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ABSTRACT

Speaker recognition/verification systems require an extensive

universal background model (UBM), which typically requires

extensive resources, especially if new channel domains are

considered. In this study we propose an effective and compu-

tationally efficient algorithm for training the UBM for speaker

verification. A novel method based on Euclidean distance be-

tween features is developed for effective sub-sampling of

potential training feature vectors. Using only about 1.5 sec-

onds of data from each development utterance, the proposed

UBM training method drastically reduces the computation

time, while improving, or at least retaining original speaker

verification system performance. While methods such as fac-

tor analysis can mitigate some of the issues associated with

channel/microphone/environmental mismatch, the proposed

rapid UBM training scheme offers a viable alternative for

rapid environment dependent UBMs.

Index Terms— Speaker verification, universal back-

ground model.

1. INTRODUCTION

In recent years, Gaussian mixture model (GMM) based ap-

proaches in text independent speaker identification systems

have received considerable attention. Although, many distinct

algorithms have been developed in this area, the use of GMMs

for modeling acoustic features have become almost exclu-

sive. The most fundamental GMM based speaker recognition

methods include, the classical maximum a-posteriori (MAP)

adaptation of UBM parameters [1] (GMM-UBM), and sup-

port vector machine (SVM) modeling on GMM super-vectors

(GMM-SVM) [2]. Both of these approaches improve when

using additional normalization schemes. Many groups em-

ployed these schemes successfully as individual subsystems

in the recent 2008 National Institute of Science and Technol-

ogy (NIST) speaker recognition (SRE) evaluations [3].

An important mutual element of these sub-systems is the

UBM. It is essentially a very large GMM trained to represent
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the speaker independent distribution of the speech features

[1] for all speakers in general, and is employed as the ex-

pected alternative speaker model during the verification task.

In both GMM based systems, all speaker models are depen-

dent on the UBM, making it a key element. However, despite

its importance, focused research on UBM training has not yet

been conducted in the literature. Regarding the UBM, there

are a number of fundamental unanswered questions such as,

how many speakers are required, what is the best amount of

data to use, how the acoustic spaces of the individual speakers

contribute in synthesizing the UBM, and do these parameters

somehow depend on the available train and test data (or their

mismatch), etc. In this paper, we first focus on the question

of the required amount of data per utterance and, later inves-

tigate how that amount can be used most effectively.

A common assumption in UBM training is that the more

data used, the better the system performance. UBMs with

512, 1024, 2048 or more mixtures are sought after, with the

thought that they represent the definitive world speaker acous-

tic space. Research groups typically use 5min utterances from

all NIST 2004-2005 data along with the Switchboard Cellu-

lar I and II data. However, there is no concrete evidence that

using the maximum amount of data would guarantee the best

performance. According to [1], as long as the development

speaker population is kept the same, a small amount of data

is sufficient for reasonable system performance. Thus, the

degree of inter-speaker variation in the data is more impor-

tant than the amount of data per speaker. Using a similar

argument, if we consider the problem at the phoneme level,

intra-speaker phoneme variation should be less relevant for

the UBM. Now, when a long duration utterance is used for a

speaker, some phones will occur more frequently and would

contribute to pdf components in the UBM that represent the

intra-speaker distribution of that phoneme, causing an imbal-

ance. Furthermore, the use of enormous data makes UBM

training a very lengthy process. Thus, reducing the develop-

ment data by means of proper selection of the training feature

vectors will obviously improve computation speed, with pos-

sible improvement in overall system performance as well.

Sub-sampling schemes such as decimation and random

feature selection have already been utilized for speeding

up the training of a GMM [4]. Clearly, these feature sub-
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Fig. 1. Normalized EER vs. percent of selected data for UBM

training.

sampling methods do not consider the actual acoustic content

of the features. In this study, we attempt to find a fast, and

effective method of feature selection for UBM training using

inter-feature phoneme dependent distance, so that successive

closely related frames are not used for UBM training. This re-

sults in a much wider and rapid representation of the acoustic

space using only a sparse amount of data.

2. THE UBM: REQUIRED AMOUNT OF DATA PER
UTTERANCE

As noted earlier, the crucial factor for the UBM is the variabil-

ity in the training data, rather than the quantity. Conceptually,

this implies that in order to obtain a model independent of any

speaker, language, transmission channel or other conditions,

we would need as much variability in the data as possible. In

this section, we fix our development data and focus on the

amount of data required per utterance for stable performance.

It should be noted that in this data set, a speaker may occur

multiple times, but in different channel/mic conditions. In

this experiment, we use 2019 male utterances from the NIST

04 1-side (5m) train and test data (168.25 hours in total) for

development. We trained the UBM using only the first x%
feature frames from each utterance, and evaluate our GMM-

UBM system (described in Sec 5) for male trials. For different

values of x, we plot the obtained equal error rate (EER) of the

system, in Fig. 1. Note that we have normalized the EER

values to our baseline system EER. From Fig. 1, it is clear

that performance is comparable to the baseline system using

only 0.5 ∼ 1% of the overall data, which is about 0.75 ∼ 1.5
seconds of data from each utterance. This is not very surpris-

ing because this 1% of the data (1.68 hours) contains all the

inter-speaker variabilities present in the original data. In the

following sections, we discuss ways of utilizing such a sparse

amount of data more effectively.

3. SUB-SAMPLING OF TRAINING FEATURE
VECTORS

In this section, we consider several generic approaches of se-

lecting a subset of development data for UBM training. These

approaches are illustrated in Fig. 2 (b)-(e) using a spectro-
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Fig. 2. Conceptual illustration of the feature selection

schemes. (Selected frames are shown in dark.) (a) Original

utterance spectrogram, (b) LFS, (c) UFS, (d) RFS and (e) IFS.

gram of a TIMIT utterance, shown in Fig. 2(a). The use of

the first x% feature vectors from each utterance, as done in

the previous section, is termed as leading feature selection

(LFS) and is depicted in Fig. 2(b). As noted earlier, sub-

sampling the feature frames can also be done uniformly and

randomly [4]. These methods are denoted by UFS (uniform

feature selection) and RFS (random feature selection), and il-

lustrated in Fig. 2(c) and (d), respectively. Now, though the

methods LFS, UFS and RFS would reduce computation time,

they are overly simplified and completely data independent.

These are not phonetically designed sub-sampling algorithms

for speech feature selection, considering the short-term sta-

tionary nature of speech. Thus, we propose a generic method

termed as “intelligent” feature selection (IFS), which aims to

select a diverse set of x% training feature frames from an ut-

terance. This method would check for similarity in successive

frames using some phonetically motivated distance measure,

and select a feature only if its’ dissimilarity is higher than

some threshold. In Fig. 2 (e), a conceptual IFS method is

illustrated that attempts to select a frame from the beginning

of each distinct phoneme. In this manner, longer duration

phones are less emphasized and a more diversified represen-

tation of the feature space is captured using a fraction x% of

the data, reducing the intra-speaker phoneme variations.

Clearly, there can be variations in this approach if differ-

ent distance criteria between features are used. Since we are

also concerned about training speed in this study, we consider

the simplest measure, the Euclidean distance.

4. FEATURE SELECTION BASED ON EUCLIDEAN
DISTANCE

In this section, we propose an IFS scheme based on simple

Euclidean distance between features (IFS-EU). We begin by

deriving the probability density function (PDF) of distance

function between feature vectors.
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4.0.1. PDF of Euclidean distance between features

We assume that the K dimensional feature vectors of the de-

velopment speakers, originating from a specific phone, can

be modeled by an independent, wide sense stationary (WSS),

and white Gaussian vector random sequence X[n]. Its covari-

ance function matrix KXX [m,n] can thus be written as,

KXX [m,n] = diag(λ1...λK)δ[m − n],

where λp (p = 1, ..,K) are the variances of the individual

cepstral coefficients. Now, the Euclidean distance between

the mth and nth feature vector will be,

d(m,n) = ||X[m] − X[n]|| 12 . (1)

Since the feature vectors have a common mean, the term in-

side the parenthesis in (1) will be a zero mean vector random

sequence. Also, due to independence assumption, d(m,n) is

independent of m and n. Thus,

d(m,n) = d = ||Z|| 12 , (2)

where Z is a zero mean Gaussian random vector having a

covariance matrix KZZ found to be,

KZZ = diag(2λ1...2λK).

Now, from (2), we can write,

d2 =
K∑

i=1

Z2
i =

K∑
i=1

(2λi)W 2
i , where Wi ∼ N (0, 1). (3)

For simplification, we assume that, the effect of the individual

λi values in (3), can be approximated using a lumped param-

eter λ̄. Thus,

d2 ≈ 2λ̄
K∑

i=1

W 2
i = 2λ̄Y, (4)

where we define λ̄ as the average variance given by,

λ̄ =
1
K

K∑
i=1

λi. (5)

Now, in (4), Y =
∑K

i=1 W 2
i is a squared sum of zero mean

independent Gaussian random variables, and thus will follow

a chi-squared distribution given by,

fY (y) =
(1/2)K

Γ(K/2)
y(K/2−1)e−y/2. (6)

From (4), we have d =
√

2λ̄Y . Using this transformation in

(6), we obtain the PDF of d, given by,

fD(d) =
21−K/2

Γ(K/2)
dK−2

λ̄K/2
exp

(
− d2

4λ̄

)
.

The mean and variance of this distribution can be found as,

μD =
2
√

λ̄Γ(1 + K/2)
Γ(K/2)

and (7)

σ2
D = 2Kλ̄ − μ2

D, respectively. (8)
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Fig. 3. A PDF of inter-feature Euclidean distance and the

proposed distance threshold (Shown for α = 0.1 and 0.2).

4.0.2. Calculation of distance threshold

In this feature selection problem, we process data on a frame-

by-frame basis. Assuming that we know the PDF parameters

for the current frame, we would select the next frame if its

distance from the current frame is greater than a threshold

dth. For a fixed value α ∈ [0, 1], we define dth as,

P [d > dth] =
∫ ∞

dth

fD(z)dz = α.

The process is illustrated in Fig. 3 for α = 0.1 and 0.2. This

implies that, we select a feature vector only if its distance

from the current feature is so high that the event is less proba-

ble than α, implying that there must be a change in the phone

represented by the feature. We observe that the PDF, fD(d),
can be closely approximated by a Gaussian distribution hav-

ing a mean μD and variance σ2
D. Using this approximation,

we obtain,

dth = μD +
√

2σDerfc−1(2α), (9)

where erfc−1 is the inverse of the complementary error func-

tion (erfc). Here, erfc() is defined as:

erfc(x) =

√
2
π

∫ x

0

e−t2dt.

4.0.3. Estimation of PDF parameters

We use a recursive method for estimating the feature vector
mean and variance similar to [5]. Denoting λ[n] as the vector
containing the diagonal elements of KXX[0, 0], and μX [n]
as the mean vector of the nth frame, we use the equations,

μ̂X [n] = βmμ̂X [n − 1] + (1 − βm)X[n], and (10)

λ̂X [n] = βvλ̂X [n − 1] + (1 − βv)||X[n] − μ̂X [n]||,(11)

where βm, βv ∈ [0, 1) are smoothing parameters.
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4.0.4. Implementation

Let i denote the current feature index and set j = i + 1. For

initialization (i = 1), X[i] is always selected. In this case

alone, μ̂X [i] and λ̂X [i] are calculated from X[i] and X[j] as,

μ̂X [i] = 0.5(X[i] + X[j]) and

λ̂X [i] = 0.5(X[i] ·2 +X[j]·2) − μ̂X [i]·2,

where ()·2 denotes element-wise square operation. Next, λ̄,

μD, σ2
D and dth are calculated using (5), (7), (8) and (9), re-

spectively. Now, j is iteratively incremented by 1 and d(i, j)
is calculated from (1). The values μ̂X [i] and λ̂X [i] are up-

dated in each step using (10) and (11), along with dth. If

d(i, j) > dth is found, X[j] is selected. Next, i = j and

j = i + 1 is set and the process is repeated until the desired

number of features are selected.

5. SYSTEM DESCRIPTION

Since the objective of this research is focused on the UBM

alone, we use a fairly simple GMM-UBM [1] baseline sys-

tem without any mismatch compensation. For the front-end,

39-dimensional MFCC features (MFCC+Δ+ ΔΔ) was used,

followed by feature warping [6] using a 3-s sliding window.

To remove silence frames, a phone recognizer based voice ac-

tivity detector (VAD) was used. For UBM training, 2019 and

2873 utterances from the NIST 2004 1-s data was used, for

males and females, respectively. Number of mixtures was set

to 1024, since increasing it did not offer further improvement.

UBM Training was performed using the maximum likelihood

(ML) criterion. For modeling, the gender dependent UBMs

were adapted to each enrollment speaker dependent model

using classical MAP adaptation [1] with one iteration and a

relevance factor of 19. The 5min tel-tel condition trials [3] of

the NIST 2008 SRE was used for evaluation. The proposed

feature selection algorithm parameters were set experimen-

tally. We used α = 0.1, βm = 0.8, and βv = 0.6 and 0.8,

for male and female features, respectively. An alternate set of

values may work better with different features or alternate ex-

perimental speaker verification setup. The experiments were

performed using a high performance cluster computer.

6. RESULTS AND DISCUSSION

The EER performance along with the computation time1

required for UBM training using the set of presented ap-

proaches is shown in Table 1. Baseline performance with

100% of the data used to train the UBM for male and female

trials, is 11.42% and 13.30% EER, respectively. It is clear

that all four methods, with 1% of UBM data employed can

provide performance equivalent to the baseline system with

1CPU times calculated were not always precise due to varying load in the

cluster computer, which is a shared resource.

Table 1. Comparison of different UBM training schemes with

respect to EER and training CPU time.
Male Female

Method %data EER
(%)

Time
h:mm

EER
(%)

Time
h:mm

Baseline 100 11.43 3:46 13.30 7:36

LFS 1 11.48 0:24 12.99 0:45

UFS 1 11.54 0:22 13.13 0:52

RFS 1 11.41 0:18 13.56 1:25

IFS-EU 1 10.99 0:27 12.80 1:02

upto 7 times reduced computation time. In addition, using the

proposed feature selection scheme, denoted by IFS-EU, we

notice a ∼ 0.4% reduction in the EER in comparison to the

baseline system for both genders. This is because the selected

features in the IFS-EU method are more able to represent the

diverse speaker pool, while suppressing some of the fine

model traits of intra-speaker phoneme variability, which, we

believe, is less important for construction of a UBM.

7. CONCLUSIONS

A novel feature frame sub-sampling algorithm for reducing

the computational complexity in UBM training was presented

and evaluated. Using an inter-feature Euclidean distance

based criteria, the proposed method selects feature frames

across the speaker acoustic space that are more relevant, and

provides improved UBMs with the same or better EER per-

formance compared to conventional UBM training, which

employs excessive amounts of data.
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