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Abstract

State-of-the-art factor analysis based channel compensation meth-
ods for speaker recognition are based on the assumption that
speaker/utterance dependent Gaussian Mixture Model (GMM)
mean super-vectors can be constrained to lie in a lower dimen-
sional subspace, which does not consider the fact that conventional
acoustic features may also be constrained in a similar way in the
feature space. In this study, motivated by the low-rank covariance
structure of cepstral features, we propose a factor analysis model in
the acoustic feature space instead of the super-vector domain and
derive a mixture dependent feature transformation. We demon-
strate that, the proposed Acoustic Factor Analysis (AFA) transfor-
mation performs feature dimensionality reduction, de-correlation,
variance normalization and enhancement at the same time. The
transform applies a square-root Wiener gain on the acoustic feature
eigenvector directions, and is similar to the signal sub-space based
speech enhancement schemes. We also propose several methods
of adaptively selecting the AFA parameter for each mixture. The
proposed feature transform is applied using a probabilistic mixture
alignment, and is integrated with a conventional i-Vector system.
Experimental results on the telephone trials of the NIST SRE 2010
demonstrate the effectiveness of the proposed scheme.

1. Introduction
Factor analysis based channel compensation methods for speaker
recognition are based on the assumption that, speaker/utterance de-
pendent adapted GMM [1] mean super-vectors can be constrained
to lie in a lower dimensional subspace [2–4]. Lower dimen-
sional speaker and channel dependent subspaces assumption in-
spired various channel compensation schemes such as, Eigenvoice
[2], Eigenchannel [3] and Joint Factor Analysis (JFA) [3]. With
the introduction of i-Vectors, which are the latent factors of the so
called “total variability” space [4], research trend shifted towards
directly applying compensation techniques on these lower dimen-
sional utterance level features, enabling the development of fully
Bayesian techniques [5, 6].

While super-vector domain factor analysis techniques and its
derivatives are effective, they do not consider the fact that acous-
tic feature vectors can also be constrained in a lower dimensional
subspace of the feature space. This is clear, since a low-rank mod-
eling of the super-covariance matrix obtained from different ut-
terance GMMs is not equivalent to a low-rank assumption of the
acoustic feature covariance matrix. Lower dimensional represen-
tation of speech short-time spectrum is a well established phe-
nomenon which motivated a family of speech enhancement meth-
ods known as the signal subspace approach [7]. This phenomenon
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is also found to be valid for popular acoustic features, such as Mel-
frequency Cepstral Coefficients (MFCC) [8], even though these
features are processed by Discrete Cosine Transform (DCT) for
de-correlation. To illustrate that acoustic feature covariance matri-
ces have close to zero eigenvalues, and can be assumed low-rank,
we train a 1024 mixture full-covariance GMM Universal Back-
ground Model (UBM) using 60 dimensional MFCC features on a
large development data set1. For a typical mixture of this UBM,
the covariance matrix is plotted as an intensity image in Fig. 1(a),
revealing that the non-diagonal components are indeed significant.
Fig. 1(b) shows the sorted eigenvalues of three different mixtures
showing how the energy is compacted in the first few coefficients,
while the later ones are close to zero. Also, it is known that the
first few eigen-directions of the feature covariance matrix are rela-
tively more speaker dependent [8], further justifying the low-rank
assumption of features for a speaker recognition task.

Inspired by the abovementioned observations, in this study, we
propose an acoustic factor analysis [9] scheme for speaker recog-
nition and develop a mixture-dependent feature dimensionality re-
duction transform. The proposed transformation performs dimen-
sionality reduction, de-correlation, feature variance normalization,
and enhancement, at once. Also, instead of hard feature alignment
to a specific mixture, applying the transformation, and then retrain-
ing the UBM, we use a probabilistic frame alignment and transform
the UBM parameters within the system. Integrating the proposed
method within a standard i-Vector system provides significant gain
in system performance.

2. Acoustic Factor Analysis
In this section, we describe the proposed factor analysis model of
acoustic features, discuss its formulation, mixture-wise application
for dimensionality reduction, advantages and properties.

2.1. Formulation

Let X = {xn|n = 1 · · ·N} be the collection of all acoustic fea-
ture vectors from the development set. Using a factor analysis
model, a d× 1 feature vector x ∈ X can be represented by,

x = Wy + µ+ c. (1)

Here, W is a d × q low rank factor loading matrix that represents
q < d bases spanning the subspace with important variability in
the feature space, and µ is the d× 1 mean vector of x. We denote
the latent variable vector y ∼ N (0, I) as acoustic factors, which
is of dimension q × 1. We assume the remaining noise component
c ∼ N (0, σ2I) to be isotropic and the model is thus equivalent to
Probabilistic Principal Component Analysis (PPCA) [10].

The advantage of this model is that the acoustic factors y, ex-
plains the correlation between the feature coefficients x, which we
believe are more speaker dependent [8], while the noise component
c incorporates the residual variance of the data. It should be em-

1Details on feature extraction and UBM data are given in Sec. 4.1.
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Figure 1: (a) An intensity image plot showing a typical covariance matrix of a full-covariance UBM (darker indicate lower values) trained on 60-dimensional
MFCC features (20 static+∆+∆∆). (b) Sorted eigenvalues of three covariance matrices from the UBM showing different energy compaction in various
mixtures. Energy compaction is the percentage of top eigenvectors that account for 95% of total energy. A typical, low and high compact mixture eigenvalues
are shown. (c) Distribution of top UBM mixture posterior probability values for development features revealing that frame alignment is not always definitive.

phasized that even though we denote the term c as “noise”, when x
represent cepstral features c actually represent convolutional chan-
nel distortion. Using a mixture of these models [10], we have,

p(x) =
∑
g

wgp(x|g) where (2)

p(x|g) = N (µg, σ
2
gI + WgW

T
g ). (3)

Here, µg , wg , Wg and σ2
g denote the mean vector, mixture weight,

factor loadings, and noise variance for the g-th AFA mixture.

2.2. Mixture dependent transformation

One advantage of using a mixture of PPCA models for acoustic
factor analysis is that its parameters can be conveniently extracted
from a full-covariance GMM-UBM trained using the Expectation-
Maximization (EM) algorithm [10]. The procedure is given below:

2.2.1. Universal Background Model

The UBM model Λ0, trained on the dataset X is given by,

p(x|Λ0) =

M∑
g=1

wgN (µg,Σg) (4)

where wg are the mixture weights, M is the total number of mix-
tures, µg are the mean vectors and Σg are the full covariance ma-
trices. Here, µg and wg are the same as in (2) and (3).

2.2.2. Noise subspace selection

The AFA parameter q in (1) defines the number of principal axes
to retain, assuming the lower (d − q) directions spans the noise-
only subspace [7]. The maximum likelihood estimate of the noise
variance σ2

g for the g-th mixture is given by,

σ2
g =

1

d− q

d∑
i=q+1

λg,i (5)

where λg,q+1 · · ·λg,d are the d−q smallest eigenvalues of Σg . We
note that q can be different for each mixture, and thus in the later
sections, we denote it by q(g).

2.2.3. Compute the factor loading matrix

The maximum likelihood estimation of the factor loading matrix
Wg of the g-th mixture of the AFA model in (2) is given by [10],

Wg = Uqg(Λqg − σ
2
gI)1/2Rg (6)

where Uqg is a d × q matrix whose columns are the q leading
eigenvectors of Σg , Λqg is a diagonal matrix containing the cor-
responding q eigenvalues, and Rg is a q × q arbitrary orthogonal
rotation matrix. In this work, we set Rg = I.

2.2.4. The AFA transformation

The posterior mean of the acoustic factors yn can be used as the
transformed and dimensionality reduced version of xn for the g-th
component of the AFA model. This can be shown to be [10]:

E{yn|xn, g} = 〈yn|xn, g〉 = AT
g (xn − µi) , zn,g (7)

where

Ag = WgM
−T
g and (8)

Mg = σ2
gI + WT

g Wg. (9)

The matrix Ag is termed the g-th AFA transform. Here, the original
feature vectors xn are replaced by the mixture dependent trans-
formed vectors zn,g . It can be easily shown that zn,g is nor-
mally distributed with a zero mean and diagonal covariance ma-
trix Σzg = I − σ2

gΛq
−1
g , demonstrating that Ag performs mean

normalization and de-correlation. Conventionally, a feature vec-
tor xn is aligned with a mixture g that yields the highest posterior
probability p(g|xn,Λ0), and the corresponding transformation is
applied for dimensionality reduction [10]. However, as we observe
the distribution of maxg p(g|xn,Λ0) for our development data in
Fig. 1(c), features are aligned with multiple Gaussians in most
cases providing values of maxg p(g|xn,Λ0) ∼ 0.5. Thus, we pro-
pose to apply the AFA transform using a probabilistic alignment
and transform the UBM instead of retraining it. The new UBM is
given by,

p(z|Λ̂0) =

M∑
i=1

wgN (0,Σzg ) (10)

2.3. Feature enhancement in AFA

Expansion of the transformation matrix Ag in (8) unveils the built-
in enhancement operation it performs. Substituting the expressions
of Wg and Mg from (6) and (9) in (8), we have:

AT
g = Λq

−1
g (Λqg − σ

2
gI)T/2Uq

T
g = Λq

− 1
2

g GgUq
T
g (11)

where we utilized the fact that, Uq
T
g Uqg = I and introduced a

diagonal gain matrix given by:

Gg = Λq
− 1

2
g (Λqg − σ

2
gI)T/2. (12)
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Figure 2: Input SNR [dB] (ξ) vs. Wiener gains. Wiener and square-root
Wiener gains are shown with a solid (-) and dashed (- -) line, respectively.

Keeping aside the term Λq
− 1

2
g in (11), we observe that the opera-

tion in (7) first computes the inner product of the mean normalized
acoustic feature with the q principal eigenvectors of Σg, then for
each i-th eigenvector direction, applies the gain function specified
by the i-th diagonal of Gg in (12), which is actually a square-root
Weiner gain function [11]. Defining the classic speech enhance-
ment terminology a priori SNR ξ as [7] ξ = (λg,i − σ2

g)/σ2
g ,

and using this to express the gain equations, we plot the gain func-
tions against ξ in Fig. 2. Thus, in addition to de-correlation and
dimensionality reduction, the transform Ag also performs feature
enhancement, assuming a noise variance σ2

g . It maybe noted that
conventional factor analysis techniques in super-vector space are
also known to be representable using similar Wiener like gain func-
tions as discussed in [12].

2.4. Feature variance normalization in AFA

The term Λq
− 1

2
g in (11) normalizes the variance of the acoustic

feature stream in the i-th eigen-direction, since λg,i is the expected
feature variance along this direction [13]. The AFA transforma-
tion performs this normalization in each mixture in addition to the
enhancement mentioned in the previous section. This process is in-
terestingly similar to the cepstral variance normalization frequently
performed in the front-end except for its domain of operation.

2.5. Adaptive AFA dimension selection

Since the distribution of eigenvalues are different in each mixture,
a unique value of q(g) should be suitable in each case. This is il-
lustrated in Fig. 1(b), where eigenvalues of three different mixture
covariance matrices are shown. Typically we see an energy com-
paction of ∼ 70%, that is, the first 70% eigenvalues account for
95% of the total energy. But in other cases, the energy compaction
can be very low or high, demanding that the AFA retained dimen-
sion to be low or high, respectively. Motivated by this observation,
we develop a simple method of selecting the AFA dimension, q(g).
We first set the energy compaction ratio E close to 0.9 ∼ 0.97,
then compute the sorted eigenvalues λi,g of Σg for each mixture
g. The optimal dimension retaining E% energy is then calculated
as:

qE(g) = min
q
s.t.

∑q
i=1 λg,i∑d
i=1 λg,i

> E. (13)

This method is denoted by “AFA-Var-En”. As an alternate method,
we use the effective rank estimation algorithm in [14], generally
used for noise estimation in matrices, to select the AFA dimension.
A threshold δ ∈ [0, 1] is set and the AFA dimension is obtained by:

qδ(g) = min
q
s.t.

(∑q
i=1 λ

2
g,i∑d

i=1 λ
2
g,i

)1/2

> δ. (14)

We denote this method as “AFA-Var-Rk”. When the AFA dimen-
sion fixed for all mixtures, we denote the system by “AFA-Fix”.

3. AFA integrated i-Vector system
In this section, we describe how the proposed method could be in-
corporated into the current state-of-the-art i-Vector system frame-
work [4]. First, a full covariance UBM model, Λ0 given by (4), is
trained on the development data vectors. Next, the AFA dimension
q(g) for each mixture g is set, and the noise variance σ2

g is com-
puted using (5). The factor loading matrix Wg and transformation
matrix Ag are then computed using (6) and (8), respectively. For
each development utterance s, the zero order statistics is given by,

Ns(g) =
∑
n∈s

γg(n) where γg(n) = p(g|xn,Λ0) (15)

following the standard procedure [2,4]. However, for AFA, the first
order statistics F̂s(g) is extracted using the transformed features in
the corresponding mixtures instead of the original features.

F̂s(g) =
∑
n∈s

γg(n)zn,g = AT
g

∑
n∈s

γg(n)(xn − µg) (16)

For estimating the total variability (TV) matrix, the standard pro-
cedure is followed [4] using the new UBM Λ̂0 given in (10), and
statistics F̂s(g) and Ns(g). It should be noted that, in this case
the super-vector dimension reduces to K =

∑M
g=1 q(g) from Md,

and TV matrix size becomes K ×R. We define super-vector com-
pression ratio α = K/Md, measuring overall AFA compaction.

4. Experiments and Results
We perform our experiments on the male trials of NIST SRE 2010
telephone train/test condition (condition 5, normal vocal effort).

4.1. System Description

For voice activity detection, a phoneme recognizer [15] combined
with an energy based scheme is used. 60-dimension feature vec-
tors (19 MFCC +Energy + ∆ + ∆∆) are extracted, using a 25
ms window with 10 ms shift and Gaussianized using a 3-s sliding
window. Gender dependent full and diagonal covariance UBMs
with 1024 mixtures are trained on utterances selected from Switch-
board II Phase 2 and 3, Switchboard Cellular Part 1 and 2, and the
NIST 2004, 2005, 2006 SRE enrollment data. For the TV matrix
training, the same dataset is utilized. 400 dimensional i-Vectors
are extracted, whitened and then length normalized [5]. For ses-
sion variability compensation and scoring we use a Gaussian Prob-
abilistic Linear Discriminant Analysis (PLDA) scheme with a full-
covariance noise model [5].

4.2. Results using AFA transformation

We compare several AFA systems with our diagonal and full-
covariance UBM based i-vector systems, denoted by “baseline
diag-cov” and “baseline full-cov”, respectively. The following
AFA systems are built: “AFA-Fix” with q(g) = 42, 48 and 54,
“AFA-Var-En” with E = 0.90, 0.95 and 0.97, and “AFA-Var-Rk”
with δ = 0.99, 0.995 and 0.997. In this experiment, we fix the
PLDA eigenvoice size NEV to 200. The results are shown in Ta-
ble 1.

From the results, we observe that the AFA-Var-En system in
general outperforms the basic AFA-Fix, even with similar com-
pression ratio α. The best results are obtained for AFA-Var-En
(E = 0.97) with an EER of 2.0276% obtaining a 15.37% rel-
ative improvement from “Baseline full-cov”. The AFA-Var-Rk
(δ = 0.997) method provided the best DCFold of 0.3786. These
results prove that the proposed AFA transformation is successfully
able to reduce some nuisance directions in the feature space pro-
ducing i-Vectors with better speaker discriminating ability. We also
observe that AFA i-Vector systems are computationally less expen-
sive compared to the baseline system, roughly by a factor of α.



Table 1: Comparison between baseline i-Vector and AFA systems with
respect to %EER, DCFold and DCFnew for NEV = 200. Percent relative
improvement (%r) and super-vector compression ratio (α) are also shown.

System α %EER/%r DCFold/%r DCFnew/%r
Baseline full-cov 1.00 2.3959 0.1273 0.4534

AFA-Fix
q = 42 0.70 2.36/1.42 0.13/1.57 0.44/3.46
q = 48 0.80 2.12/11.51 0.12/4.55 0.45/1.21
q = 54 0.90 2.25/5.96 0.12/4.47 0.44/3.90

AFA-Var-En
E = 0.90 0.59 2.46/-2.56 0.13/-0.47 0.43/6.17
E = 0.95 0.72 2.13/11.12 0.11/12.96 0.40/11.55
E = 0.97 0.80 2.03/15.37 0.12/9.42 0.40/11.18

AFA-Var-Rk
δ = 0.99 0.53 2.40/-0.32 0.13/1.17 0.42/8.35
δ = 0.995 0.62 2.25/6.19 0.12/5.26 0.42/7.39
δ = 0.997 0.69 2.13/10.95 0.11/12.56 0.38/16.49

Table 2: Linear score fusion of baseline and AFA systems
Individual system performances

System NEV %EER DCFold DCFnew

(i) Baseline full-cov 200 2.3959 0.1273 0.4534
(ii) Baseline diag-cov 200 2.4422 0.1243 0.4609
(iii) AFA-Var-En (0.97) 200 2.0276 0.1153 0.4027
(iv) AFA-Fix (48) 150 2.0591 0.1205 0.4600

Fusion system performances
1 Fusion of (i) & (iii) 1.9759 0.1080 0.3882
2 Fusion of (i) & (iv) 2.0070 0.1103 0.4083
3 Fusion of (i) - (iii) 1.8077 0.0993 0.3733

This is expected since the computational complexity of an i-Vector
system is proportional to the super-vector size [16].

4.2.1. Fusion of multiple systems

We pick four of our systems for fusion: (i) Baseline full-cov, (ii)
Baseline diag-cov, (iii) AFA-Var-En (E = 0.97), and (iv) AFA-
Fix (q = 48). The PLDA NEV parameter was set to 200 for sys-
tems (i)-(iii) and 150 for system (iv). Simple linear fusion was
used with mean and variance normalization of scores to (0, 1) for
calibration. From the results presented in Table 2, fusion perfor-
mance of (i) and (iii) clearly reveals that AFA and “baseline full-
cov” systems have complementary information, as the EER and
DCF values improve. The best result is achieved by fusing systems
(i), (ii) and (iii), to obtain: EER = 1.807%, DCFold = 0.0993 and
DCFnew = 0.3733. Performance comparison of the systems (i), (ii)
and the fusion is shown in Fig. 3 using Detection Error Trade-off
(DET) curves. Here, again we observe the superiority of the pro-
posed AFA-Var-En system compared to the baseline especially in
the low false alarm region, whereas the fusion system shows better
performance in the full DET curve range.

5. Conclusions
In this study, we have proposed a factor analysis model for acous-
tic features to compensate for transmission channel mismatch in
speaker recognition. Using the model, we have developed a mix-
ture dependent feature transform that performs dimensionality re-
duction, de-correlation, variance normalization and enhancement,
at once. Instead of a separate front-end processing, the proposed
transform has been integrated within an i-Vector speaker recogni-
tion framework using a probabilistic feature alignment technique.
Experimental results have demonstrated the superiority of the pro-
posed scheme compared to the baseline i-Vector system.
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