
measures fc+ four of the nine noise sources. Scatter plots 
show input degraded IS measures versus feature enhanced 

'The signal-.o-noise ratto as presented by National Institute of Standards 
and Technology (NIST) used here is based on their 'Second Method' which 
uses a 97% spread threshold in the energy histogram. 



178 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 3, NO. 3. MAY 1995 

Noisefree speech 

5000 

5000 10000 150CO 20000 
Sample Value 

(a) 

Noisy Speech 

20000 - 

I 

5000 10000 15000 
Sample Value 

(b) 

20000 

Distortion measure between the processed and original speech files 
I ” ‘  

Sample Number (N=240,75%ovf rlap) 

Enhanced Speech 
1-. , , 1 

5000 10000 15000 20000 
Sample Value 

(d) 

Distortion measure between the processed and original speech files 
I -.- , , 

“Yea, I’ll probably hatie o m  of every credit card there is. ” 
(e) 

Fig. 6. 
enhanced. Distortion as measured by frame-to-frame IS objective quality measures are shown for (c) noisy and (e) enhanced waveforms. 

Time waveforms of (a) an original CCDATA female speech sentence, (b) degraded with additive white Gaussian noise, and (d) (Auto:I,LSPT) 
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IS measures for the 60 sentence set over three SNR levels. 
Since objective measures quantify the level of distortion with 
respect to an original noise-free data set, entries below the 
diagonal (equal input versus output quality) line represent 
improvement using feature-enhancement. Also, the effect of 
additive noise on a degraded utterance reduces to zero as 
the measure approaches the origin. The results showed that 
for broadband noise sources such as WGN and FLN, feature 
enhancement provided a significant level of improvement. The 
level of improvement was greater at the 5 dB SNR input 
case. For narrowband noise sources such as HWY, SUN, and 
PS2, a ITIeaSUrdbk improvement was observed, however the 
variance in output quality was much higher than for WGN 
and FLN. This can be explained by the nonuniform impact 
these noise sources have on speech quality, and the fact 
that the (Auto:I,LSP:T) algorithm was not adjusted as the 
noise type was varied. Finally, for the speech-like distortions 
(LCR,BAB), some utterances were enhanced slightly at the 
lower SNR level for LCR noise; however, feature processing 
was not successful Ior background speaker babble (BAB). 
Since these noise sources violate the stationarity assumption 
made in using a single noise spectral estimate from the 
beginning of each sentence, it is not surprising that limited 
improvement occurs. The few isolated utterances for WGN 
and FLN which did not show improvement do contribute to a 
lower general mean IS improvement. 

For the LAR measure, consistent improvement was ob- 
served for WGN and F'LN noise sources. For some narrowband 
noise (HWY, PS2), a wide range of objective quality resulted; 
while others (SUN, HEL) gave more consistent results across 
SNR. In general, a more consistent level of improvement 
was observed for narrowband noise sources at lower SNR's, 
with a steady increase in measure variance as SNR increased. 
Similar results were obtained for WSSM, though measure 
variance levels were notably lower for most low frequency 
noise sources. 

VI. SPEECH RECOGNITION USING 
(AUTO$ 1,SP:T) DERIVED FEATURES 

The (Auto:I,LSP:T) algorithm has been shown to be useful 
in improving speech features for a limited isolated-word 
speech recognition task [26]-[28]. Extensions to this approach 
based on auditory constraints have also been reported 1321, and 
shown to improve the quality of CELP coded speech 1501. 
Further feature enhancement methods have also been devel- 
oped and applied to speech recognition in adverse (i.e., noisy 
stressful) conditions [3 31-[35]. In this section, we consider the 
CCDATA corpus with respect to robust feature enhancement 
for recognition. As a test of the difficulty of the noise-free 
CCDATA corpus, an evaluation by BB&N4 using their BYB- 
LOS system produced a gender dependent phone recognition 
score of 36.2%, and a gender independent score of 30.1%. The 
BYBLOS recognition system uses discrete output densities 
with features based on normalized cepstra and delta cepstra. 
As shown in Fig. 4, feature-enhanced parameters &n.yk were 

'These results were obtain.:d by P. Jeanrenaud of BB&N as part of the DoD 
Workshop on Robust Speecli Processing, Rutgers University CAIP Center, 
July 1993. 

used to derive a combination of ten Mel-cepstral pAarameters 
mfcc,,,,yr , ten delta Mel-cepstral parameters Anifcc,,,,ln, 
and energy. This conversion was performed after terminating 
feature processing. Cepstral mean removal was performed 
prior to testing. The recognizer was based on monophone 
hidden M,ukov models, with a single Gaussian per state, each 
possessing a diagonal covariance matrix. A complete noise- 
free training and testing evaluation using the entire CCDATA 
corpus wih  monophone HMM,, models resulted in a correct 
monophorle recognition score of 43.7%, with an accuracy of 
39.7%. Noise-free trained monophone HMM,, 's were used 
for all recognition evaluations for the remainder of this study. 
Since we wish to determine performance over a large number 
of noise conditions, a subset of those sentences used for 
noise free testing was extracted. A rank ordering of those 
sentences tested was performed, and the 60 best sentences were 
extracted for noisy recognition evaluation. This rank ordered 
set, produced a monophone recognition score of 54.2%, with 
an accuracy of 51.8%. 

Next, the 60 sentence rank order test set was sequentially 
degraded with each noise source at global SNR's of 5, 10, 
and 15 dB, and submitted to the context-independent HMM 
monophone recognizer. Recognition scores summarized in 
Fig. 9 show that average recognition rates decreased across 
all noise sources. HWY resulted in the smallest decrease 
from the 54.2% noise-free rate, with average recognition rates 
of 30.8%-46.9%. Other noise sources such as WGN, FLN, 
and SUN introduced more pronounced losses in recognition. 
with rates ranging from 7.1 to 39.7%. Next, results for 
(Auto:I,LSR:T) feature enhancement for robust recognition are 
also summarized. Consistent recognition improvement (+8 
to +13%) was observed for the following noise sources: 
WGN, FLLJ, SUN. PS2, LCR. A scatter plot for individual 
SNR level:) revealed consistent performance for these noise 
sources as SNR varied from 5 dB to 15 dB. Recognition 
performance improvement ranged from 13 to 20% at 5 dB, 
4-8% at 1.5 dB. Feature enhancement for helicopter (HEL) 
and large city (LCI) noise sources performed well at 5 dB 
SNR, with recognition improvements ranging from I3 to 21 %. 
However, this improvement decreases as SNR increases to 15 
dB. Little change (increase or decrease) in recognition rate was 
observed for highway (HWY) noise. A measurable decrease in 
recognition rate was observed for feature enhancement under 
background babble (BAB) noise conditions. The associated bar 
graph illust-ates a representative sample of the improvement 
in recognit ion using feature enhancement. Finally, means 
and standarjl deviations in recognition rate for degraded and 
feature-enhanced conditions across the noise sources are also 
summarized for 5 ,  10, and 15 dB SNR (BAB noise not 
included in these calculations). With feature enhancement, 
context-independent recognition scores increased + 15.2% for 
5 dB SNR (L.e., from 14.2 to 29.4%). +9.59% for 10 dB SNR 
(i.e., 29.1 to 38.7%), and +2.9% for 15 dB SNR (i.e., from 
40.3 to 43.2%). Feature enhancement processing significantly 
reduced the variability in recognition across noise sources. 
This can seen by the fact that recognition standard deviation 
QECOG(NC)ISES, SNR,) was cut in half for each SNR level. 



IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 3, NO. 3, MAY 1995 

I 

"UT VI. FEATURE E " C E D  MST SNR: WGN 

6or-----l 
50 

40- 

30 

20 

10 

IN" m, FEATURE ENHANCED NIST SNR: KN 

*r ' 
~ 

- 

- 

- 

,/' 

INPUT NIST SNR (dB) 

(a) 

INPUTm. FEA711RE I?NHANCEDNISTSNR: HWY NOISE 

6 o r - - - - P  
I I 

I 
20 30 40 50 60 

0- ' 
IO 

INPUT MST SNR (dB) 
(d) 

CREDIT CARD DATABASE ENHANCEMENT R E S r m S T  S N R  dB) 1 Avn. Inout I WGN I FLN I HWY I 4 

Fig. 7. Improvement in NIST SNR for (a) WGN, (b) FLN, (c) HWY Noise, (d) HEL using 60 Credit Card sentences across 11 noise sources and three 
average input SNR levels. AVG-7 indicates average NIST SNR value for the seven nonspeech noise sources (i.e., LCR large crowd noise, and BAB: 
multiple speaker babble noise scores were excluded). 

If statistics are collected for degraded and feature-enhanced 
recognition scores across the eight nonspeech noise sources 
(excluding BAB), and three SNR's (i.e., 24 degrading noise 
conditions), average recognition increased by +9.22% (27.9 
to 37.1 %), with a corresponding decrease in variability as 
represented by standard deviation in recognition from 12.4 
to 6.5. These findings suggest that (Auto:I,LSP:T) can be used 

to increase speaker independent continuous speech recognition 
performance in a wide range of noise conditions. It should be 
noted that the particular HMM recognizer was quite basic. If 
triphone models, and/or multiple Gaussian mixtures per state 
were included in the recognizer formulation, higher overall 
recognition rates could be achieved for an actual working 
system in adverse conditions. 
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Card sentences across three average input SNR levels: (a) WGN, (b) FLN, (c) HWY, (d) BAB. 

Scatter plots of smple input degraded (DE) and Auto-LSP feature-enhanced (FE) [takura-Saito ( d l s )  objective quality measures using 60 Credit 

vu. EVALUATION OF OBJECTIVE 
MEASURE RECOGNITION ESTIMATOR 

Objective speech quality measures and NIST SNR have 
been used to illustrate the change in speech quality as addi- 
tive background noise conditions are varied. These measures 
have also been used to quantify the change in quality after 
(Auto:I,LSP:T) feature processing. Next, the recognition rate 
MAP estimator is evaluated for each of the nine noise sources, 
for each of the three objective speech quality measures and 
NIST SNR. Fig. 10 shows an example of recognition rate 
versus IS objective quality measure for degraded and feature- 
enhanced white Gaussian noise CCDATA conditions. Note that 
only mean values for degraded and feature-enhanced IS and 
recognition rate are shown. Clearly, there exists a relationship 
between the IS measure and recognition performance. The 

average mean-square error for each objective measure and 
NIST SNK were computed and summarized in Table V. 
The results show that across the degraded speech conditions 
(nine noise: sources, 5-15 dB SNR band), the WSSM based 
MAP estimator provides the best estimate of recognition 
performance. After (Auto;I,LSP:T) processing, the IS based 
MAP estimator proved to be the best, while the WSSM 
based estimator lost performance. The NIST SNR measure 
consistently came in last across the nine noise sources in 
both degraded and feature-enhanced conditions. If we wish 
to determine the best MAP estimator using either degraded 
or feature-enhanced parameters for recognition, then the IS 
based estimator is the best overall predictor of recognition rate, 
while the NISTSNR estimator is the poorest predictor. Since 
the IS measure proved to be the better estimator, we choose 
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Fig. 9. Mean monophone recognition rate across three input SNR levels ( 5 ,  10, 15 dB), for degraded input and with (Auto:I,LSPT) feature enhancement. The 
noise-free monophone rate U as 54.2%. The nine noise sources are as follows: WGN-white Gaussian; FLN-flat communications channel; SUN-Suncomputer 
fan; PS2-IBM PS-2 computer fan; LCR-large crowd noise; LCI-large city noise; HEL-helicopter noise; HWY-automobile highway noise; BAB-multiple speaker 
hahble noise. Calculation of niHI,:(.oC; (NOISES. SNR,). ORECOG(NOISES; SNR,), ~RECOG(NOISES.  SNR), and -ECOG(NOISES, SNR) 
excluded BA9 noise results. 

to summarize its performance across the nine noise sources in 
Table VI. In this table, entries a and 6 correspond to terms in 
the MAP estimator (13). Consistent performance is observed 
for the IS based MAP estimator for most noise sources under 
degraded speech conditions. A notable loss in performance is 
seen for BAB and LCR noise conditions, a result attributed to 
the nonstationarity of the noise source. For feature-enhanced 
conditions, uniform performance also results, with a decrease 
in error for all but WGN and HEL noise sources. Though we 
conclude that the IS based estimator provides good perfor- 
mance for recognition rate estimation, it is hypothesized that 
a composite estimator based on several measures may result 
in a better overall prediction of recognition rate. 

VIII. CONCLUSION 

In order to improve the environmental robustness of speech 
recognition in adverse conditions, a constrained iterative 
feature-estimation algorithm (Auto:I,LSP:T), previously 
employed for speech enhancement, is considered which is 
shown to produce improved speech characterization in a wide 
range of actual noise conditions such as various computer fan 
noises, large crowd noise, and voice communications channel 
noise. A MAP estimation process was also formulated using 
one of four measures as a means of predicting changes in 
recognition performance at the signal extraction phase. The 
four measures considered included, 
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Saito objective quality measures for degraded and feature-enhanced 
(Auto:I,LSP:T) processing. Results are for WGN at 5-15 dB SNR. 

TABLE VI 
SUMMARY OF MAP ESTIMATION PARAMETERS FaOM (13) FOR THE 

ITAKURA-SAW0 d15 BASED RECOGNITIO~ ESTIMATOR ACROSS NINE NOISE 

NOISE SOURCE FOR DEGRADED AND FEATURE-ENHANCED CONDITIONS ARE 
SOURCES. CORRESPOND IN(^ TERMS FOR THE MAP ESTIMATDR ACROSS EACH 

SHOW. MEAN SQUARE ERROR IS SUMMARIZED FOR EACH ESTIMATOR 
RATE ESTIMATION 

NOISE TYPE ENHANCED 
h I error I n I b I error 

I LCR 
SUN 11 64.4680 I -36.9620 I 0.8350 I 94.1970 I -41.9160 I 0.6770 

i) NIST SNR 
ii) Itakura-Saito log-likelihood 
iii) log-area-ratio 
iv) weighted-spectral slope measure. 
A context-free, continuous distribution, monophone based 

hidden Markov model algorithm was used for recognition 
valuation and objectke measure analysis. Evaluations based 
on the Credit Card cc)rpus showed that feature enhancement 
provides a consistent level of recognition improvement for 
broadband, and low-frequency colored noise sources. As the 
assumption of stationarity breaks down for a given noise 
source, the ability of fcature enhancement to improve recogni- 
tion performance decreases. Finally, the log-likelihood based 
MAP estimator for output recognition rate was found to be 
the best predictor of recognition performance, while the NIST 
SNR based MAP estimator was found to consistently be the 
poorest recognition predictor across the nine noise sources 
under consideration. The results show that robust front-end 
feature enhancement can contribute to improved recognition 
performance in a variety of adverse recognition conditions, 
and that a measure of recognition performance can be derived 
at the feature extraction stage based on an objective measure. 
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