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Feature Analysis and Neural Network-Based 
Classification of Speech Under Stress 

John H. L. Hansen and Brian D. Womack 

Abstract- It is well known that the variability in speech production 
due to task-induced stress contributes significantly to loss in speech 
processing algorithm performance. If an algorithm could be formulated 
that detects the presence of stress in speech, then such knowledge could be 
used to monitor speaker state, improve the naturalness of speech coding 
algorithms, or increase the robustness of speech recognizers. The goal 
in this study is to consider several speech features as potential stress- 
sensitive relayers using a previously established stressed speech database 
(SUSAS). The following speech parameters will he considered: mel, 
delta-mel, delta-delta-mel, auto-correlation-mel, and cross-correlation- 
me1 cepstral parameters. Next, an algorithm for speaker-dependent stress 
classification is formulated for the 11 stress conditions: Angry, Clear, 
CondSO, Cond70, Fast, Lombard, Loud, Normal, Question, Slow, and 
Soft. It is suggested that additional feature variations beyond neutral 
Conditions reflect the perturbation of vocal tract articulator movement 
under stressed conditions. Given a robust set of features, a neural 
network-based classifier is formulated based on an extended delta-bar- 
delta learning rule. Performance is considered for the following three test 
scenarios: monopartition (nontargeted) and tripartition (both nontargeted 
and targeted) input feature vectors. 

I. INTRODUCTION 
The problem of speaker stress classification is to assess the degree 

of a specific stress condition present in a speech utterance. “Stress,” in 
this study, refers to perceptually induced variations on the production 
of speech. The variation in speech production due to stress can be 
substantial and will therefore have an impact on the performance of 
speech processing applications [4], [lo]. A number of studies have 
focused on stressed speech analysis in an effort to identify meaningful 
relayers of stress. Unfortunately, many research findings at times 
disagree, due in part to the variation in the experimental design 
protocol employed to induce stressed speech and to differences in 
how speakers impart stress in their speech production. A number of 
studies have considered the effects of stress on variability of speech 
production [I], [5], [6], [9]. One stress condition of interest is the 
Lombard effect [ 2 ] ,  [3], [6], which results when speech is produced 
in the presence of background noise. In order to reveal the underlying 
nature of speech production under stress, an extensive evaluation of 
five speech production feature domains, including glottal spectrum, 
pitch, duration, intensity, and vocal tract spectral structure, was 
previously conducted [5]. Extensive statistical assessment of over 
200 parameters for simulated and actual speech under stress suggests 
that stress classification based on feature distribution separability 
characteristics is possible. One approach that has been suggested as 
a means of modeling stress for recognition i s  based on a source 
generator framework [3], [4]. In this approach, stress is modeled 
as perturbations along a path in a multidimensional articulatory 
space. Using this framework, improvement in speech recognition was 
demonstrated for noisy Lombard effect speech [3]. This approach 
has also been considered as a means for generating artificial stressed 
training tokens [4]. Finally, a tandem neural network stress classifier 
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and HMM recognizer based on this framework has been shown to 
be effective for recognition under several stress conditions including 
the Lombard effect [lo]. 

Although a number of studies have considered analysis of speech 
under stress, the problem of stressed speech classification has re- 
ceived little attention in the literature. One exception is a study 
on detection of stressed speech using a parameterized response 
obtained from the Teager nonlinear energy operator [I]. Previous 
studies directed specifically at robust speech recognition differ in 
that they estimate intraspeaker variations via spedcer adaptation, 
front-end stress compensation, or wider domain training sets. While 
speaker adaptation techniques can address the variatior. across speaker 
groups under neutral conditions, they are not, in general, capable 
of addressing the variations exhibited by a given speaker under 
stressed conditions. Front-end stress compensation techniques such 
as MCE-ACC [3], which employ morphologically constrained feature 
enhancement, have demonstrated improved recognition performance. 
Next, larger data sets have been considered such as multistyle 
training [7] to improve performance in speaker-dependent systems. 
Additionally, an extension of multistyle training based on stress 
token generation has also shown improvement in !;tressed speech 
recognition [4]. However, for speaker independent syslems, multistyle 
training results in performance loss over neutral trained systems [lo] 
since it is believed that the HMM’s cannot always span both the stress 
and speaker production domains. Hence, the problem of stressed 
speech recognition requires the incorporation of strms knowledge. 
This can be accomplished implicitly through robust features or 
front-end stress equalization. Altemately, stress knowledge could be 
incorporated explicitly by using a stress classifier to direct a codebook 
of stress-dependent recognition systems [ 101. Several application 
areas exist for stress classification such as objective stress assessment 
or improved speech processing for synthesis or rccognition. For 
example, a stress detector could direct highly emotional telephone 
calls to a priority operator at a metropolitan emergency service. A 
stress classification system could also provide meaningful information 
to speech systems for recognition, speaker verification, and coding. 

In this study, the problem of speech feature selection for classifica- 
tion of speech under stress is addressed. The focus here is to develop 
a classification algorithm using features that have traditionally been 
employed for recognition. It is suggested that such a stress classifier 
could be used to improve the robustness of future speech recognition 
algorithms under stress. An analysis of vocal tract variation under 
stress using cross-sectional areas, acoustic tubes, and spectral features 
is considered. Given knowledge of these variations, five cepstral- 
based feature sets are employed in the formulation of a neural 
network-based stress classification algorithm. Next, the feature sets 
are analyzed using an objective separability measuis to select the 
set that is most appropriate for stress classification. Finally, the 
stress classification algorithm is evaluated using an existing speech 
under stress database (SUSAS) for i) feature set sdection and ii) 
monopartition stress classification algorithm performince. 

11. SPEECH UNDER STRESS 

Speaker stress assessment is useful for applicationi such as emer- 
gency telephone message sorting and aircraft voice communications 
monitoring. Here, stress can be defined as a condition that causes the 
speaker to vary the production of speech from neutral conditions. 
Neutral speech is defined as speech produced assuming that the 
speaker is in a “quiet room’’ with no task obligations. With this 

1063-6676/96$05,00 0 1996 IEEE 



308 IEEE TRANSACTIONS ON SPEECH AND AUDSO PROCESSING, VOL. 4, NO. 4, JULY 1996 

. _  Neutral Vowel /EH/ in Help Angry Vowel /EH/ In Help 

Fig. 1 Neutral versus Angn vowel /EH/ in “help” vocal tract variation 

definition, two stress effect areas emerge: perceptual and physiolog- 
ical. Perceptually induced stress results when a speaker perceives 
his environment to be different from “normal” such that speech 
production intention vanes from neutral conditions. The causes of 
perceptually induced stress include emotion, environmental noise 
(i.e., Lombard effect), and actual task workload (pilot in an aircraft 
cockpit). Physiologically induced stress is the result of a physical 
impact on the human body that results in deviations from neutral 
speech production despite intentions. Causes of physiological stress 
can include vibration, G-force, drug interactions, sickness, and air 
density. In this study, the following 11 perceptually induced stress 
conditions from the SUS AS database are considered: Angry, Clear, 
CondSO, Cond70,‘ Fast, Lombard, Loud, Neutral, Question, Slow, and 
Soft. 

A. SUSAS Database 
The evaluations conducted in this study are based on data pre- 

viously collected for analysis and algorithm formulation of speech 
analysis in noise and stress. This database refers to speech under sim- 
ulated and actual stress (SUSAS) and has been employed extensively 
in the study of how speech production varies when speaking during 
stressed conditions.* A vocabulary set of 35 aircraft words make up 
over 95% of the database. These words consist of monosyllabic and 
multisyllabic words that are highly confuseable. Examples include 
/go-oh-no/, /wide-white/, and /six-fix/. A more complete discussion 
of SUSAS can be found in the literature [3] ,  [5]. 

111. VOCAL TRACT MODELING 

Before a stress classification algorithm is formulated, it would he 
beneficial to illustrate how stress effects vocal tract structure. This 
section will demonstrate feature perturbations due to stress via 

i) visualization of vocal tract shape 
ii) analysis of acoustic tube cross sectional area 
iii) speech parameter movements. 

This analysis is based on a linear acoustic tube model with speech 
sampled at 8 kHz. The following sections are intended to show that a 
relation exists between speech production perturbation, acoustic tube 
analysis, and recognition feature variations. 

CondSO and Cod70 refer to speech spoken while performing a moderate 

*Approximately half of the SUSAS database consists of style data donated 
and high workload computer response task. 

by Lincoln Laboratories [7]. 

A. Vocal Tract Shape 
One means of illustrating the effects of stress on speech production 

is to visualize the physical vocal tract shape. The movements through- 
out the vocal tract can be displayed by superimposing a time sequence 
of estimated vocal tract shapes for a chosen phoneme. The vocal tract 
shape analysis algorithm assumes a known normalized area function 
and acoustic tube length. The articulatory model approach by Wakita 
[ 111 was used to consider changes in vocal tract shape under neutral 
and angry conditions, as illustrated in Fig. 1. Here, a set of vocal 
tract shapes are superimposed for each frame in the analysis window 
(10 frames for Normal and 18 frames for Angry, with 24 mslframe). 
For the Normal condition, the greatest perturbation is in the pharynx 
cavity. However, for the Angry condition, the greatest perturbation 
is in the blade and dorsum of the tongue and the lips. This suggests 
that when a speaker is under stress, typical vocal tract movement is 
effected, resulting in quantifiable perturbation in articulator position. 

B. Acoustic Tube Area 
Next, a second experiment is performed to demonstrate that vocal 

tract variation due to stress results in vocal tract parameter variation. 
The experiment assumed fixed tube lengths in order to calculate the 
area coefficients for a 15-tube vocal tract model. These coefficients 
are calculated and logarithmically scaled for all frames of the /EH/ 
sound in the word “help” for Normal and Angry stressed speech. 
Fig. 2 shows the resulting change in acoustic tube models for cross- 
sectional areas. Each frame of the /EH/ phoneme is superimposed 
to show acoustic tube perturbations throughout the utterance. A 
greater perturbation in the acoustic tube area parameters for the 
Angry condition is observed. In addition, note the wide range of 
area perturbations across stress conditions. 

C. Speech Parameter Variation Due to Stress 
Finally, speech parameter variation due to stress is considered. 

In Fig. 3, one autoconelation Me1 AC, (AC-Mel) speech analysis 
parameter is chosen to illustrate the variation due to stress. The key 
difference is observed by contrasting the gradual transitions across the 
utterance for the Normal compared with the Angry speech parameter 
contour. We also note the longer duration and approximately bimodal 
nature of the Angry contour. 

It has been shown that speech under stress causes variation in vocal 
tract structure, acoustic tube models, and speech parameters across 
time. In general, assessment of vocal tract shape is useful for the 
analysis of speech under stress. We note that the vocal tract model 



IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 4, NO. 4, JULY 1996 

- 0 .6 -  

2-2 0.4 - - 
0.2 - - 

309 

1 

0.6 - 0.6- 
5s 

0.4 

0.2 

/E/ IN "HELP" NORMAL 
1.51 

- - 

- 
- --.- 

i 

0.5 
Q z o  

-0.5 

-1 2 4 6 8 i o  12 1 4  1 6  

/E/ IN "HELP" ANGRY 
1.5 I 
i 

0 5  
z? 
5 
g o  

-0.5 

i 1 1  i o  1 2  1 4  1 6  
ACOUSTIC TUBE 

Fig. 2. Stress variation of log,, area coefficients. 

Fig. 3 .  Stress variation of ACl for Normal versus Angry. 

employed in this study does not represent changes in the excitation 
of the vocal tract and, hence, the physical movements that control 
pitch. However, for the EH/ phoneme in "help," it is known that 
the mean pitch of 142 Hz for Normal speech increases to 282 Hz 
for Angry speech. In addition, pitch is recognized as a good feature 
for stress analysis [I], [5].  However, in the present study, in order 
to limit front-end parameterization, only features typically used for 
recognition will be considered. 

IV. CLASSIFICATION FEATURES FOR STRESSED SPEECH 
In this section, speech production variation for cepstral features 

in response to perceptually induced speaker stress is considered. 
It is assumed that continuous speech has been parsed consistently 
by phoneme class across stress conditions. The primary focus is to 
determine which of five cepstral feature representations is better able 
to differentiate speaker stress. 

A. Cepstral-Based Features 

Cepstral-based features have been used extensively in speech 
recognition applications because they have been shown to outperform 
linear predictive coefficients. Cepstral-based features attempt to in- 
corporate the nonlinear filtering characteristics of the human auditory 
system in the measurement of spectral band energies. The five feature 
sets under consideration here include Me1 C, (C-Mel), delta Me1 D c ,  
(DC-Mel), delta-delta Me1 D2C, (D2C-Mel), AC-Mel, and cross- 
correlation Me1 XC,,, (XC-Mel) cepstral parameters. The first three 
cepstral features (C,, DC;. and D2C,) have been shown to improve 
speech recognition performance in the presence of noise and Lombard 
effect [2]. The AC, and XC;, ,  features are new in that they provide 
a measure of the correlation between Mel-cepstral coefficients. The 

Mel-cepstral (C-Mel) parameters are well known as features that 
represent the spectral variations of the acoustic speech signal. It is 
suggested that such parameters are useful for stress classification, 
since, as has been seen, vocal tract and spectral strucl ure vary due to 
stress. The C-Me1 parameters are able to reflect these energy shifts. 
The DC-Me1 and D2C-Me1 parameters provide a measure of the 
"velocity" and "acceleration" of movement of the C-lael parameters. 
These features are calculated by performing polynomial fitting of the 
C-Me1 parameters and taking the derivative of the polynomial itself. 
This may differ from other studies that use a first- and second-order 
difference method to estimate DC, and D2C,, respectively. It is 
suggested that the reason delta parameters are more robust to stress 
variations is due to their reduced variance across stress conditions. 
This trait suggests that while these features are more useful for 
recognition, they may be less applicable to stress idassilication. It 
is suggested that the two new derived feature representations (AC- 
Me1 and XC-Mel) could be more successful in represcnting variations 
due to stress. The AC-Me1 features are calculated as follows: 

?n=k+L 

4C,("(k) = [C,(m) * C,(m + l ) ]  
n=lc 

where 
k frame number; 
L correlation window length; 
I number of correlation lags; 
i Me1 coefficient index. 

When 1 = 0, AC, models the relative power between frequency 
bands. For l > 0, AC, models spectral slope and changes in the 
frame-to-frame correlation variation due to stress. The XC-Me1 
coefficients are similar to the AC-Me1 coefficients, except that the 
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Fig. 4. Separable and nonseparable stressed speech parameters. (a) SEPARABLE vowel /EH/ in "Help" (angry). (b) NON-SEPARABLE vowel /EH/ in "Help" (angry). 

cross-correlation is found from one Me1 coefficient C, to another C, 
across frames 

The XC-Me1 parameters XC, , ,  provide a quantitative measure of the 
relative change of broad versus fine spectral structure in energy bands. 
Since the correlation window length ( L  = 7) and correlation lags 
( I  = 2)  are fixed in this study, the correlation terms are a measure 
of how correlated adjacent frames are over a 72-ms window (24 
ms/frame and 8 ms skip rate). It is apparent that both AC-Me1 and 
XC-Me1 parameters provide a measure of correlation and relative 
change in spectral band energies over an extended window frame. 
From feature analysis, it is suggested that the AC-Me1 parameters 
have similar properties to the XC-Me1 parameters. In addition, the 
AC-Me1 parameters can be directly compared with other selected 
feature sets since they are based on a single coefficient index i .  
Therefore, AC-Me1 parameters will be used for stress classification 
instead of the XC-Me1 parameters. 

B. Cluster Analysis of Parameters as Potential 
Stress Relayers for Classijication 

A clear visualization of parameter distributions is a beneficial 
first step for the determination of an optimal stress classification 
feature set. This is accomplished by obtaining, for a chosen phoneme, 
pairwise parameter scatter distributions for each frame and each 
stress condition to be studied. An evaluation over the five parameter 
representations (C, DC, D2C, AC, XC) considered each feature set's 
ability to reflect stress variation. Scatter distributions were used to 
visualize the degree of separability for a selected pair of parameters 
versus time (i.e., 10 coefficients per parameter set and 495 scatter 
plots per parameter domain for a total of 2475 possible scatter plots 
per phoneme). After considering an extensive number of scatter 
distributions such as that illustrated for the sample /EW phoneme 
in Fig. 4, a number of clear trends emerged that confirmed which 
speech parameters are better suited for stress classification. In this 
example, the figure illustrates two pairs of features: the first pair 
is well separated, and the second is poorly separated. For example, 

Lombard and Soft speech is shown to be well separated from all 
other stress conditions. AC-Me1 parameters consistently showed high 
degrees of separability for those phones considered. Similar analysis 
was conducted for the DC-Me1 and D2C-Me1 parameters, indicating a 
consistently high degree of overlap; hence, they are less appropriate 
for stress classification. This implies that these parameters are less 
sensitive to stress effects and, hence, will be more useful for speech 
recognition [2]. 

C. Separability Distance Measure 
Due to the wide range of features and stress conditions, it is desir- 

able to establish an objective measure to predict stress classification 
performance. Hence, a measure that assesses a parameter's classifi- 
cation ability is one that increases when the distance between cluster 
centers increase and variances decrease. The following measure is 
suggested: 

/["!Q,tj + g ( ~ , ~ )  + " ( b , z )  + O ( b , i ) l ,  

given (r # o (3)  

where i = 1," ' .  n and j = l , . . . , n  are the numbered possible 
stress conditions, and .rz and .rf are the cluster centers for parameter 
indexes a and b (for Table I a = 3 and h = 6). Here, reflects 
the mean and " ( a , 2 )  the standard deviation of the ith stress condition 
for speech feature a. This measure forms a 2-D distance between 
two speech parameterization classes that is easily visualized. The 
main underlying assumption of this measure is that the features under 
test form a Gaussianly distributed convex set. An example of the 
objective measure of separability is calculated for the two cluster 
centers x; and zg given AC3 and ACe for the /EW phoneme in 
the word "help." The values calculated using (3) are summarized 
in Table I, providing a pairwise comparison of the separability of 
two stress conditions. Each mean provides an overall measure of 
the degree of overlap between a given stress condition and all other 
stress conditions. Values for d l  that are greater than the mean indicate 
better separability than values less than the mean. For example, in 
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DISTANCE MEASURE 
Angry I Clear I Cond5O I Cond70 I Fast I Lombard I Loud I Normal I Questzon I Slow I Soft 

Normal 
Questzon 

Slow 
Soft 

MAXIMUM 
MEAN 

Table I, d l  = 1.44 for Angry and Soft, which is much higher than 
the mean of 0.62, thus indicating that the AC3 and ACs parameters 
are well separated for these two stress conditions. Finally, having 
obtained pairwise intrafeature distance measures d l  (i, j ) a , b  as shown 
in Table I, it is desirable to have an overall measure that provides a 
summary of the differentiating capability of pairwise features across 
stress conditions. This measure, which has been denoted d2(x:, x:), 
estimates the distance between two stress classes n and b as follows: 

n n  

0.20 0.43 0.20 0.37 0.14 0.53 0.45 0 0.85 0.83 1.27 
0.89 0.45 2.03 0.75 1.00 0.47 0.40 0.85 0 0.25 0.71 
0.82 0.40 2.00 0.79 1.02 0.60 0.45 0.83 0.25 0 0.90 
1.44 1.00 2.85 1.35 1.46 0.67 0.89 1.27 0.71 0.90 
1.44 1.00 2.85 1.35 1.46 1.00 1.03 1.27 2.03 2.00 El 
0.62 0.51 1.21 0.60 0.63 0.55 0.48 0.53 0.78 0.81 

L = l  3=1 

I n  

(4) 

This measure assesses the n-dimensional “distance” between all n 
stress classes under consideration. A stress separability evaluation of 
Mel-cepstral parameters was performed using the d2  measure for each 
feature and stress condition across selected phonemes. The global 
d 2 ( ; c : . ~ g )  scores for (Cz. DC,. D2C,, and AC,) were (6.96, 1.42, 
1.69, and 7.24), respectively. Hence, the AC-Me1 features are the 
most separable spectral feature set considered based on this distance 
measure. It is suggested that the broader detail captured by the 
AC-Me1 parameters is more reliable for stress classification. 

V. STRESS CLASSIFICATION 

There are three issues addressed in this study to demonstrate 
the viability of a perceptually induced stress classification system. 
First, fine versus broad stress group definitions are considered to 
determine if improved stress classification can be achieved. Second, 
an evaluation is conducted using extracted mono-phones from a i) 35- 
word versus ii) five-word speech corpus vocabulary training and test 
set. The 35-word corpus is used to evaluate the performance of the 
single monophone stress classifier across a larger set of phonemes, 
whereas the five-word corpus is employed to evaluate a more limited 
set of phonemes. The first vocabulary is evaluated using a limited 
five-word versus larger 35-word test set to select the “best” feature 
set for stress classification. The second vocabulary, which consists 
of five words different from the first vocabulary, is assessed to 
establish the level of performance of the proposed stress classification 

algorithm. Finally, performance of the objective separability measures 
versus the stress classification rates are compared to select the “best” 
feature set for stress classification. The goal of the stre:;s classification 
formulation and evaluations in this study is not to tind the “best” 
classification system for stress but rather to obtain the “best” selection 
from five feature sets for classification. 

A. Neural Network Cluss@er 

The proposed neural network classifier consists of a single neural 
network that is trained with monopartition features (i.e., a single 
phone class partition). Each partition of speech features is propagated 
through two hidden layers of the neural network to an output layer 
that estimates the stress probability scores. The neural network 
training method employed in this study is the cascade correlation 
backpropagation network using the extended delta-bar-delta learning 
rule [8]. This method was selected due to its flexibility. Its strength 
is its ability to only use as many hidden units as are needed to 
perform optimal classification, Additionally, this algorithm is capable 
of forming the complex contoured hypersurface decision boundaries 
needed for the stress classification problem. 

B. Stress ClassiJier Evaluation 

The stress classification algorithm was evaluated using a collection 
of features derived from frame- to word-level features. Both fine and 
broad stress classes are evaluated to determine which is more effective 
for stress classification. The fine (i.e., ungrouped) stress classes are 
simply the 11 stress conditions in this study. Ungrouped stress class 
neural network classifier performance is summarized in Table I1 using 
the closed 35- and five-word test sets from the first vocabulary under 
evaluation. Classification rates ranged from 25% to 4.7% for the 35- 
word test set, which is greater than chance (i.e., Sl%). It is clear 
that for some stress conditions, such as computer response tasks 
Cond50/70, Fast, and Soft spoken speech, significant classification 
performance is attained. By decreasing the first vocabulary size 
from 35 to five words, classification rates increaseti to 60%-61% 
as summarized in Table II(b). These increased c1ar;sification rates 
support the assertion that phonemes are affected differently by stress 
since the smaller vocabulary has fewer phonemes, and the neural 
network classifier can then focus on particular variations due to stress. 
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STRESS CLASSIFICATION PERFORMANCE 
Single Speaker, 5 Words, Stress IJngrouped 
“Brake”, “East”,  “Freeze”, “Help”, “St,eer” 

STRESS 
CLASS 

CLASSIFICATION RATE (%) 
C, I DC, 1 D2C, I AC, 

I I I I 

I OVERALL 1 33.14 I 24.69 I 47.31 1 32.57 1 

STRESS 
CLASS 

CLASSIFICATION RATE (%) 
C, 1 DC. I D2C, I AC, 

Angry 
Clear 

Cond50/70 
Fast I 76.47 I 76.47 1 95.24 I 100.00 1 

82.35 82.35 59.09 29.41 
41.18 35.29 53.33 23.53 
79.41 79.41 74.29 31.43 

1 OVERALL I 59.98 1 60.51 I 61.16 I 61.40 1 

STRESS 
GROUP 

, GI 
G., 

TABLE I11 
CLASSIFICATION FOR GROUPED FIVE WORD (a) IN-VOCAB~~LARY CLOSED AND (b) OUT-OF-VOCABULARY OPEN TESTS 

CLASSIFICATION RATE (%) 
C, DC, D2C, AC, 

53.33 41.86 91.30 80.95 
90.20 82.69 80.00 83.33 

STRESS 
GROUP 

Next, broad (i.e., grouped) stress classes are evaluated by combining 
perceptually similar stress conditions that may cluster in similar 
domains. Note that this grouping resulted from informal listening tests 
as to which stressed conditions were perceptually similar, (i.e., GI 
(Angry, Loud), Ga (CondSO, Cond70, Normal, Soft), Gn (Fast), GA 
(Question), GS (Slow), Gs (Clear), and G7 (Lombard)). Employing 
stress class grouping, classification rates are further improved by 
-t17%-20% to 77%-81% (compare Table II(b) with Table III(a)). 
Hence, it is shown that stress class grouping using less confuseable 
subgroups improves classifier performance. It is suggested that further 
improvement in classification could be accomplished using a two- 
step decision process in which grouped stress conditions are more 
finely discriminated in a second stage if a larger speech corpus is 
used or if noise is present. Finally, the performance of the stress 
classification system is evaluated using the second five-word out-of- 
vocabulary test set with similar phoneme content. Classification rates 
ranged from 43%48% as shown in Table III(b), which is greater 
than chance (i.e., 14.3%). These results agree with the expected stress 
class differentiability of the AC-Me1 feature set based on objective 
separability measures. 

CLASSIFICATION RATE (%) 
C, I D C  I D2C, I AC, 

I OVERALL I 47.82 I 42.85 I 44.90 1 48.38 I 
(b) 

VI. CONCLUSIONS 

In this study, a stress-sensitive feature set has been proposed for use 
in stress classification. Further, a monopartition stress classification 
system has been formulated using neural networks. An analysis was 
performed for five speech feature representations as potential stress 
relayers. Features were considered with respect to the following: 

i) pair-wise stress class separability; 
ii) a numerical pair-wise and global objective measure of feature 

separability across stressed conditions; 
iii) analysis of acoustic tube and vocal tract cross-sectional area 

variation under stress. 
Feature analysis suggests that perturbations in speech production 
under stress are reflected to varying degrees across multiple feature 
domains depending on stress condition and phoneme group. The 
results have demonstrated the effects of speaker stress on both 
micro (phoneme) and macro (whole word or phrase) levels. Phoneme 
classes are affected differently by stress. For example, the unvoiced 
consonant stops (/P/, W ,  E/) are perturbed little by stress, whereas 
vowels (/AE/, /EW, /IW, /ER/, /Uw) are significantly effected. In 
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addition, coarticulation effects are more critical for stressed speech 
since stress variation across a phoneme sequence is more pronounced 
for an isolated phoneme. Hence, an algorithm that uses a front-end 
phoneme group classifier could improve overall stress classification 
performance [lo]. It was shown that the autocorrelation of the Mel- 
cepstral (AC-Mel) parameters are the most useful features considered 
for separating the selected stress conditions. 

Next, a cascade correlation extended delta-bar-delta-based neural 
network was formed using each feature to determine stress classifica- 
tion performance. Classification rates across 1 1 stress conditions were 
79% for in-vocabulary and 46% for out-of-vocabulary tests (which are 
both greater than chance 14.3%), further confirming that AC-Me1 pa- 
rameters are the most separable feature set considered. In conclusion, 
this study has shown that a particular speech feature representation 
can influence stress classification performance for different stress 
styleskonditions and that a neural network-based classifier over word 
or phoneme partitions can achieve good classification performance. 
It is suggested that such knowledge would be useful for monitoring 
speaker state, as well as ultimately contributing to improvements in 
speech coding and recognition systems [lo]. 
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An Extended Clustering Algorithm 
for Statistical Language Models; 

Joerg P. Ueherla 

Abstract- An existing clustering algorithm is extended to deal with 
higher order N-grams and a faster heuristic version is developed. Even 
though results are not comparable to back-off trigralm models, they 
outperform back-off bigram models when many million words of training 
data are not available. 

I. INTRODUCTION 
It is well known that statistical language models often suffer from a 

lack of training data. This is true for standard tasks and even more so 
when one tries to build a language model for a new domain, because 
a large corpus of texts from that domain is usually nct available. One 
frequently used approach to alleviate this problem is to construct a 
class-based language model. Let W = w1, * . . , w, be a sequence 
of words from a vocabulary V and let G:w + GI w)  = gw be a 
function that maps each word w to its class G(w) = g w .  A class 
based bigram language model calculates the probability of seing the 
next word w, as 

p ( ~ l w ~ - i )  = P G ( G ( w ~ ) J G ( w ~ - ~ ) )  *PG(wIG(w)) .  (1) 

In order to derive the clustering function G automatically, a clustering 
algorithm as shown in Fig. 1 can be used (see [ 2 ] )  In the spirit of 
decision-directed leaning, it uses as optimization crilterion a function 
F that is very closely related or identical to the final perforniance 
measure one wishes to maximize. As suggested in [:!I, F is based in 
all our experiments on the leaving-one-out likelihood of the model 
generating the training data. 

In Section 11, the algorithm is extended so that it c m  cluster higher 
order N-grams. When such a clustering algorithm is applied to a large 
training corpus, e.g., the Wall Street Journal (WSJ) corpus, with tens 
of millions of words, the computational effort required can easily 
become prohibitive. Therefore, a simple heuristic to speed up the 
algorithm is developed in Section 111. It can then Ix applied more 
easily to the WSJ corpus and the obtained results will be presented 
in Section IV. 

11. EXTENDING THE CLUSTERING ALGORITHM TO N-GRAMS 
As shown in [6], there are several ways of extending the algorithm 

to higher order N-grams. The method we chose USI:S two clustering 
functions GI and Gz: 

P(W2IWi-N+1,  . . ’ ,  wz-1) 

= PG ( GZ (w) IGI ( w i - ~ + i  * . , , ~ i - i ) )  * p s  (wi IGz (w)) 
(2) 

GI is a function that maps the current context c = ( w z - ~ + 1 ,  
... , wi-1) into one of a set of context equivalent classes (or states). 
Thus any two contexts, which are mapped by GI to the same class, 
will have identical probability distributions. Gs,  as the G of (l), maps 
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